See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323847088

LOCKS: a property specification language for security goals

Preprint - March 2018
DOI: 10.1145/3167132.3167336

CITATIONS READS
0 79
3 authors:
a Rajesh Kumar - Arend Rensink
W% University of Twente (University of Twente
11 PUBLICATIONS 45 CITATIONS 228 PUBLICATIONS 2,720 CITATIONS
SEE PROFILE SEE PROFILE

Mariélle Stoelinga
University of Twente
92 PUBLICATIONS 2,120 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Modeling, Analysis and Optimization of Smart Building Systems View project

roet ArRangeer View project

All content following this page was uploaded by Arend Rensink on 19 March 2018.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/323847088_LOCKS_a_property_specification_language_for_security_goals?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/323847088_LOCKS_a_property_specification_language_for_security_goals?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modeling-Analysis-and-Optimization-of-Smart-Building-Systems?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ArRangeer?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rajesh_Kumar470?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rajesh_Kumar470?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rajesh_Kumar470?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arend_Rensink?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arend_Rensink?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arend_Rensink?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marielle_Stoelinga?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marielle_Stoelinga?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Twente?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marielle_Stoelinga?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Arend_Rensink?enrichId=rgreq-d8ec07d2a447f80ab0bac7e285e34fea-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg0NzA4ODtBUzo2MDU4MDcwNjIyOTQ1MjlAMTUyMTQ0NzA2NzI5Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

LOCKS: a property specification language
for security goals

Rajesh Kumar
Formal Methods and Tools
University of Twente
The Netherlands
r.kumarQutwente.nl

ABSTRACT

We introduce a formal specification language LOCKS, that
allow security practitioners to express as well as compose
security goals in a convenient manner. LOCKS supports the
specification of the most common security properties over
generic attributes, both for qualitative and quantitative goals.
To make our language independent of a specific security
framework, we evaluate LOCKS over a generic attack model,
namely the structural attack model (SAM), which over-arches
the most prominent graphical threat models. Furthermore,
we equip our language with a concise grammar, type rules
and denotational semantics, thus laying the foundations of
an automated tool. We take a number of informal security
goals from the literature and show how they can be formally
expressed in our language.

CCS CONCEPTS

e Security and privacy — Security requirements; Formal se-
curity models;

KEYWORDS

Enterprise security, Quantitative security goals, Property
specification language, Multi-objective query language, Threat
models, Denotational semantics

ACM Reference format:

Rajesh Kumar, Arend Rensink, and Mariélle Stoelinga. 2018.
LOCKS: a property specification language for security goals. In
Proceedings of SAC 2018: Symposium on Applied Computing ,
Pau, France, April 9-18, 2018 (SAC 2018), 9 pages.
https://doi.org/10.1145/3167132.3167336

1 INTRODUCTION

Modern day enterprises are frequently challenged with how
to estimate security risks, what to protect and how much to

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SAC 2018, April 9—13, 2018, Pau, France

© 2018 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.

ACM ISBN 978-1-4503-5191-1/18/04. .. $15.00
https://doi.org/10.1145/3167132.3167336

Arend Rensink
Formal Methods and Tools
University of Twente
The Netherlands
arend.rensink@utwente.nl

Mariélle Stoelinga
Formal Methods and Tools
University of Twente
The Netherlands
m.i.a.stoelinga@Qutwente.nl

invest in securing their organisation. Furthermore, as high-
lighted in [15, 27], elicitation of security goals remains cum-
bersome because of:

e multiple stakeholders with subjective interpretation of
the security goals;

e inconsistent terminology, jargon of technical and oper-
ational details;

e absence of a security framework that integrates busi-
ness/organizational goals and security needs.

Recognizing the subjectiveness embedded into the elicita-
tion of security goals, several standards such as Operationally
Critical Threat, Asset and Vulnerability Evaluation (OC-
TAVE) [2] Control Objectives for Information and Related
Technologies (COBIT) [14], Security Quality Requirements
Engineering (SQUARE) [27] have been developed, that pro-
vide generic guidelines in form of dos and donts list, work-flow
diagrams and compliance regulations. Though these stan-
dards give a telescopic view of security best practices, they
do not translate into security goals.

Additionally, a plethora of threat modelling frameworks
and analysis methodologies have been developed, such as
ADVISE [24], attack trees [18, 19, 30], privilege graphs [10]
and attack graphs [13, 16, 31]. These formalisms rely on
precise models to quantify the riskful scenarios; however, the
security properties over all these aforementioned models are
usually expressed ad hoc, i.e., either stated informally or
encoded unnaturally in some generic property specification
language such as of temporal logics.

To the best of our knowledge, a formal property specifica-
tion language for security goals is lacking. Such a specification
language is pivotal to:

e phrase security requirements, i.e., a set of unambigu-
ous and concise properties that characterize a secure
system;

e validate threat models, i.e., to ascertain whether the
threat model complies with the stakeholder require-
ments;

e verify threat models, i.e., to perform a structured qual-
itative and quantitative risk assessment of the threat
models;

e compare threat models, i.e., to reason about different
design choices that lead to a secure system.

