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ABSTRACT

Specification-based intrusion detection (SB-ID) is a suitable
approach to monitor Building Automation Systems (BASs)
because the correct and non-compromised functioning of the
system is well understood. Its main drawback is that the cre-
ation of specifications often require human intervention. We
present the first fully automated approach to deploy SB-ID
at network level. We do so in the domain of BASs, specifi-
cally, the BACnet protocol (ISO 16484-5). In this protocol,
properly certified devices are demanded to have technical
documentation stating their capabilities. We leverage on
those documents to create specifications that represent the
expected behavior of each device in the network. Automated
specification extraction is crucial to effectively apply SB-ID
in volatile environments such as BACnet networks, where
new devices are often added, removed, or replaced. In our ex-
periments, the proposed algorithm creates specifications with
both precision and recall above 99.5%. Finally, we evaluate
the capabilities of our detection approach using two months
(80GB) of BACnet traffic from a real BAS. Additionally, we
use synthetic traffic to demonstrate attack detection in a
controlled environment. We show that our approach not only
contributes to the practical feasibility of SB-ID in BASs, but
also detects stealthy and dangerous attacks.
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1 INTRODUCTION

Building Automation Systems (BASs) monitor and control
physical processes in modern buildings. Typical deployments
automate services such as heating, ventilation, and air con-
ditioning, but can be extended to lights, alarms, elevators,
physical access control, and many others. Unlike standard
IT systems, BASs are capable of influencing the physical
environment. The intrinsic capabilities of BASs open new
possibilities for cyber-attacks and new challenges for cyber-
defenses. On the offensive side, it has been shown how smart
lights can be misused to trigger seizures in people suffering
from photosensitive epilepsy or to exfiltrate data from highly
secure office buildings [25]. In another example from 2014,
the heating system is considered the entry point of the Target
hack where the attackers got access to personal information
about 70 million customers and 40 million credit card num-
bers [23]. In one of the most recent cases from 2017, attackers
remotely locked all the doors in a hotel until a ransom was
paid [5].

Protecting BASs has been proven to be hard since most
systems have no built-in security features. In this context,
attack detection becomes an essential approach to secure
BASs. Diverse Intrusion Detection Systems (IDSs) have been
proposed in literature [2]. A particular one compares rules
that encode expected behavior with the actual behavior of the
system. This is called specification-based intrusion detection
(SB-ID) [26]. SB-ID has been successfully applied in critical
infrastructures where the correct functioning of the system
has been summarized as rules [4, 18]. The main drawback
of SB-ID is that rules (a.k.a. specifications) often involve
intensive manual labor.

Attacks on BASs manifest as unauthorized commands to
vulnerable devices. Looking for such commands at the host
level is unfeasible due to the heterogeneity of devices in BAS
networks, running mostly closed proprietary software. An
alternative is to monitor the network traffic, closely looking at
the source and destination of BAS commands. This approach
is passive, easy to deploy, and scalable.

In this work we develop the first fully automated approach
to deploy SB-ID at the network level. We focus on each
device’s documented capabilities and monitor the network
looking for inconsistencies in the observed behavior. Incom-
ing and outgoing traffic is analyzed. Anomalies on incoming
traffic (e.g., asking for capabilities that a device does not
have) could be a sign of an ongoing attack, whereas anom-
alies on outgoing traffic (e.g., showing capabilities that the
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device is not supposed to have) could be a sign of an already
compromised device.

Our work is inspired by the research presented in [6] but
differs in several fundamental aspects. The core difference re-
gards the automated interpretation of each device’s technical
documentation: [6] essentially searches for specific occur-
rences of text strings in a predetermined order. Because of
the very heterogeneous documentation, this approach gives
no search results in many documents, implying no informa-
tion extraction. In documents that follow the predetermined
structure and format, the approach extracts the right infor-
mation but is unable to interpret it correctly (e.g., does the
occurrence of a capability name mean that the capability
is supposed to be implemented in a certain device or not?).
This ambiguity remains unsolved in [6] and produces a severe
amount of manual interpretation. Our approach, on the other
hand, solves both described limitations of [6] by interpret-
ing the documentation using the available network traffic
to map monitored (and hence implemented) information to
parts of the documents which, in a second step, allows us
to interpret the complete documents. Our experimental re-
sults show that with this approach, we can correctly and
non-ambiguously interpret documents with different formats
in an automated way. Further details on the differences of
our approach with [6], such as on the design, implementation,
and evaluation, can be found in Sect. 9.

Our approach is applied on devices that communicate
using the BACnet protocol (ISO 16484-5). We leverage on
publicly available technical documentation about BACnet
devices to automatically extract expected behavior rules. The
process is done in two steps. First, a subset of the devices’
capabilities is observed in the network traffic. Second, based
on the previous observations, our algorithm extracts all the
devices’ capabilities from the technical documents.

Our results show that the proposed algorithm can extract
device behavior rules with high precision and recall. Further-
more, the extracted specifications allow the detection of a
variety of dangerous attacks, some of them consisting of a
single network packet.

In summary, we propose a novel approach to automatically
deploy SB-ID in BACnet networks. Moreover, we identified
a subset of attacks that can be detected with our specifica-
tions. Finally, we implemented a prototype and evaluated
our approach with real and synthetic BACnet traffic.

Overall, we consider this work as a step forward in the
challenging task of securing BASs. Hereafter the paper is
organized as follows. Section 2 provides background informa-
tion regarding the BACnet protocol. Section 3 and Sect. 4
define our system and threat model, respectively. The design
of our solution is presented in Sect. 5. The implementation
details are described in Sect. 6, followed by the evaluation
in Sect. 7. We discuss our results in Sect. 8. A summary
of related work is presented in Sect. 9. Final remarks and
conclusions are presented in Sect. 10.

