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Abstract. This paper reports on the VerCors tool set for verifying par-
allel and concurrent software. Its main characteristics are (i) that it can
verify programs under different concurrency models, written in high-
level programming languages, such as for example in Java, OpenCL and
OpenMP; and (ii) that it can reason not only about race freedom and
memory safety, but also about functional correctness. VerCors builds on
top of existing verification technology, notably the Viper framework, by
transforming the verification problem of programs written in a high-level
programming language into a verification problem in the intermediate
language of Viper. This paper presents three examples that illustrate
how VerCors support verifying functional correctness of three different
concurrency features: heterogeneous concurrency, kernels using barriers
and atomic operations, and compiler directives for parallelisation.

1 Introduction

In a parallel or concurrent program, multiple program threads proceed in paral-
lel while they access and write to a globally shared memory. Such programs are
notoriously error-prone, because the set of possible program behaviours is expo-
nential in the programs’ size, containing all possible interleavings of the atomic
steps of the individual threads. As a consequence, for developers it is easy to
overlook a problem that occurs in only a few of these behaviours. Moreover, sys-
tematically testing all possible program behaviours is unfeasible for most concur-
rent programs. Nonetheless, parallel and concurrent programming is nowadays
ubiquitous due to increased performance demands as well as the vast increase
in availability of multi-core hardware. Tools and techniques are therefore needed
that support the developers of such software to increase its reliability.

This paper discusses recent developments of the VerCors tool set, which aims
to support developers in writing reliable concurrent software. VerCors allows
practical mechanised verification under different concurrency models; notably
heterogeneous concurrency (e.g. Java programs) and homogeneous concurrency
(e.g. GPU kernels). Multiple widely-used languages with parallelism and con-
currency features are targeted, such as Java, OpenCL, and OpenMP for C. It
allows reasoning about data race freedom, memory safety, and functional proper-
ties of (possibly non-terminating) concurrent programs. Moreover, it can handle
advanced language features such as compiler directives and atomic operations.
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An earlier paper on the VerCors tool set has appeared in Formal Methods
2014 [5], where we showed how VerCors is used to prove data race freedom and
basic functional correctness of concurrent Java [2] and OpenCL [6] programs.
This paper extends on [5] and illustrates more advanced verification features
of VerCors. First, we demonstrate our model-based approach to functional ver-
ification of concurrent Java programs, where an abstract model captures all
concurrent behaviours of a program w.r.t. a set of shared variables [7,16]. We
then use program logic-based verification to show the correspondence between
the program and its abstraction, while algorithmic verification is used to rea-
son about the abstract model. We also illustrate how VerCors is used to verify
OpenCL kernels (OpenCL programs that run on GPUs) that use barriers and
atomics for synchronisation [1]. Finally, programs with homogeneous threading
are often constructed by developing a sequential program and adding suitable
compiler directives, as is done in OpenMP. VerCors provides support to prove
correctness of such compiler directives, i.e. ensuring that they will not change the
functional behaviour of a program [4,10]. We also illustrate this by an example.

The VerCors tool set supports static verification in a design-by-contract fash-
ion: programmers annotate their code and VerCors transforms verification of
this annotated program into a verification problem in the intermediate verifica-
tion language Silver [14]. The Viper verification technology (that works on Silver
programs) is then used to verify the Silver specification with respect to its imple-
mentation. If this succeeds, we can conclude that the original program satisfies
its annotations. Thus, the focus of VerCors is not so much on developing new ver-
ification technology, but rather on making existing verification technology usable
for realistic programming languages and advanced language features. The spec-
ification language builds on permission-based separation logic (PBSL) [2,8], an
extension of Hoare logic that explicitly considers where an object is stored in
memory, which enables thread-modular verification of concurrent programs.

Section 2 provides a quick description of the tool architecture, focusing on its
extendability. Section 3 discusses several examples to illustrate advanced features
supported by VerCors. Section 4 concludes with a discussion of related and future
work, and gives information about how to try VerCors yourself.

2 The VerCors Architecture

Our main goal is to make existing program verification technology usable for
high-level programming languages and advanced language features. This is
reflected in the design of VerCors, which is implemented as a collection of com-
piler transformations and uses the existing Viper technology as back-end [14],
see Fig. 1. Viper supports the intermediate verification language Silver, which
allows reasoning about programs with persistent mutable state, annotated with
separation logic-style specifications. The compiler transformations are used to
transform different high-level language/concurrency features into Silver code.
The Viper technology provides two styles of reasoning: verification condition
generation (via Boogie), and symbolic execution. The symbolic execution engine
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Fig. 1. The architecture of the VerCors tool set.

is the most powerful and provides support for e.g. quantified permissions, which
we heavily rely upon. In earlier versions of VerCors, Chalice [13] was used as the
main back-end, but its functionality is subsumed by Viper.