One of the main challenges here is to embrace all different
attributes (cost, time, probability, damage, etc) in framing
both qualitative and quantitative goals.

https://doi.org/10.1145/3167132.3167336
https://doi.org/10.1145/3167132.3167336

SAC 2018, April 9-13, 2018, Pau, France

Our contributions. We introduce a formal specification lan-
guage, LOCKS, that allows a security practitioner to directly
express security goals. A key design goal of LOCKS is to ex-
press security goals over many different security frameworks
and threat models. Therefore, we make very few assump-
tions over the security framework and express LOCKS over
a structural attack model (SAM, Section 4). A SAM is based
on partially ordered sets of attacks, which tells for each suc-
cessful attack which steps have to be carried out and in
which order; for instance, to infect a computer, we must first
get a virus file on a system, and then execute the file. To
develop LOCKS, we made a literature survey of the popular
graphical threat models and filter out the underlying security
goal described in these papers. These security goals are then
represented formally (Section 3). Based on the recurring con-
structs occurring in the formalized security goals, we proceed
further to develop the LOCKS grammar (in Figure 4). We
then describe the static semantics (in Section 5.1) and the
denotational semantics (in Section 5.2) to make the terms
of LOCKS well-formed and precise. Summarizing, the main
contributions of this paper are:

e A domain specific language LOCKS that allows a security
practitioner to express as well as compose security goals
in a declarative manner. We claim that LOCKS offers
the following benefits:

— It is generic, i.e., not tied to any security architectural
framework;

— It is a formal language with precise syntax and seman-
tics, laying the foundation of a computer language;

— It encompasses both qualitative and quantitative
security goals.

e The structural attack model SAM, encompassing most
of the aforementioned graphical threat models and is
used as the semantic model for LOCKS.

2 RELATED WORK

There exists a plethora of work on security models, frame-
works and policies. For example, generic formal specification
languages such as of Z notation, UML+4OCL, etc, have been
used to model access and authorization policies [8, 25]. Other
formal specification languages in security are tailored to spe-
cific settings, for example, in authentication [1], information
flow [6], distributed systems [32], etc.

A lot of literature is devoted to the graphical threat models,
an overview of which (exploiting directed acyclic structures)
can be found in [17]. To illustrate their threat modelling
framework, authors usually take one or two specific metrics
such as probability of a successful attack [12, 18], minimum
cost of attack [21], mean effort [10], mean time to security
failure [10], attack resistance [34], and trade-offs between
the security attributes [4, 20, 21]. In contrast, our paper
formalizes all these security metrics over a generic attack
model, namely the structural attack model SAM.

Our work distinguishes itself from all aforementioned works
in respect that we instead of proposing a new security model,

R.Kumar et al.

propose a property specification language, that allows to
capture many security goals.

Close to our proposed language, there exists a few generic
property specification languages such as of the Uppaal query
language [7], the PRISM property specification language
[23] that exists as part of a particular model checker and
is essentially based on propositional temporal logic. Few
authors such as in [10, 12, 21, 22, 31], use these generic
property specification language to encode the security goals.
Attempts to express security properties this way are largely
ad-hoc: the encoding is indirect or unnatural. For example,
in [21, 22], the authors encode the security goal of obtaining
the maximum damage inflicted by an attack within minimum
duration as a boolean formula and the optimum value as
the bound at which the security property flips its boolean
value while constricting the bound. Instead, in our framework
the same properties can be framed using straightforward
constructs readily available in our proposed language.

In [18], authors classify attributes into attribute domains
and choose appropriate semantics (propositional/ multiset/
equational) to perform computations of attributes on attack-
defense trees. Their work is limited to computation of only
single attribute at a time such as of cost or duration. Our
framework encompasses theirs, as we show by taking some of
the security goals from the previous paper and formalize them
in LOCKS. Furthermore, our proposed language provides the
flexibility to frame security goals using user defined attributes.

3 TYPICAL SECURITY GOALS

Below we provide typical security goals taken from the lit-
erature. These security goals are stated in natural language
and use threat models such as of attack trees [9, 21, 26, 30],
attack defense tree [4, 5, 18], attack graphs [28, 33] and attack
defense diagrams [12] to model the attacks on the asset(s).
Note that we used the aforementioned threat formalisms to
illustrate our work, however many other formalisms that ex-
ploit the directed acyclic structures, can be translated into
SAM (in Section 4), hence, LOCKS can be used over all these
formalisms. We take one or more security goals from the
aforementioned papers and formally express them in our
proposed language LOCKS.

In [30], Schneier et al. in his seminal paper introduces
the formalism of attack trees to model the attack scenarios.
An attack tree (see Figure 1) starts with a security threat,
modelled as the root of the tree, representing the attacker’s
top level goal. This root is recursively refined into attacker’s
sub-goals using logical gates, until one arrives at the leaves
(when no further refinement is possible or is not required),
modelling the attacker atomic actions. Classically, an attack
tree uses AND and OR gates to describe the conjunctive and dis-
junctive composition of their child nodes. That is, to succeed
in an AND gate, the attacker has to succeed in all of its child
nodes, whereas the OR gate requires the attacker to execute
at least one child node successfully. Further extensions of
attack trees with defense steps have been proposed resulting
in attack-defense trees [11, 18] and with complex gates (SAND)

LOCKS: a property specification language
for security goals

in [3] to model the temporal dependency between the child
nodes. A model-driven engineering approach to analyse at-
tack trees by using the attack tree and Uppaal meta-models

is proposed in [29].