2 BACNET PROTOCOL OVERVIEW

BACnet (ISO 16484-5) is a vendor-neutral communications
protocol for Building Automation and Control Networks [1].
BACnet dictates a set of rules that governs how devices
should communicate. Thanks to its standardization, BACnet
devices can interoperate regardless of the manufacturer. More
than an application layer protocol, BACnet is a four-layers
protocol stack. The physical and data link layers allow the
use of different protocols in order to fit diverse environments.
The network layer allows the interconnection of two or more
BACnet networks. The application layer is in charge of the
actual data exchange among BACnet devices. BACnet objects,
properties and services play a key role in the application layer.

2.1 BACnet Objects and Properties

BACnet organizes data using an object-oriented approach.
BACnet objects are comprised of a subset of BACnet prop-
erties that store data. The standard defines 60 object types
to satisfy the most frequent needs in BASs. The BACnet
standard dictates which properties are optional, required and
writable for each object. Moreover, the standard declares
the possibility to implement proprietary —vendor specific—
objects and properties in BACnet devices. There is only one
mandatory object for all BACnet devices: the device object.
It contains several properties such as vendor-identifier, model-
name, system-status, among others. Since the applicability of
standard objects vary depending on the purpose of the device,
it is not required to implement all 60 standard objects.

It is important to distinguish between object types and
object instances. Object types are templates that will be filled
in with data when instances are created. BACnet devices
that implement some object types must be able to store at
least one instance of them.

2.2 BACnet Services

BACnet services refer to specific actions that devices can
handle. Read Property, Write Property, Reinitialize Device,
and Atomic Write File are some examples of BACnet ser-
vices. BACnet defines 41 standard services. Depending on
the device’s purpose, only a subset of them has to be imple-
mented.

Services typically involve two roles, clients that send re-
quests, and servers that reply. In order to clarify which ser-
vices can be sent or received by different devices, the BACnet
standard defines the BACnet Interoperability Building Blocks
(BIBBs). BIBBs are often mentioned as acronyms with three
components: type, task, and capability. The type refers to 5
broad BIBB categories. The task specifies the purpose of
the BIBB. The capability states whether the device acts as
a client or a server, denoted as “A” or “B”, respectively.
DS-RP-A is a BIBB example that stands for Data Sharing
(type), Read Property (task), and client role (“A” capability).
Devices implementing DS-RP-A can send Read Property
queries to other devices. A device with the complementary
BIBB, namely DS-RP-B, would be able to reply such a query.
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(a) (b) (c)

Figure 1: Excerpts from different PICS stating which
object types are implemented. PICS (a) lists only
the implemented object types, whereas PICSs (b)
and (c) use specific Unicode characters to denote
which of them are implemented.

There are 146 BIBBs in the 2016 version of the standard,
some of which are composed of multiples services at once.

2.3 BACnet PICS

BACnet networks are comprised of devices with very dif-
ferent functions. Sensors, actuators, operator workstations,
controllers and others, are device profiles typically found in
BACnet deployments. Vendors must issue a document called
Protocol Implementation Conformance Statement (PICS),
that specifies which BACnet objects, properties and BIBBs
are actually implemented per device.

The BACnet standard is strict about the contents that
PICSs must have, but lax in the document layout that PICSs
should use. Object listings from different PICSs are shown in
Fig. 1. All of them describe the same kind of information using
distinct table layouts. BACnet properties are also described
in PICSs, however, more complex table layouts are used
because they have additional features such as obligatoriness,
writability, conditional existence, among others.

3 SYSTEM MODEL

In this paper, we consider a typical BACnet network consist-
ing of sensors and actuators, which are managed by BACnet
controllers and are interconnected by BACnet routers (see
Fig. 2). The operator workstation is occasionally on-line and
has a special BACnet software to perform configuration and
process monitoring tasks. Operator workstations, routers and
controllers are typically interconnected by the corporate LAN
(TCP/IP). They are known as BACnet/IP devices. Sensors
and actuators, on the other hand, are usually connected
to their controllers using different protocols such as EIA-
232. Still, their communication can be observed on the LAN
because controllers forward messages to/from them. The the-
oretical limit of BACnet devices in the network is about 222.
All the components in Fig. 2 can potentially communicate
with each other through BACnet messages, using BACnet
objects, properties, and services.

We assume the availability of PICS for all the devices in
the network. This is a realistic assumption since the BACnet
standard states that “all devices conforming to the BACnet
protocol shall have a Protocol Implementation Conformance
Statement (PICS) that identifies all of the portions of BACnet
that are implemented” [1]. Moreover, PICS must contain
at least the supported object types, properties, writable
properties and BIBBs. PICS are published as PDF files in
the BACnet International website [3].

Standard network monitoring tools can be used to observe
BACnet traffic. We consider BACnet networks with no au-
thentication and no encryption. This is due to the fact that
the Network Security clause of the standard is optional and
uncommon in BACnet devices [20]. We assume that it is
possible to collect BACnet traffic prior to the deployment of
the IDS. Traffic collection is typically granted to authorized
parties in the organization such as to network security staff.
The collected traffic must contain information about all the
devices in the network under normal operative conditions.

4 THREAT MODEL

Attackers are assumed to be capable of sending messages
to BACnet devices and getting replies from them. Logical
access to BACnet devices can be obtained locally or remotely.
Since BACnet networks typically use the corporate LAN, at-
tackers can interact with BACnet devices within the network.
Moreover, search engines like Shodan allow attackers to find
Internet exposed BACnet devices in remote locations [27].