VerCors takes as input a program in a high-level programming language,
annotated with JML-style specifications, and transforms this into verifica-
tion problems encoded in Silver. The current input languages are Java, PVL,
OpenCL, and OpenMP for C; it supports reasoning about the main concurrency-
related features of these languages. The support for OpenCL covers only the
verification of kernels, including barrier synchronisation and atomic operations,
but not host code (which would mostly require engineering). PVL is a Java-like
procedural toy language used for quick prototyping of new verification features.
Notably, it has support for kernels and hostcode. VerCors also supports a sub-
stantial subset of OpenMP, essentially characterising deterministic parallel pro-
gramming. The annotation language of VerCors is the same across all supported
languages.

VerCors can easily be extended with new parallel or concurrent pointer
languages, by providing a parser that transforms input programs and their
specifications into the intermediate language of VerCors. All further program
transformations are defined over the intermediate language of VerCors, thereby
automatically providing verification support for the features of the extended
language.

3 Verification Highlights

This section discusses three verification examples to illustrate the most inter-
esting features supported by VerCors. For clarity of presentation the example
annotations are somewhat simplified; the full, verifiable programs are available
at http://www.utwente.nl/vercors. Also a detailed list of case studies and ver-
ified example programs is available, together with statistics about performance
and required amounts of specification code relative to program code.

Model-Based Verification. In the context of heterogeneous threading, verifi-
cation of functional properties is a major challenge and requires suitable abstrac-
tions. Our model-based verification technique captures the behaviour of a shared
memory concurrent program by means of a process algebra term with data [7,16].
All accesses to the relevant shared memory locations are abstracted by actions.
The process algebra term specifies the legal sequences of actions that are allowed
to occur, and the program logic is used to verify that the process algebra term is

http://www.utwente.nl/vercors
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indeed a correct program abstraction. Functional properties about the program
can then be verified by reasoning algorithmically on the process algebra term.

We illustrate this on the parallel GCD challenge from the VerifyThis 2015
program verification competition [11]. The standard sequential Euclidean algo-
rithm is described as a function gcd which, given two positive integers a and b,
gcd(a, a) = a, gcd(a, b) = gcd(a − b, a) if a > b, and gcd(a, b) = gcd(a, b − a) if
b > a. The parallel version we consider uses two concurrent threads: one thread
to repeatedly decrease a when a > b, and one thread to repeatedly decrease the
value of b when b > a. This process continues until a and b converge to gcd(a, b).

1 int x, y;
2

3 guard y > 0 ∧ x > y; effect x = old(x) − old(y); action decrX();
4 guard x > 0 ∧ y > x; effect y = old(y) − old(x); action decrY();
5 guard x = y; action done();
6

7 requires x > 0 ∧ y > 0;
8 ensures x = y ∧ y = gcd(old(x), old(y));
9 process pargcd() := tx() ‖ ty();

10

11 process tx() := decrX() · tx() + done();
12 process ty() := decrY() · ty() + done();

Fig. 2. The process algebraic description of the gcd algorithm.

To prove that the parallel algorithm computes gcd(a, b) we first model gcd
as a process algebra term, named pargcd, by using two actions, named decrX
and decrY. The decrX action corresponds to the assignment x := x − y in the
program code, and decrY corresponds to y := y−x. Action behaviour is defined
in terms of guard and effect clauses, which logically describe the (guarded, con-
ditional) effects of an action on the shared memory. A third action done indicates
termination of the process term. Figure 2 shows the abstract model.

We use existing process-algebraic reasoning techniques to analyse the process
pargcd: by giving any two positive integers as input, their gcd has been found
when the action done has been performed. This is currently done by translating
the analysis into an SMT problem, by encoding it into Silver. Finally, we prove
the connection between pargcd and the concrete program code, presented in
Fig. 3. In future work we plan to analyse the processes via the mCRL2 toolset.