O O &

AND gate

OR gate SAND gate

lvirus_file_on_systeml ‘execute_file‘

distribute_virus

— run_antivirus

I 1
‘send_email_with_attachment‘ ‘distribute_USB stick‘

Figure 1: Attack- defense tree modelling the infection of a
computer system with a computer virus

In Schneier et al., the leaves of the tree are decorated with
single boolean attributes such as of possible/ impossible, easy/
difficult, expensive/ inexpensive, intrusive/ non-intrusive, le-
gal/ illegal, special equipment required/ no special equipment.
A typical security goal considered in the above paper is to ask
for the attacks satisfying certain predicates, for example, to
obtain the attacks which do not require special equipments.
We connote this security goal as: the set of attacks, where
each attack step in the attack do not require special equip-
ment for its execution (where an attack is basically a sequence
of atomic attack steps, some of which can be executed in
parallel, and that leads to the top node of the attack tree).
This security goal can be written in LOCKS as:

{at € A| ¥x € at \ DS : (—x.skill_required)}

Here, at is an attack that is contained within the universe of
attacks A and that satisfy the constraint that each attack step
x contained in attack at do not require special equipments
(considering only attack step means neglecting all the defense
steps, if there are any, contained in at and that belong to
the universe of defense steps DS). Note that one can easily
formulate variants of the above security goal by substituting
the label of “requiring special equipments” with other boolean
attributes.

In [26], Mauw et al. formalizes attack trees into attack
suites and formally defines the criteria over these suites to
perform the computation of attributes (cost, probability,
damage, etc). In [12, 18], authors enrich the attack modelling
framework with defenses, resulting in attack-defense tree/
attack-defense diagrams and use similar example security
goals described in previous works. A typical security goal
considered in the aforementioned papers is to ask for the
feasibility of an attack under the resource constraints (budget,
time, etc) of an attacker. Example of such security goal is to
obtain attacks that can be executed in less than 1000 USS.

SAC 2018, April 9-13, 2018, Pau, France

This security goal can be written in LOCKS as:

Tot_Cost(at) = Y {s.Cost | s € at \ DS} ;
Jak € A : (Tot_Cost(ak) < 1000)

The security goal is given by first defining a function Tot_Cost
that maps an attack at to a value obtained by summing the
cost of each attack step s € at. This function is then used to
check whether an attack ak exists that is contained in the
universe of all attacks A and whose cumulative cost is less
than 1000 USS.

In [4, 9, 21], authors propose a multi parameter optimiza-
tion framework for the annotated attack(-defense) trees. Here,
the authors decorate the leaves of the attack(-defense) tree
with multiple attributes to answer a wide range of questions
such as of the cheapest low-risk attack, most likely nonin-
trusive attack, etc. A typical security goal here is to obtain
the set of attacks that incurs the minimum cost and has
the highest probability of success. Note that this security
goal is ambiguous, as one can first obtain either the sets
of attacks that has the highest probability of success and
distill it further to obtain the set of attacks that also incur
the minimum cost, or vice versa. This security goal can be
written in LOCKS as:

Tot_Probsycc(at) = [I{as.Probgycc | as € at N AS}

X [1{1 = ds.Probsycc | ds € at N DS} ;

Tot_Cost(at) = >{s.Cost | s € at \ DS} ;

ischeapest(ak) =

{atk € A | ischeapest(atk)}

The security goal is given by first defining the functions
Tot_Probsycc and Tot_Cost, that map an attack at to a value
signifying the probability and the cumulative cost of an
attack respectively. Note the probability of attack is given
as the product of the probability of success of attack steps,
as.Probsycc, and the inverse probability of success of defense
steps, 1 — ds.Probgycc. Subsequently, we define a predicate
ischeapest to verify whether an attack ak is cheapest and has
the highest probability of success using the functions Tot_Cost
and Tot_Probgycc defined earlier. Note that one can ask for
similar security goals such as of obtaining the maximum
damage with minimum time, obtaining the maximum cost
with minimum duration.

In [33], authors use the formalism of attack graphs to
model the attacks on a networked system. Here, an attack
consists of chaining the initial conditions (preconditions that
needs to be satisfied in order to launch an attack) and the
exploits (vulnerability existing between two hosts) leading to
the node(s) representing the asset(s). A typical security goal
considered in the paper is to obtain: Which initial conditions
when disabled, ensures a secure system? In our framework,
we connote the “initial conditions” as the atomic steps that
initiate each attack. This security goal can be written in
LOCKS as:

{veat|ate AA-Tweat: (wCat V)}

Voat € A: (Tot_Cost(ak) <= Tot_Cost(oat)
A Tot_Probgycc(ak) >= Tot_Probsycc(oat)) ;

SAC 2018, April 9-13, 2018, Pau, France

Note to answer the above security goal we need the notion
of causality between the steps. Hence, we define a partial
ordering relationship, given by s Ca¢ s’. It indicates that step
s should come before step s’ in an attack at. If s and s’
are unrelated (i.e., neither s Cat s’ nor s’ Cat s), then these
steps can be executed in any order, even in parallel. The
security goal is then given by collecting all the steps v that
initiate each attack at, i.e., there is no step w that precedes
the step v in an attack at € A (recall that A is the universe
of all attacks).

In [19], authors propose that a well formed security ques-
tion, stated in natural language, can be split into following
parts: modality, notion, owner and execution style. A typical
question asked in this paper is to obtain the minimal duration
of the attack, when all the actions are executed one after the
another. In this question, the modality, i.e., the characteristic
of the attack/ defense value, is minimizing the attack value
min, the notion is the attribute name duration, the owner is
the player for whom the security goal is formulated, in this
case the attacker and the execution style is sequential. This
security goal can be written in LOCKS as:

Tot_Duration(at) = > {s.Duration|s € at \ DS} ;
Min{Tot_Duration(ak) | ak € A}

The security goal is given by first defining a function
Tot_Duration (similar to Tot_Cost seen above), that sums the
duration of the atomic attack steps in an attack at, which
is then used to obtain the minimum duration among all
successful attacks. Similarly, one can ask for other security
goals such as of most cheapest/ most damaging/ most likely
attacks.