The adversary is also capable of manipulating the devices’
firmware. Firmware tampering can occur, for example, by
compromising the operator’s workstation, gaining physical
access to the control room where BACnet devices are located,
or intercepting devices during shipping [9]. A compromised
BACnet device is also considered an attacker in the local
network.

We assume that the network monitor cannot be compro-
mised. This is a common assumption since network security
devices are often in a different address space and therefore,
unreachable from the monitored network where the attacker
resides. Similarly, we assume that the data source of the IDS
(e.g., switch with a mirroring port) is not compromised and
delivers data without packet loss.

Figure 2: Schematic overview of BACnet network
components. Controllers manage sensors and actua-
tors. Internetwork communication relies on BACnet
routers.
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Figure 3: Overall system architecture.

BACnet Attacks. The threats described before materialize
in specific attacks such as backdoors, active device finger-
printing, and denial of service (DoS).

A firmware backdoor could allow the attacker to establish
a hidden communication channel with the affected device.
The possibilities of the attacker from this point on are di-
verse: lateral movement to other BAS devices or networks,
divert BAS processes (e.g., changing set points), sniff network
traffic, data exfiltration, etc. There are precedents of attacks
on IT infrastructure via compromised BASs [16, 23]. Such
backdoors could be implemented as proprietary or standard
BACnet elements in order to disguise the traffic as benign.

On the other hand, during active device fingerprinting the
attacker sends a predefined set of messages to the targeted
device. The device’s response is used to deduce specific details
such as manufacturer, model and firmware version. This
information is useful to find exploits and launch further
attacks.

As our last example, valid services such as Reinitialize
Device or Device Communication Control can be used in
DoS attacks. The former causes devices to reboot while the
latter instructs them to stop initiating and optionally stop
responding to incoming messages [1].

Rather than extensively listing BACnet attacks, our goal
is to illustrate diverse attack instances to realize the potential
impact on BASs. We implement and provide more details on
these three attacks in Sect. 7.4.

5 DESIGN

We start with a system overview in Sect. 5.1. Details of our
approach to automatically extract specifications are presented
in Sect. 5.2. Finally, Sect. 5.3 briefly describes our attack
detection process.

5.1 Overview

Our goal is to develop an approach to automatically generate
rules to be used in specification-based intrusion detection.
The rules we extract in this paper represent valid device
behavior in BACnet networks. Once the rules have been
extracted, they are loaded into the IDS. Finally, the IDS
monitors the network looking for rule violations in the traffic.
Figure 3 shows the overall architecture of our system.

Looking closer at the specification extraction process, the
Analysis Engine takes two inputs: (1) training BACnet traffic;
and (2) PICS files. First, the Analysis Engine reads training
traffic from the network in order to identify devices, group
them by brand and model, and deduce which are some of
their capabilities. During this process our approach should
not interact with BACnet devices in order to avoid accidental
disruption of the network. We refer to this property of our
system as passiveness.

Second, using the information learned from the training
traffic, our algorithm interprets PICSs and creates sets of
capabilities for each device in the network. Automation of
the PICS interpretation process is crucial because BACnet
networks can be comprised of thousands of devices, each of
them potentially described by its own PICS. We refer to this
property of our system as scalability.

5.2 Architecture

Specification extraction is performed by the Analysis Engine.
A more detailed view of the Analysis Engine is shown in Fig.
4. Its main functions are:

Device Fingerprinting. The input of the fingerprinting
routine is the training BACnet traffic. The output is a list of
tuples [device id, brand, model]. The device id is unique
throughout the BACnet network. On the other hand, many
devices can share the same brand and model.

Our system fingerprints BACnet devices applying two
techniques described in [6]. The first technique is “Device
Object Analysis”, which focuses on network packets containing
properties of the device object. Those packets might contain
all the required information at the same time. The second
technique is “BACnet Address Linking”. In this case, we link
one packet containing the device id and the BACnet address
(both of which are unique in the network), with another packet
containing the BACnet address plus additional information
like the brand and model. In this way, the BACnet address
links the device id with its corresponding brand and model.

It is worth noting that our system cannot extract speci-
fications for devices not fully fingerprinted (i.e. incomplete
tuples). No specifications for a subset of devices mean that
the IDS will not be able to monitor malicious behavior for
them. This condition imposes a security gap that BACnet
administrators should be warned about. However, in prac-
tice devices can be successfully fingerprinted after analyzing
enough training traffic. The example in Fig. 4 shows five de-
vices successfully fingerprinted, depicted as geometric figures.

Figure 4: Analysis Engine components.
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PICS Matching. The inputs of the PICS matching routine
are the list of fingerprinted devices and the set of PICS that
describe all the devices in the network. The output is a list of
extended tuples [device id, brand, model, PICS file].

PICS Interpretation. The inputs of the PICS interpreta-
tion process are the list of extended tuples and the training
BACnet traffic. For every PICS file there are four outputs:
(1) the set of implemented object types; (2) the set of im-
plemented properties for each object type; (3) the set of
writable properties for each object type; and (4) the set of
implemented BIBBs.

The interpretation routine is the core of our specification
extraction approach. In what follows, we will broadly refer to
BACnet objects, properties, writable properties, and BIBBs
as BACnet elements.