The calcgcd function creates a new model named m via the invocation on
line 4. The model m is split along the parallel composition tx() ‖ ty() on line 5
to match the forking of the two program threads T0 and T1 (where the body of
thread T1 is omitted for brevity). The thread T0 requires that part of the model
that executes the process term tx(); the thread T1 requires the term ty(). The
connection between program execution and process execution is made via action



106 S. Blom et al.

1 requires x > 0 ∧ y > 0;
2 ensures \result = gcd(a, b);
3 int calcgcd(int a, int b) {
4 model m := pargcd() with [x := a, y := b];
5 split m into ( 1

2 , tx()) and ( 1
2 , ty());

6 invariant inv(m.x
1

↪−→p v ∗ m.y
1

↪−→p w ∗ v > 0 ∗ w > 0) {
7 requires Proc(m, 1

2 , tx()); ensures Proc(m, 1
2 , ε);

8 par T0() {
9 bool run := true;

10 loop-invariant run ? Proc(m, 1
2 , tx()) : Proc(m, 1

2 , ε);
11 while (run) {
12 atomic (inv) {
13 if (m.x > m.y) action decrX() { m.x := m.x − m.y; };
14 if (m.x = m.y) action done() { run := false; };

15 } } }
16 requires Proc(m, 1

2 , ty()); ensures Proc(m, 1
2 , ε);

17 and par T1 { · · · }
18 }
19 merge (m, 1

2 , ε) and (m, 1
2 , ε); finish m;

20 return m.x;

21 }

Fig. 3. The annotated implementation of the parallel GCD algorithm.

annotations in the code. To this end, the actions decrX, decrY, and done are
linked to concrete statements in the language via action blocks. Correctness of
the connection is shown by applying the rules of our extended separation logic.

GPU Kernels and Atomics. VerCors supports verifying race freedom and
functional correctness of GPU kernels that use atomic operations and barri-
ers [1,6]. In a GPU kernel, threads are organised in workgroups, which consist
of multiple threads. Threads within a workgroup can synchronise by means of
a barrier; threads in different workgroups can only synchronise using atomic
operations.

The VerCors tool set supports a kernel-specific version of PBSL; kernels are
specified with the permissions available for them, in addition to their functional
behaviour contract. The available permissions are distributed over the different
workgroups, which in turn are specified with a permission distribution for its
threads. We verify that these permission distributions are correct, meaning that
kernels and workgroups do not distribute more permissions than are available.
When threads within a workgroup synchronise on a barrier, they may redistrib-
ute permissions and exchange knowledge about their thread-local state.

We illustrate this approach on a kernel that calculates the sum of the elements
of an array. The PVL encoding of this kernel is shown in Fig. 4 (the clause
context P abbreviates requires P ; ensures P ). This example shows how race
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1 invariant A �= null ∧ m > 0 ∧ n > 0;
2 context Perm(result,write) ∗ (\forall int i; 0 ≤ i < m ∗ n; Perm(A[i], read);
3 requires result = 0;
4 int calculate-sum(int m, int n, int[m∗n] A) {
5 invariant outer(Perm(result,write)) {
6 par kernel(int gid ∈ [0, . . . , m))
7 context (\forall int i; 0 ≤ i < n; Perm(A[gid∗n+i], read); {
8 int[1] temp := new int[1] { 0 };
9 invariant inner(\array(temp, 1) ∗ Perm(temp[0],write)) {

10 par workgroup(int tid ∈ [0, . . . , n))
11 requires Perm(A[gid∗n+tid], read);
12 ensures tid = 0 ⇒ (\forall int i; 0 ≤ i < n; Perm(A[gid∗n+i], read)); {
13 atomic(inner) { temp[0] := temp[0] + ar[gid∗n +tid]; }
14 barrier (workgroup) {
15 requires Perm(A[gid∗n+tid], read);
16 ensures tid = 0 ⇒ (\forall int i; 0 ≤ i < n; Perm(A[gid∗n+i], read)); }
17 if (tid = 0) {
18 int tmp; atomic(inner) { tmp := temp[0]; }
19 atomic(outer) { result := result + tmp; }
20 } · · · }

Fig. 4. Summing up the elements of the input array A.

freedom of kernels with barriers and atomics is verified, the interested reader
can see the functional specification in [1]. The program uses two nested parallel
blocks: the outer par-block resembles kernel execution, and the inner par-block
resembles workgroup execution. First, each workgroup atomically adds the values
in its part of the input array A to a local memory buffer temp. After writing to
temp, each thread enters a barrier. After leaving the barrier, the first thread of
each workgroup adds the local sum (stored in temp) to the global result. Each
parallel block has a contract, denoting the requirements and the contributions of
the workgroups and threads, respectively. In particular, each workgroup requires
permission to read its share of A and each thread in a workgroup requires read
permission to one entry of A. In the barrier, the read permission of each thread
is transferred to the first thread in the workgroup.

To make the algorithm correct, addition to the shared intermediate result
must be performed atomically (on line 20). In PVL this is expressed by putting
the addition in an atomic block. Reasoning about atomic operations is an adap-
tation of the classical verification technique for atomic operations [15,19]. The
specification language supports kernel and group invariants, which capture the
behaviour of the atomic operations accessing the shared locations.