Another variant of this security goal considering a different
execution style (parallel execution of attack steps) is to ask:
What is the minimum duration of the attack, when all the
actions are executed simultaneously? This security goal can
be written in LOCKS as:

Tot_Duration(sas) = Y {s.Duration | s € sas \ DS} ;
Max{Tot_Duration(sas) | sas C atA
Va,b € sas:(aCat bVbLCat a)Aat €A}

This first defines a function Tot_Duration (defined previously)
and then obtaining the maximum value among all the subsets
of attack steps that are considered to be total ordered.

In [28], authors use attack graphs to model attacks on a
networked system. A typical security goal here is to check
whether there exists a minimal set of initial conditions that
ensures network safety. We interpret the initial conditions as
the defense steps in our framework. This security goal can
be written in LOCKS as:

makes_safe(sas) = -Jat € A: (sas C at A sas C DS) ;

dsds € A : (makes_safe(sds) A =dss C sds : makes_safe(ss))
This first defines a function make_safe that checks whether
the set of defense steps sas ensures network safety, i.e., there

is no attack at, where the set of defense steps sas C at. Sub-
sequently, make_safe is used as a predicate to verify whether

R.Kumar et al.

the set of defense steps sds is minimal, i.e., there is no proper
subset ss C sds that also ensures network safety.

Another typical security goal asked over attack graphs is
to count the total number of vulnerabilities in the shortest
attack path [13]. In our framework, we connote vulnerability
as an atomic step. This security goal can be written in LOCKS
as:

Min {card{at} | at € A}

This first counts the number of vulnerabilities (steps) in an
attack at and subsequently finds the smallest value among
the set of values. Note that similar to the above security goal,
one can also formulate security goal that ask for the total
number of attack scenarios.

From the discussions above, we conclude that:

e Most threat models as described above, base itself
on the representation of attack scenarios using few
common concepts, such as of directed acyclic graphs,
cause-consequence relationship, disabling the defense
steps or the safeguards, chaining of attacker actions/
vulnerabilities leading to one or more asset(s). Typi-
cally these formalism takes the input of one or more
attributes. Hence, in Section 4, we propose a generic
attack model, the structural attack model saMm, that
encompasses all these formalisms and represent the at-
tack scenarios with partially ordered sets of successful
attacks.

e Most security goals as described above, base itself on
few common constructs such as of obtaining the nu-
meric value(s) or the boolean value(s) by performing
different arithmetic and logical operations on the at-
tributes (depending on type of attributes and modality
of interest like counting the number of occurrence/
maximum attribute value/ cumulative attribute value/
expected attribute value/ multi-objective optimization
etc). Furthermore, we observe that there are security
goals that ask for the set of attacks/ set of attack steps/
set of defense steps fulfilling multiple constraints such
as of budget, time, minimality, certain prerequisites,
etc. Yet, another security goals are concerned with the
logical ordering of steps in an attack (like precedence,
successive, etc), for which one requires the notion of
the partial ordering of steps to be defined. Furthermore,
we see there exists a multitude of attributes (and pos-
sibly more, when provided the flexibility to define the
user-defined attributes), opening up a wide range of
possibilities to define, combine and perform operations
on the attributes. Considering and accommodating all
the above factors, we present the LOCKS grammar (in
Section 5).

4 STRUCTURAL ATTACK MODELS (SAM)

As explained in the Section 1, this paper introduces a spec-
ification language to formally state the security goals like
the ones surveyed in Section 3, which we call LOCKS. We
evaluate LOCKS terms over a generic attack model namely the
structural attack model (SAM). As decribed previously, SAM

LOCKS: a property specification language

for security goals SAC 2018, April 9-13, 2018, Pau, France

|send_email_with_attachment

- run_antivirus

distribute_USB_stick

Figure 3: Set of steps in the attack-defense tree shown in
Figure 1, whose execution in an order, leads to the top goal.

[distribute_USB_stick

hence the execution of these steps can be carried out in any
order, even in parallel.

\ Furthermore, we can decorate each step with attributes, for
example a boolean attribute skills_required that indicates
whether special skills are required to execute the step, for

Figure 2: Set of successful attacks A for the attack-defense tree
shown in Figure 1.

example:
is based on partially ordered sets of successful attacks that
dictates which steps needs to be carried out and in which send_email_with_attachment.skills_required = True
order. Furthermore, each atomic step in SAM is decorated distribute_USB_stick.skills_required = False

with a number of attribute values such as cost of execution,
difficulty of attack, etc. To show how a specific graphical

run_antivirus.skills_required = False
execute_file.skills_required = False

threat formalism can be translated into the generic structure
of sAM, we take an example of an attack-defense tree shown
in the Figure 1.

Ezample 4.1. Refer to the attack-defense tree (ADTree)
shown in Figure 1, adapted from [5]. It represents how an
attacker can infect a computer with a virus, as modelled in
the root. The atomic steps represent the attacker/ defender
actions, modelled as the leaves of the tree. The attack steps
are shown as rectangles and the defense steps as ellipses.
The logical gates (AND, OR, SAND) show how atomic steps are
combined to launch a multi-stage attack to reach the root.
An OR gate is compromised if at least one of its children
is compromised; an AND gate is compromised if all of its
children are compromised; a SAND gate is compromised if all
of its children are compromised, where the i + 1th child is
only executed after the ith child was compromised. In order
to launch an attack, an adversary must perform the attack
steps and overcome the defense steps, i.e., to reach a sub-
goal of virus_file_on_system, an attacker must successfully
execute distribute_virus and overcome the defense step
run_antivirus.