The first step is to classify the training traffic by device
type. All the traffic sent by devices of the same brand and
model is analyzed individually. Looking for confirmations in
the traffic (e.g., read acknowledgments), the system identifies
which BACnet elements are present for that type of devices.
Similarly, looking for errors in the traffic the system deduces
which elements are absent. We refer to the sets of present
and absent elements as P and A , respectively. The sets P
and A are observations taken from the training traffic, which
is collected during a limited time span. Hence, it is expected
to get incomplete sets of implemented and non-implemented
elements.

The interpretation process locates the complete list BAC-
net elements in the PICS. Since the list of standard BACnet
elements is known in advance, it is feasible to pinpoint the
elements in the document. Figure 5 shows four examples of
typical table layouts that describe BACnet elements in PICS.
Once the elements’ location has been identified, our approach
groups the elements using different criteria. Figures 5a, 5c,
and 5d suggest a column-wise grouping. Similarly, Fig. 5b
and Fig. 5c suggest a row-based grouping. Elements within
the same cell (Fig. 5b) are also grouped together. Finally, for
any of the layouts, we create groups of elements with similar
nearby text. For example, elements next to a symbol (e.g.,
✓□), word (e.g., “Implemented”) or phrase (e.g., “Supported
Object Types”). In what follows we will refer to the groups
extracted from the PICS as reference sets. Several reference
sets are extracted for each PICS, but only one of them will
contain the set of all implemented elements.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(P, 𝑅𝑖) =
|P ∩𝑅𝑖|
|P ∪𝑅𝑖|

(1)

Our way to find out which of the reference sets has all the
implemented elements, is by comparing with our observations
P and A . The Jaccard coefficient is a simple yet effective
scoring mechanism to quantify the similarity between two
sets [11]. Equation (1) defines the Jaccard similarity with
arguments P and 𝑅𝑖, where 𝑅𝑖 represents the 𝑖𝑡ℎ reference
set extracted from the PICS. Using the Jaccard coefficient it is
possible to rank the reference sets according to their similarity

(a) (b)

(c) (d)

Figure 5: Table layouts commonly used in PICS.
Dark and light circles represent BACnet objects and
properties, respectively. Empty cells might contain
arbitrary text.

to P. A reference set similar enough to P is expected to be
the set of all the implemented elements, however, this might
not always be the case specially when P has few elements.
To solve this problem we also use the set of absent elements
A .

𝐽𝑎𝑐𝑐𝑎𝑟𝑑′(A ,P, 𝑅𝑖) =

|P ∩𝑅𝑖|
|P ∪𝑅𝑖| · (|P ∖𝑅𝑖|+ |A ∩𝑅𝑖|+ 1)

(2)

Equation (2) shows our modified version of the Jaccard
similarity that we call 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′. 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ adds new terms to
the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 similarity with the following effect:

(1) If 𝑅𝑖 is a suitable reference set, it should contain most
(ideally all) of the objects in P, which means that
|P ∖𝑅𝑖| must be equal or close to zero.

(2) If 𝑅𝑖 is a suitable reference set, it should contain few
(ideally none) of the elements in A , which means that
|A ∩𝑅𝑖| must be equal or close to zero.

Deviations from the ideal cases will increase the penalization
(denominator) and cause a decrease in the overall scoring for
𝑅𝑖.

We evaluate the effectiveness of this modified metric in
Sect. 7.2.

Specifications Matching. The inputs for this routine are
the list of extended tuples and the set of valid BACnet
elements (objects, properties, writable properties, and BIBBs)
for each PICS. The output are specifications of the form
[device id, valid BACnet elements].

Since all the fingerprinted devices have already been matched
with their corresponding PICS, it is straightforward to match
each device with their specifications.

5.3 Attack Detection

As shown in Fig. 3, the specifications generated by the Anal-
ysis Engine are loaded into the IDS. The IDS verifies that
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audited devices are concordant with their PICS in terms of
valid objects, properties and BIBBs. Deviations from the
expected behavior are flagged as security events. It is worth
noting that PICS violations do not imply violation of the
standard. In fact, all the attacks we consider are comprised
of completely valid BACnet packets.

Verification of BACnet objects and properties is unam-
biguous because PICS explicitly mention which of them are
implemented or not. BIBBs verification is harder because the
network communication is based on BACnet services that can
be part of many BIBBs. The NIDS verifies that the observed
service is part of at least one of the supported BIBBs. An
alarm is raised otherwise.

6 IMPLEMENTATION

We implement our prototype using third-party software tools
and custom scripts. The scripts are open-source and publicly
available.1

Device fingerprinting is implemented using Bro [29].
Bro’s output are log files in plain text. These logs are stored
in an SQL database to ensure easy access from other modules.
We use MySQL as our DBMS. Nonetheless, the database
scripts are written using standard SQL statements that could
be handled by other DBMSs as well.

The PICS matching process is done by Apache Solr [8].
This tool consists of a web application that ranks documents
given some keywords. The behavior of Apache Solr is similar
to Internet search engines but on a predefined set of docu-
ments. In our particular setting, the documents are PICSs
and the keywords are the brand and model of all the fin-
gerprinted devices. The API provided by Solr allows us to
automate the queries. In this way, we can efficiently match
all the devices with their corresponding PICS.

Prior to the PICS interpretation routine, we use Bro to
identify implemented and non-implemented BACnet elements
in the training traffic. Since all the devices of the same brand
and model are described by the same PICS, we aggregate our
observations in the database. Aggregated information per
device type allows us to create the sets P and A , required
to use our 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ metric as defined in Equation (2).