Deterministic Parallelism. Parallel programs are commonly written by using
compiler directives, like done in OpenMP [17]. Compiler directives indicate code
that may be executed in parallel, so that the compiler can generate parallelised
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1 given seq〈seq〈int〉〉 data;
2 invariant m > 0 ∧ n > 0 ∧ p > 0 ∧ \matrix(M, m, n) ∧ \array(H, p);
3 context (\forall int i ∈ [0..m), j ∈ [0..n); Perm(M [i][j], read));
4 context (\forall int i ∈ [0..m), j ∈ [0..n); M [i][j] = data[i][j] ∧ 0 ≤ M [i][j] < p);
5 context (\forall int i ∈ [0..p); Perm(H[i],write));
6 ensures (\forall int k ∈ [0..p); H[k] = (\count int i ∈ [0..m), j ∈ [0..n); data[i][j] = k));
7 void histogram(int m, int n, int[m][n] M, int p, int[p] H) {
8 for (int k := 0; k < p; k++) context Perm(H[k],write); ensures H[k] = 0;
9 { H[k] := 0; }

10 for (int i := 0; i < m; i++)
11 requires (\forall int k ∈ [0..p); Reducible(H[k], +));
12 context Perm(M [i][j], read) ∗ 0 ≤ M [i][j] < p ∗ M [i][j] = data[i][j];
13 ensures (\forall int k ∈ [0..p); Contribution(H[k], data[i][j] = k ? 1 : 0)); {
14 for (int j := 0; j < n; j++) { H[M [i][j]] += 1; } } }

Fig. 5. The implementation of the histogram example, written in C.

code. VerCors provides support to prove that these compiler directives do not
change the meaning of the program, meaning that functional correctness of the
original program implies functional correctness of the parallelised program.

We illustrate this by means of a histogram example, see Fig. 5, which outputs
an array H such that H[k] contains the number of occurrences of the integer
k in the input matrix M . We use VerCors to show that the for-loops can be
parallelised without changing the functional program behaviour. We do this by
specifying an iteration contract [4], which denotes the pre- and postcondition for
each iteration of the loop. The iteration contract of the first loop expresses that
each iteration k requires writing permission for H[k] and sets H[k] to zero. From
the iteration contract we can derive that each loop iteration is independent, and
thus that the loop can be parallelised without changing its functional behaviour.
In a similar way, also for the second loop the iteration contract is used to cap-
ture independence of the iterations. The specification language provides extra
annotations to deal with several typical scenarios; in this case, the Reducible and
Contributes predicates are used to denote the reduction pattern.

4 Conclusion and Related Work

This paper gives a concise overview of the most interesting features of the Ver-
Cors toolset for verifying concurrent software. For more verification examples,
statistical information, an indication of supported features, and for trying out
the verification technology yourself, we refer to http://utwente.nl/vercors.

The VerCors tool set is currently used for teaching, as part of an advanced
Master-level course on program verification. In addition, we also have several
students working individually on interesting verification case studies, for example
verifying the correctness of a parallel prefix sum implementation. Having non-
developers of VerCors use the tool has been very useful to improve the maturity
of the tool, to understand how people use the tool, and to see which features

http://utwente.nl/vercors
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could be improved further. We are working on the development of a regression
test suite, containing examples that should and that should not verify, which is
automatically evaluated whenever the tool is updated. One particular challenge
that we encountered is that we depend on the Viper framework, which is also still
under development. Therefore, sometimes bug fixes for VerCors depend on Viper
updates, and good communication with the group behind Viper is essential.

There exist several other tools for the verification of concurrent software, such
as VeriFast [12] (for concurrent C and Java programs), VCC [9] (for C programs),
Chalice [13] (for a concurrent toy language, not maintained anymore), Cave [18]
(proving memory safety and linearizability), and GPUVerify [3] (automatic data
race detection of GPU Kernels). The main distinguishing feature of the VerCors
tool set is that it generalises the verification of concurrent software to a language-
independent setting, where new front-ends can be added easily.

There are many directions we plan to explore to further increase usability of
VerCors. We are currently investigating how our model-based verification tech-
nique can be used to reason about distributed software, focusing in particular
on message passing. To improve scalability of the verification process we plan to
experiment with different techniques for annotation generation and to generate
meaningful error messages. Ultimately, our goal is to support complete program-
ming languages, not just subsets. Since this is a large engineering effort, we hope
to reuse existing verification technology as much as possible.
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the NWO TOP 612.001.403 project VerDi.
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