In order to obtain the SAM model for the ADTree described
in Figure 1, one need to traverse the tree from bottom-up,
starting from any leaf to the top node and respecting the
constraints imposed by the logical gates to obtain an attack.
Thus, one can start with either send_email_with_attach-
ment or distribute_USB_stick (dictated by the OR gate in
the ADTree), and must overcome run_antivirus (dictated
by the AND gate), followed by execute_file (dictated by
the SAND gate) leading to the top goal of infect_computer,
thus resulting in a set A consisting of two attacks, shown in
Figure 2.

Consider one of the set of steps, shown in Figure 3, whose
successful execution in an order, leads to the top goal. Note
that here the execution of steps: distribute_USB_stick
and run_antivirus, precede the execution of the step exe-
cute_file. However, there are no constraints on the execu-
tion of steps : distribute_USB_stick and = run_antivirus,

Other graphical threat formalisms such as attack graphs
can be translated similarly into SAM.

We now provide the notations and formal definitions of
the concepts introduced above. These are used throughout
the paper to define the static and the denotational semantics
of LOCKS (see Sections 5.1 and 5.2).

Notation. We use 26 to indicate the power set of a set G
and PO(G) for the set of all partial ordered sets over G. The
disjoint union of two sets B and B’ is denoted by B |4/ B>. A
partial function is denoted as f: B - B’, where B and B’ are
the domain and the codomain. Finally, £[a — b] denotes the
function £ updated such that it maps a to b.

Attack and defense steps. A step s denotes an atomic action
available to an attacker or a defender. We consider a global
universe of attack and defense steps S = AS W DS, where AS
is the universe of all attack steps and DS is the universe of
all defense steps. Defense steps are conceptually the same as
attack steps, except that they have to be overcome in order
to be part of a successful attack.

Attack. A successful attack (W,C) € PO(S) is a partially ordered
set of atomic steps leading to the successful compromise of
one or more assets. Here, W C S is a set of atomic steps that
have to be carried out, while C C WX W constrains the order
in which those steps should be executed.

Attribute names and values. We assume a global universe of
attribute names given by Name. It includes common attributes
like cost, damage, time, and equipment_required.

We define the type of attributes using the function Type_Attr :
Name — AtomType where AtomType= {Bool, Real, Prob, Step}.
Here, Bool, Real, Prob, Step are the available types that respec-
tively refer to the set of boolean values, real numbers, proba-
bility values and elementary attack/ defense steps. AtomType
is later used in Section 5.1 to specify the static semantics of
LOCKS.

Attributes are evaluated in the universe Val = PrimVal &
SetVal of all attribute values. This is partitioned into Primval =

SAC 2018, April 9-13, 2018, Pau, France

Goal ::= Func(Var) = Expr ; Unop
Goal
Expr

Expr Unop Expr

Expr Binop Expr

Var

Literal Binop

Var.Label

Func (Var)

{Expr | Expr}

A

AS

DS

Quant Var € Expr :

(Expr)

| Quant Var, Var €
Expr : (Expr)

| Quant Var C Expr :
(Expr)

| Expr Cexpr Expr

Var = ID

Func == 1ID Quant =

Label ::= ID \

W< <>X 1+ AVVANNM—CD 1 OOMEZXZ
- S.N
a. x

REAL
PROB

Figure 4: LOCKS Grammar

Literal ::= BOOL
\
\

Bool W Real W Prob WS, where Bool € {True,False} is the set
of boolean values, Real the set of real numbers, Prob = [0, 1]
the set of probability values and S the universe of attack and
defense steps; and SetVal = PO(PrimVal), the set of sets of
primitive values.

Definition 4.2 (Structural Attack Model). A structural
attack model (SAM) is a tuple (A, Attr), where A C PO(S) is
a set of all successful attacks and Attr : Name — ((JA -+
PrimVal) is a function that returns the attribute value for a
given step and attribute name, if the attribute is defined for
the step. Recall that AS and DS are the global universes of
attack and defense steps and S = AS W DS.

Ezxample 4.3. Consider our running example 4.1. Here, the
SAM is a tuple (A, Attr) where A is the set of successful attacks
in Figure 2 and Attr is a function mapping each atomic step
in J A to a boolean attribute of skill_required. Querying
the security goal of obtaining a set of attack steps that do not

require special skills over A, we obtain {[dismbutefusutick] [execute,me]}‘

5 SPECIFICATION LANGUAGE FOR
SECURITY GOALS (LOCKS)
We distill the constructs from both the example security goals

(Section 3) and the structural attack model sAM (Section 4)
to construct the grammar of LOCKS, shown in Figure 4. The

R.Kumar et al.

Type ::= AtomType
| SetType
| FuncType

AtomType ::= Bool
| Real
| Prob
| Step

SetType ::= Set(AtomType)
| Set(SetType)

FuncType ::= Set(Step) — AtomType

Figure 5: LOCKS type grammar

top level non-terminal is Goal, which represents a security
goal. It is one of the following:

e Func(Var) = Expr; Goal, which involves first the compi-
lation of Func(Var) = Expr that defines a user-defined
function Func, which is subsequently used in the fol-
lowing Goal. We limit ourselves to functions that take
sets of steps as input parameters.

e An expression Expr that is defined recursively. We define
each term of the expression formally and with examples
when discussing the static semantics (in Section 5.1)
and denotational semantics (in Section 5.2) of LOCKS.