The reference sets are extracted from PICSs in Portable
Document Format. Layout-aware text extraction from PDF
files is a well-known problem [24]. PDF is used for stan-
dardized information presentation rather than information
extraction. We circumvent the problem by creating XML
versions of the PICS using Adobe Acrobat Pro. Nonetheless,
the process is error prone and the format and contents of the
original file might be distorted in the output file. Moreover,
there are typos and abbreviations in the PICS, that make it
harder to pinpoint BACnet elements in the PICS.

We implemented a typo correction function based on the
Levenshtein distance [17]. This approach measures how many
deletions, additions or substitutions are required to convert
one string into another. Since we know in advance the list
of standard BACnet elements, we compute the Levenshtein

1 https://github.com/SBIDS-BACnet/SBIDS-BACnet

distance between each word in the PICS with all the elements
in the list. If the Levenshtein distance is less than a predefined
threshold, we fix the string read from the PICS, else it is left
unchanged. Our empirical studies show that one-fourth of
the string length is a suitable fixing threshold for BACnet
property names. For BACnet object names we use a fixed
threshold set at 3.

Finally, a Python script reads from the database the net-
work traffic observations (P and A ) and computes the
𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ metric with all the reference sets extracted from the
PICS. The reference set scoring the highest 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ value
is considered the set of implemented elements. From this set,
we create the specifications that are going to be loaded into
the IDS. The specifications are generated in Bro Scripting
Language. Nonetheless, our implementation can be adapted
to support other IDSs as well.

7 EVALUATION

We present an evaluation of our prototype, starting with
intermediate results gotten during the training traffic anal-
ysis (Sect. 7.1). The automatically extracted specifications
were evaluated at two levels. First, we measured the effec-
tiveness of our approach to create specifications concordant
with the PICS (Sect. 7.2). Second, we applied the specifica-
tions on BACnet traffic to analyze their capability to detect
attacks such as those described in our Threat Model. We an-
alyzed traffic from a real BACnet network in an international
University campus (Sect. 7.3). We conclude our evaluation
analyzing traffic from a simple testbed where we execute our
own BACnet attacks (Sect. 7.4).

7.1 Training Traffic Analysis

We trained our system with real BACnet traffic. The network
is comprised of 646 BACnet devices in 8 buildings. Six devices
whose PICSs are not available were not considered in our
evaluation. Our local PICS repository consists of 10 PDF
files that describe the remaining 640 devices.

The BACnet network has its own isolated VLAN which is
not visible from the corporate LAN. However, our evaluation
is based on traffic collected from one of the core switches. We
used 4.5GB (4 days) of BACnet traffic for the training phase.

All the fingerprinted devices were identified using only 3 ·
106 BACnet packets of the training data, which in our network
represents roughly six hours (300MB) of traffic. BACnet
devices were automatically matched to one of the PICS
available in the repository. A manual verification confirmed
that BACnet compliant devices were correctly matched to
their corresponding PICS. A breakdown of our results is
shown in Table 1.

As part of the PICS Interpretation process, it is crucial
to identify the set of implemented (i.e., present) and non-
implemented (i.e., absent) object types, properties and ser-
vices in the network. There are 60 standard object types,
however, on average, our devices implement only 15.6. Consid-
ering our 640 BACnet devices we expected to observe around
9,984 object types (15.6 · 640). We were able to discover 9,804
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Table 1: BACnet devices grouped by PICS

# of Device Device PICS
devices Manufacturer Model File

1 DEOS COSMOS Open PICS-1
3 Delta Controls eBCON PICS-2
5 Kieback&Peter DDC4400 PICS-3
1 Mitsubishi BM ADAPTER PICS-4

25 Priva Compri HX 3
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

PICS-5

7 Priva Compri HX
87 Priva Compri HX 8E
36 Priva Compri HX 4
13 Priva Compri HX 6E
403 Priva Comforte CX

16 Priva HX 80E PICS-6
31 Priva Blue ID S10 PICS-7
5 Priva Blue ID C4 PICS-8

1 Siemens PXC00-U
⎫⎬⎭PICS-93 Siemens PXC128-U

1 Siemens PXC64-U

2 Siemens PXG80-N PICS-10
3 LOYTEC LVIS-3ME15-G2 N/A
3 Siemens PXR11 N/A

implemented object types and 6,512 non-implemented object
types. Similarly, we discovered 41,704 BACnet properties.
The vast majority of properties (40,467) were implemented
and only 1,237 were not implemented. Finally, we found
24,882 services of which 16,713 were implemented and the
remaining 8,169 were not. Figure 6 shows the discovery rate
for BACnet objects, properties and services.

7.2 PICS Interpretation

For all the PICS shown in Table 1, we ran our algorithm to ex-
tract implemented objects, implemented properties, writable
properties, and BIBBs. We present our results in terms of
precision and recall. Precision refers to the fraction of ex-
tracted specifications that are concordant with the PICS.
Recall is the fraction of specifications that were extracted
from the PICS, considering the total amount of specifications
that can be extracted.

Table 2 shows the results gotten for three different types of
specifications. We extracted a total of 136 specifications about
implemented BACnet objects, 283 regarding implemented
BIBBs and 57 about writable properties. Writable property
specifications were extracted from only one of the PICS in
our repository. This is because although we observed write
requests on different devices, all of them were reduced to a
single PICS (PICS-5 ). Therefore, our prototype used only
this PICS to extract specifications about writable properties.
We achieved 100% precision and recall for those three types
of specifications.
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Figure 6: Discovery rate for BACnet objects (a),
properties (b), and services (c) during the training
phase.
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Table 2: Specification extraction performance of im-
plemented objects, BIBBs, and writable properties.

PICS Object BIBB WProp. Precision
File Specs. Specs. Specs. and Recall

PICS-1 17 38 - 100%
PICS-2 19 43 - 100%
PICS-3 22 49 - 100%
PICS-4 9 10 - 100%
PICS-5 16 27 57 100%
PICS-6 2 12 - 100%
PICS-7 16 31 - 100%
PICS-8 16 31 - 100%
PICS-9 18 34 - 100%
PICS-10 1 8 - 100%
TOTAL 136 283 57 100%

Results about the extraction of BACnet properties are
shown in Table 3. Our algorithm extracted 2,064 specifica-
tions with a precision of 99.85%. The reason for precision
loss was the misinterpretation of surrounding text strings as
BACnet properties. Moreover, we got a recall of 99.57% due
to abbreviations in property names that the typo correction
routine was not able to fix. In Sect. 8 we discuss the impli-
cations of precision and recall below 100% and what can be
done to mitigate the problem.

Table 3: Specification extraction performance of im-
plemented properties.

PICS File Property Specs. Precision Recall

PICS-1 244 100% 100%
PICS-2 224 99.11% 96.10%
PICS-3 520 100% 100%
PICS-4 46 100% 100%
PICS-5 237 100% 100%
PICS-6 41 100% 100%
PICS-7 242 99.59% 100%
PICS-8 244 100% 100%
PICS-9 259 100% 100%
PICS-10 7 100% 100%
TOTAL 2,064 99.85% 99.57%

It is worth noting that some PICS show only optional
properties instead of all the implemented properties. Since
our evaluation is based in the contents of the PICS, implicit
properties were not taken into account.

7.3 Intrusion Detection on Real Traffic

The automatically extracted specifications were used to an-
alyze BACnet traffic in our network for two months, which
in our setting consists of roughly 80GB of data. The IDS
raised alarms due to violations in our specifications about

implemented objects and properties (see Table 4). We dis-
covered 25 BACnet objects in 4 different device models. Two
of the undocumented objects are standard objects, namely,
analog-output and command. The remaining 23 discovered
objects are proprietary. Similarly, we discovered 103 undocu-
mented BACnet properties. Seven properties are standard
(time-of-device-restart, last-notify-record, feedback-value, and
four times the profile-name property) and 96 are proprietary.
On average, 0.5% of the traffic makes reference to undocu-
mented BACnet elements. As we discussed in Sect. 4, such
behavior could be a sign of a backdoored device with grave
consequences for the entire BAS. According to the BACnet
operators such behavior is normal in our network and does
not constitute an actual attack.

The IDS also raised alerts due to devices being queried
about capabilities they are not supposed to have according
to their PICS. In our setting such queries occur in less than
1.5% of the traffic mainly due to: (1) BACnet software used
by the operators that tries to read as much information
as possible from the devices; and (2) logging servers that
regularly poll, via read requests, a predefined set of BACnet
elements. In both cases, attempts to read non-implemented
objects and properties cause all the alerts. We omit further
details since the alerts we got are fully dependent on the
specific configuration of our network. Even though we did
not find ongoing attacks, we want to stress that this behavior
should call the attention of the operators since it resembles
popular reconnaissance tools that might be used during early
stages of network attacks.

The IDS did not trigger any alerts regarding writable
properties nor BIBB specifications.

Figure 7: Our BACnet testbed. The two Raspberry
Pi computers at the top simulate the Priva Blue ID
S10 and the Mitsubishi BM ADAPTER, respectively.
The computer at the bottom represents the attacker.
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Table 4: Undocumented BACnet objects and properties. Our findings are highlighted in bold font.

Device Model Object Property

COSMOS Open 8 (device) 203 (time-of-device-restart)

eBCON

0 (analog-input) 1033, 1039, 1076
2 (analog-value) 1067
5 (binary-value) 1033

8 (device)

1033, 1040, 1074, 1077, 1078, 1079, 1089, 1090, 1100, 1101, 1102,
1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1125, 1137,
1138, 1139, 1140, 1141, 1142, 1144, 1145, 1146, 1147, 1148, 1151,
1156, 1158, 1160, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169,
1204, 1205, 1206, 1207, 1209, 1210, 1212, 1213, 1214, 1215, 1216,
1219

9 (event-enrollment) 1033, 1037, 1038, 1045, 1192, 1198, 1199, 1213, 1216
15 (notification-class) 1033, 1034, 1040, 1074
16 (program) 1033
20 (trend-log) 173 (last-notify-record), 1135
142, 149, 152, 176,
177, 178, 181, 183,
270, 272, 278, 284,
297, 298, 311

Compri HX 8E
17 (schedule) 168 (profile-name)
20 (trend-log) 168 (profile-name)

Comforte CX 1 (analog-output)

Blue ID S10 17 (schedule) 168 (profile-name)

Blue ID C4 17 (schedule) 168 (profile-name)

PXC00-U
8 (device) 3028, 3034
200, 201, 202, 204,
207, 208, 214, 215

PXC128-U

1 (analog-output) 40 (feedback-value)
4 (binary-output) 3067
5 (binary-value) 3067
7 (command)
8 (device) 3019, 3028, 3034, 3061, 3062, 3063, 3064
20 (trend-log) 3019

PXC64-U
4 (binary-output) 3067
8 (device) 3028, 3034, 3061, 3062, 3063, 3064
20 (trend-log) 3019

7.4 Intrusion Detection on Synthetic
Traffic

In addition to the real BACnet network, we set up a simple
testbed to execute BACnet attacks in a controlled environ-
ment. In this section we elaborate and provide implemen-
tation details on three concrete BACnet attacks, namely, a
BACnet backdoor, active device fingerprinting, and denial of
service.