Other terms in our grammar in Figure 4 consists of terminal
symbols that are denoted by the capital letters and include:

e Identifiers ID, used as names of functions, labels and
variables.

e BOOL, REAL, STRING, PROB, which are the classes of
constants representing data values.

e A, which stands for the set of successful attacks con-
tained in the given instance of the SAM.

e AS and DS, which stand for the fixed universes of attack
and defense steps.

The unary and binary operators are standard, except for
expressions Expr; Cgxpr Expry. This assumes that both Expr;
and Expr, evaluate to atomic steps between which a partial
ordering relationship exists in the attack to which Expr eval-
uates. Whether this relationship holds is looked up in the
given SAM model.

5.1 Static semantics of LOCKS

Our language is strongly typed. This ensures that the terms in
LOCKS are well-formed. The set of all semantic types, denoted
Type, is defined in Figure 5.

The available types are:

o AtomType: Bool, Real, Prob, Step, which respectively refer
to the boolean values, real numbers, probability values
and elementary attack/ defense steps in the structured
attack model;

o SetType, denoting a set whose elements are AtomType
or SetType;

e FuncType, denoting a function that returns a value of
AtomType when applied to an argument of SetType.

We use a contextual typing function 7~ that partially as-
signs types to identifiers: i.e, 7 : ID - Type. We use the

LOCKS: a property specification language
for security goals

notation [Term] to surround the syntactic Term, to be read
as: the type of Term under the typing context 7.

Type rules for Identifiers. The type rule for identifiers is
[ID]g = 7(ID) iff 7 is defined on ID. The literals generated
by BOOL, REAL and PROB have their usual types.

Type rules for Goal. The type of Goal terms of the form Expr
is defined recursively. The type of Goal terms of the form
Func(Var) = Expr; ; Expry, requires first inferring the type
of Func(Var) = Expr; in typing environment 7 and using it
subsequently to infer the type of Expr, in the updated typing
environment:

[Func(Var) = Expry ; Expry]7 = [Expry] o{Funce—1]
where T = Set(Step) — [[Exprlﬂ‘T[VarHSet(Step)]

Ezample 5.1. Consider our running example 4.1 and 4.3.
Suppose we want to obtain the attack that inflicts the maxi-
mum damage in the given structural attack model (A, Attr),
where A is the set of successful attacks given in figure 2 and
Attr is a function that annotates each step s with an at-
tribute damage whose value is a real number signifying the
monetary damage inflicted by execution of the step. The
security goal is then given by equation 2.

Tot_Damage(at) = }{s.damage | s € at \ DS} ;
Max{Tot_Damage(ak) | ak € A}

(2)

This goal is of the form Func(Var) = Expry; Expr,, where Func =
Tot_Damage is a function that maps a successful attack at
whose type is Set(Step) to a value of type Real obtained by
evaluating Expry, i.e. Y {s.damage | s € at \ DS}. It is followed
by another expression Expr, = Max{Tot_Damage(ak) | ak € A}
that obtains the maximum value among all successful attacks
by using the function Tot_Damage defined earlier.

Type rules for expressions. The type of the expressions of the
form Max Expr is Real if the type of Expr is Set(Real), refer to
equation 3. The type rules for expressions with other unary
operators Min, Y, and [] can be defined similarly.

[Max Expr]ls = Real if [Expr]s = Set(Real) (3)

The type of expressions of the form Card Expr is Real, pro-
vided the type of the Expr is Set(S) where S is Set(Step) or Step.
The type of expressions —Expr is Bool provided the type of
Expr is Bool. The type of the expression of the form Var is
Step or Set(Step), provided by the typing context 7.

The type of the expressions of the form Expr; Binop Expr,,
with binary operators is given in table 1. Each cell in the
table shows the type of the evaluated expression under the
given binary operator Binop. For example, the type of the
expressions with binary relational operators (<, >, >, <, =)
is Bool, provided the type of both its operands is same and is
either Real or Prob.

The type of an expression Var.Label is Type_Attr(Label),
where Type_Attr is the attribute type function introduced in
Section 4, and Var is of type Step:

[Var.Label] 4 = Type_Attr(Name) if 7 (Var) = Step (4)

SAC 2018, April 9-13, 2018, Pau, France

‘ T Iz ‘ Prob/Real ‘ Bool Step Set(T)

Prob/ Real || (<, >, >, <, =) — Bool - - € — Bool

if Tiy= Ty where T= Ty
(+,x) > T
where T= T1= Ty

Bool - (A, V) = Bool | - € — Bool
where T= Bool

Step - - - € —Bool
where T= Step
Set(T) - - - (S, ©) — Bool

(U, N, \) - Set(T)

where Ty = T,

Table 1: Type matrix for expressions with binary operators

The type of an expression of the form Func(Var) is T, provided
Func is a function mapping a set of steps to type 7' and the
type of Var is Set(Step):

[Func(Var)]q = T if T (Var) = Set(Step) (5)
and 7 (Func) = Set(Step) —» T

The type of expressions of the form {Expr; | Expry} is Set(S),
where the type S is inferred under a typing context U 2 T~
in which the type of Expr, equals Bool:

[{Expr; | Expry}] 7 = Set([Expri]¢s) with (6)
U2 T and [Expry]lq = Bool

Note that the type of the expression Expr; under the typ-
ing environment U is not always uniquely defined and may
require additional contextual information. For example, con-
sider an expression {x | Card(x)=1}. It is of the form {Expr;
| Expry}, but, the type of Expr; is not uniquely defined and
for example can be a set of steps or a set of real numbers.
However, such contrived cases do not occur in our example
security goals.