Our testbed consists of two BACnet/IP devices intercon-
nected by a switch, as shown in Fig 7. We also added a laptop
running Kali Linux 2017.1 to simulate the attacker’s role.
Both BACnet devices are implemented using Raspberry Pi

computers running Raspbian OS. The BACnet software run-
ning on top of the OS is BACnet Stack 0.8.4 [14]. In order to
reuse the specifications previously generated, we configured
the BACnet Stack demo server with similar features (i.e.,
objects, properties, and services) as the Priva Blue ID S10
and the Mitsubishi BM ADAPTER that we have in our real
network. The switch is an HP ProCurve 2610-24, in which
we configured a mirroring port to collect all the traffic.

Backdoor. Our first attack consists of a BACnet device
whose firmware has been tampered with by a malicious ac-
tor. We added a backdoor in our BACnet device simulating
the Priva controller. The backdoor is located in a standard
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BACnet object (CharacterString Value) implementing all
the mandatory properties (e.g., object-identifier, present-
value, status-flags, etc.) and common optional properties
(e.g., description, out-of-service, event-state, etc.). The back-
door functionality is implemented by means of a writable
property that receives commands from the attacker, and a
readable property which holds the output of the attacker’s
command. Concretely, the writable property is present-value
and the readable property is description. In this way, the
attacker sends Linux commands (e.g., ls, cat, rm, etc.) and
then reads the output, all using syntactically valid BACnet
objects, properties and services. Since the CharacterString
Value object is not part of the device’s PICS, our specifi-
cations spotted the violation even though we sent only one
packet consisting of a write request to the present-value prop-
erty. The same functionality could have been implemented
in proprietary BACnet objects as we found many in our real
BACnet network (Sect. 7.3).

Active Device Fingerprinting. The second experiment
consists of an attacker running reconnaissance tools such as
nmap on our two BACnet devices. Nmap [19] is a popular
port scanner that can be extended via nmap scripts. There
is a script specifically for BACnet that tries to fingerprint
devices executing queries on multiple properties of the device
object [10]. The requested properties are vendor-identifier,
vendor-name, object-identifier, firmware-revision, application-
software-version, object-name, model-name, description and
location. From the attacker’s laptop we ran the nmap script
directed to the simulated Priva device and the simulated
Mitsubishi device. In the first case we did not get any alerts
since all 9 properties are implemented in the Priva device
according to the PICS. On the other hand, the specifications
of the Mitsubishi device triggered two alerts since the de-
scription and location properties are not implemented. This
example shows the main drawback of our approach. Attacks
that leverage on the expected behavior of devices cannot be
detected by our specifications. At the same time, we show
that we can detect stealthy attacks comprised of as few as a
single network packet, as long as it represents a violation to
the device’s PICS.

Denial of Service. A third attack was launched against
the simulated Mitsubishi device. We use the simulated Priva
device as a pivot to reach the target. Taking advantage of
the backdoor in the simulated Priva device, we downloaded
a malicious binary file that sends reinitialize requests to the
target. The binary file is based on the demo bacrd command
in BACnet-Stack [14].

Besides the alerts generated because of the backdoor, we
got two additional alerts. The first alert due to the fact that
the pivot device is not supposed to send Reinitialize Device
requests. The second alert because the target device is not
supposed to receive such command. Those alerts demonstrate
the usefulness of our BIBB specifications in a realistic attack
scenario.

8 DISCUSSION

Training Phase. Our approach leverages on the availability
of training BACnet traffic and PICSs. The BACnet traffic
required for training purposes must reveal as many objects,
properties, and services as possible. More important than the
amount of traffic is the diversity of information in it. Our own
experiments suffered from monotonic traffic regarding write
requests. Even though we observed several write requests
in our training traffic, all of them were directed to devices
described by the same PICS. Therefore, we were able to
extract writable property specifications in only one PICS. A
way to overcome this problem is collecting traffic for a longer
period, which increases the chance to observe relatively rare
events. Moreover, in BASs where passiveness is not a strong
requirement, actively probing devices can reveal the required
features in short time.

We passively collected training traffic from a real network
during 4 days. Nonetheless, we learned the vast majority of
features during the first 6 hours. This is, of course, highly
dependent on the network activity and the monitoring point
where the traffic is collected.

Non-certified devices. PICS constitute the source of our
specifications. All BACnet certified devices are required to
have a PICS. However, not all BACnet devices are certified,
and therefore, the availability of PICS might not be guaran-
teed. In our network we discovered 6 non-certified devices for
which no PICS was found. The recommendation to use only
certified devices is twofold. First, it guarantees compliance
to the standard. Second, the technical documentation is pub-
licly available in the BACnet International website [3]. The
same recommendation has been backed by local regulatory
organizations such as AMEV in Germany [21].