Example 5.2. Consider the expression s.damage in Exam-
ple 5.1. It is of the form Var.Label and returns a value of
type Real signifying the damage inflicted by the execution of
atomic step s, provided damage is an attribute name whose
type is Real and s is an atomic step of type Step. The security
goal also contains an expression Tot_Damage(at) of the form
Func(Var) that returns a value of type Real signifying the
cumulative damage of an attack at.

In the same example, consider the expression {s.damage |
s € at \ DS}. It is of the form {Expr; | Expr,}. It evaluates to
a set of values where each value is of type Real obtained by
evaluating the expression s.damage, provided that the atomic
step s satisfies the expression Expr,, i.e., s € at\ DS.

The type of expression of the form A is Set(Set(Step)). The
type of expressions of the form AS and DS is Set(Step). The
type of expression of the form Quant Var € Expr; : (Expry)
is Bool, provided the type of Expr; is Set(S) and the type of
Expr, is Bool inferred on first substituting Var with S:

[Quant Var € Expr; : (Expry)] 4 = Bool (7)
if [Expr;]q = Set(S) and [Expry]lqvar—s) = Bool

The type of expression of the form Quant Vary, Vary € Expry
: (Expry) is Bool, provided the type of Expr; is Set(S) and the
type of Expr, is Bool inferred on first substituting Var; and

SAC 2018, April 9-13, 2018, Pau, France

Vary with S. The type of the expression Quant Var C Expr :
(Expry) is defined similarly.

Ezxample 5.3. Consider our running example 4.3 where we
want to obtain the set of attacks in the structured attack
model M that do not require special skills. The security goal
is given by:

{at € A| Vs € at \ DS : —=s.skill_required} (8)

Here, the expression Vs € at\DS : =s.skill_required is of the
form Quant Var € Exprs : Expr, and returns true provided all
atomic attack steps forming the successful attack at satisfy
Expry, i.e., do not require special skills.

The type of the expression of the form Expr; Cgypr Expry is
Bool, provided the type of both Expr; and Expr, is Step and
the type of Expr is Set(Step).

5.2 Denotational Semantics of LOCKS

The meaning of the terms in LOCKS depends on the following
entities:

e A Value domain Val is the semantic domain of LOCKS
(see Section 4).

e A Declaration function D with a signature D: ID -»
(Val — Val), partially maps an identifier to a function
where both the domain and the co-domain are in the
value domain.

e An assignment function A with signature A: ID -
Val that partially maps identifier that stands for a
variable to its value in Val.

Semantics of LOCKS terms. We use the notation of dou-
ble brackets [_] to enclose the syntactic term and use the
contextual environments A, D to assign the appropriate de-
notations to the variables and the function identifiers. Thus,
the meaning of expression E is denoted as [E] #, . The bi-
nary operators (U, N, \, €, C, C, C, >, <, >, <, =, +, -, X,
A, V), unary operators (Max, Min, Y, [], Card, =) and the
quantifiers (¥, 3) have their usual meanings. The meaning of
the identifiers is a value given by its assignment, sometimes
D (when an identifier stands for a function) and sometimes
A (when an identifier stands for a variable).

Semantics of Goals. The semantics of the Goal terms of the
form Expr is defined recursively. The semantics of the Goal
terms of the form Func(Var) = Expr; ; Expr, involves first the
compilation of Func(Var)=Expr; used subsequently to evaluate
the following expression term Expr,. Here, Func(Var)=Expr,
defines the function Func, mapping the set of steps Var to a
value obtained by evaluating the expression Expr, when all
free occurrences of Var in Expr; are substituted by the value
of Var. It is subsequently used to evaluate the expression
term Expr,, refer to equation 9. An illustrative example of
this form was provided in example 5.1.

[Func(Var) = Expry ; Expry]a, 0 = [Expra] a, pipuncery (9)
where F': S [Expri] a[var—s), o

R.Kumar et al.

Semantics of Expressions. The semantics of expressions of the
form Unop Expr and Expr Binop Expr is obtained by evaluat-
ing the expressions with unary/ binary operators under the
type constraints, defined in Section 5.1. The meaning of an
expression of the form Var is given by its assignment. The
meaning of an expression of the form Literal is its usual inter-
pretation. The meaning of an expression of the form Var.Label
is a value returned by the Attr function (recall Attr is a func-
tion that maps defined in definition 4.2), provided Var is an
atomic step given by its assignment and Label is an attribute
name, both of which can be looked up in the instance of the
structural attack model M, refer to equation 10. An illustra-
tive example of this form is provided in example 5.1. The
meaning of an expression of the form Func(Var) is provided by
the declaration of Func and the assignment of Var, as shown
in equation 11.

[Var.Label] #, p Attr(A(Var))(Label) (10)
[Func (Var)]a,p = D(Func)(A(Var)) (11)

The meaning of expressions of the form AS, DS is the fixed
universe of attack and defense steps. The meaning of the
expression A is the set of successful attacks provided by
the user as M, where M is the instance of SAM, defined in
Section 4. The meaning of the expression of the form {Expr; |
Expr,} is a set of values, each obtained by evaluating an
expression Expr; under a contextual environment £ 2 A and
Q 2 D, that simultaneously satisfy the expression Expr, under
the same contextual environment, given in equation 12. An
illustrative example of this form is provided in example 5.2.