Precision & Recall. Considering BACnet networks with
high device heterogeneity, manual specification extraction
from PICS is unscalable. Automatic rule extraction allows,
otherwise unfeasible, specification-based intrusion detection.
Ideally, 100% of precision and recall would provide a complete
set of specifications fully concordant with the PICSs. In our
experiments, our approach achieves this goal for implemented
object, writable property, and BIBB specifications. However,
implemented property specifications suffered from a minor
loss of precision and recall. Even though both parameters
are above 99.5%, this opens a small window for false pos-
itives and false negatives. False positives are produced by
rules that the algorithm failed to extract from the PICS. If
present, false alerts can be addressed by adding the missing
specification to the automatically extracted set of rules. This
ensures that the alert will not occur again. False negatives,
on the other hand, are produced by incorrectly extracted
rules. For example, a property written close to two BACnet
objects in the PICS, is misinterpreted and assigned to the
wrong object in the specifications. This problem is harder
to identify and to fix. Still, operators can use false alerts to
investigate whether the missing rule in one place was due to
an additional (and incorrect) rule in a different place.
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Intrusion Detection. In our experiments, the main cause
of alerts were requests to non-implemented properties. We
found out that BACnet management software often requests
a predefined set of properties (particularly on the device
object), some of which might not be implemented in the
targeted devices. This is the exact same behavior of recon-
naissance tools like nmap, as we showed in Sect. 7.4. Since
reconnaissance is one of the first stages in active attacks, it
is worth carefully looking into this kind of alerts as soon as
they are triggered.

The second cause of alerts were undocumented elements
in BACnet devices. Again, in Sect. 7.4 we showed how an
undocumented BACnet object can conceal a backdoor. It is
possible to argue that the same behavior could have been
implemented in a documented object, and therefore remain
undetected by our approach. However, it is worth noting that
we found more than 100 undocumented elements in the real
BACnet network; any of them potentially hiding dangerous
behavior. The evidence collected using real traffic supports
the relevance of our detection capabilities.

Finally, it is important to emphasize that we do not claim
detection capabilities on all attack instances, but only on
those exposing PICS violations. Still, our automatically ex-
tracted specifications are simple and yet sufficient to detect
a broad set of attacks. Even though evasion is possible, our
approach forces the adversary to tailor attacks specifically for
the targeted BAS. Thus, we argue that our approach raises
the bar for attackers and provides new insights towards a
comprehensive defense mechanism for BASs.

9 RELATED WORK

For most protocols, including BACnet, there are a few doc-
uments (RFCs, IEEE or ISO standards) describing them.
Several researchers have used textual descriptions of network
protocols to manually extract specifications [13, 22, 26]. We
aim to automate the specification extraction process in order
to ease the applicability of SB-ID in BAS environments.

Stakhanova et al. [28] explore the possibility to automate
the specification extraction process for host-based intrusion
detection. This is done by a hybrid specification/anomaly
based IDS. The IDS detects wrong behavior of GNU/Linux
application programs (e.g. cat, mount) using the sequence
of system calls they make. The anomaly-based subsystem
automatically populates with rules the specification-based
subsystem. Our approach differs not only on the audit data
(network traffic) but fundamentally, on the source where the
specifications come from (PICS).

Tonejc et al. [30] evaluate four different machine learning
algorithms to perform anomaly-based intrusion detection in
BACnet. The selected features are header fields at different
layers (even the IP layer). A different approach presented
in [7] uses network flows to detect attacks in BACnet. Our
approach exclusively looks at the BACnet application layer,
which makes it independent of the underlying protocols.

In [15], Kaur et al. developed a traffic normalizer that
either drops or fixes (whenever possible) malformed BACnet

packets. Their approach does not deal with specific details
of every device and instead only considers general aspects of
the protocol like header fields length or valid status flags.

Preliminary work on BACnet timing analysis is presented
in [12]. The authors consider legitimate command patterns
that could represent an attack. Specifically, the time difference
between frames containing write requests is analyzed using
an Artificial Neural Network.

The closest work to ours was done by Caselli et al. [6].
The authors developed an approach to extract specifications
from BACnet PICS written with a predetermined format.
Their approach suffers from two major limitations: (1) the
parsing process does not yield results from documents using
a different format; and (2) even for documents following the
dictated format, the combination of device capabilities (text
strings) and auxiliary information (arbitrary symbols or text)
cannot be disambiguated. Rather than developing a rigid
extraction mechanism for each PICS format found in the wild,
our approach generalizes the way to interpret different PICS
formats using network traffic to solve the incompleteness
and ambiguity problems in [6]. Our experimental results,
based on our new approach, show a significant improvement
over the state of the art. The differences at design level
have a direct impact at the implementation level. The gain
in flexibility offered by our approach requires additional
processing (e.g., network traffic analysis) and infrastructure
(e.g., databases). Finally, the experiments presented in [6]
demonstrate how rule violations help to discover anomalous
behavior that resembles BACnet attacks. Our research not
only validates and measures their findings but also presents
realistic attack scenarios implemented and executed on an
isolated testbed. Unlike the work in [6], the core of our
research lies on automatic specification extraction, for this
reason, we also evaluate the performance of our algorithm in
terms of precision and recall.

10 CONCLUSION

We have presented the first fully automated approach to
deploy specification-based intrusion detection at network
level. We implemented our prototype on BACnet, in a passive
way and with network-wide coverage. Our specifications are
individually tailored for each device in the network, in such
a way that (1) devices should not expose capabilities beyond
what is claimed in their PICS; and (2) devices should not
be queried about capabilities they are not supposed to have
according to their PICS. We showed concrete attacks that
can be detected if either of the aforementioned conditions
are breached. Our evaluations with both, real and synthetic
traffic, prove that PICS derived specifications are useful to
detect BACnet attacks and behavior that closely resembles
attacks.

Unlike previous works, our approach is able to detect
attacks comprised of as few as a single BACnet packet. The
high precision and recall achieved during the specification
extraction process translates into reliable BAS monitoring.
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The impact and feasibility of attacks in BASs merits a
careful security study. The fact that BAS protocols privilege
functionality over security, increases the chance of attacks.
Future BAS protocols should be designed with security as
a core component. In the meantime, current BAS protocols
should be methodically protected. The approach presented
in this paper is a contribution in this direction.
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