[{Expry | Expry}]a, o = {[Expri]p. @ [P 2 A.Q 2 D, (12)
[Expr,]p. q = true}

The meaning of an expression of the form Quant Var € Expr,
: (Expry) with Quant instantiated by the universal quantifier
is true if and only if for all objects x € Expr;, the evaluation
of Expry(x) holds true when all free variables Var in Expr, is
mapped to x, given in equation 13. Similarly, Quant Vary, Vars
€ Expr; : (Expry) with Quant instantiated by the universal
quantifier is true if and only if for any pair of objects x,y €
Expry, the evaluation of Expry(x,y) holds true when variables
Var; in Expr, is mapped to x and Var; in Expr, is mapped to
y. The semantics of the expressions of the form Quant Var €
Expr; : Expr, with existential and negated quantifiers can be
defined similarly.

[V Var € Expry : (Expry)]a, o (13)

=Vz € [Expr;] 7, » : [Expry] avansx), o
The meaning of an expression of the form Expr; Cat Expr,
with binary operator Cat is true, provided Expry is a atomic

step that comes before another atomic step Expr, in an attack
at in M, where M is the instance of the sam.

6 CONCLUSION

In this paper, we addressed a lack of formalized security
goals in the literature. To fill this gap, we proposed a formal
specification language LOCKS, that allow security practitioners

LOCKS: a property specification language
for security goals

to formulate both qualitative and quantitative security goals
embracing wide number of attributes such as cost, damage,
probability, etc. The security goals in LOCKS are expressed as
queries over an attack model, namely the structural attack
model SAM. As most prominent threat models such as attack
trees and attack graphs can be translated to generic structures
of SAMs, our proposed language can express security goals
over all these frameworks. We show the practical value of
our work by taking several informally stated security goals
from the literature and formulating them in our proposed
language.

Laying the formal foundations to define the security goals,
we see several directions extending our work. One is to make
our language tool supported. Another direction is to enrich
the structural attack model with an attacker profile and
attributes which are functionally dependent on each other
like probabilities over time. This will enable us to answer
questions such as: Will Ethan and Ervin, two adversaries
collaborate to launch an attack? or What is the probability of
success to launch a multi-stage attack in 1 year? In parallel,
we plan to endow LOCKS with a more user friendly syntax
with typical domain-specific constructs. Furthermore, we plan
to validate our framework with the security practitioners.

ACKNOWLEDGMENTS

This research has been partially funded by STW and ProRail under
the project ArRangeer (grant 12238), STW under the project
SEQUOIA (grant 15474), NWO under the projects BEAT (grant
612001303) and SamSam (grant 50918239), and the EU under the
projects SUCCESS and TREsPASS (318003).

REFERENCES

[1] M. Abadi and A. D. Gordon. 1999. A Calculus for Cryptographic
Protocols: The Spi Calculus. Inf. Comput. 148, 1 (1999), 1 — 70.

[2] C. Alberts, A. Dorofee, J. Stevens, C. Woody, A. Dorofee, and
C. Scondras. 2003. Introduction to the OCTAVE Approach.
Technical Report. SEI, CMU.

[3] F. Arnold, D. Guck, R. Kumar, and M. Stoelinga. 2015. Sequential
and Parallel Attack Tree Modelling. Springer, 291-299.

[4] Z. Aslanyan and F. Nielson. 2015. Pareto Efficient Solutions
of Attack-Defence Trees. In Principles of Security and Trust
(POST) 4th Int. Conf. Springer, 95-114.

[5] Z. Aslanyan, F. Nielson, and D. Parker. 2016. Quantitative Ver-
ification and Synthesis of Attack-Defence Scenarios. In IEEE
29th Computer Security Foundations Symposium, CSF. IEEE,
105-119.

[6] M. Y. Becker, C. Fournet, and A. D. Gordon. 2010. SecPAL:
Design and Semantics of a Decentralized Authorization Language.
J. Comp. Security 18, 4 (2010), 619-665.

[7] G. Behrmann, A. David, and K. G. Larsen. 2004. A Tutorial on
Uppaal. In Formal Methods for the Design of Real-Time Systems,
Int. School on Formal Methods for the Design of Computer,
Comm. and Software Systems, SFM-RT. Springer, 200-236.

[8] A. Boswell. 1995. Specification and Validation of a Security Policy
Model. IEEE Tran. Softw. Engg 21, 2 (1995), 63-68.

[9] A. Buldas, P. Laud, J. Priisalu, M. Saarepera, and J. Willemson.
2006. Rational Choice of Security Measures via Multi-parameter
Attack Trees. In Critical Information Infrastructures Security
(CRITIS). Springer, 235-248.

[10] M. Dacier and Y. Deswarte. 1994. Privilege Graph: An Exten-
sion to the Typed Access Matrix Model. In European Symp. on
Research in Computer Security (ESORICS). Springer, 319-334.

[11] M. Fraile, M. Ford, O. Gadyatskaya, R. Kumar, M. Stoelinga, and
R. Trujillo-Rasua. 2016. Using Attack-Defense Trees to Analyze
Threats and Countermeasures in an ATM: A Case Study. In

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(33]

(34]

SAC 2018, April 9-13, 2018, Pau, France

The Practice of Enterprise Modeling - PoEM Proc. Springer,
326-334.

H. Hermanns, J. Kramer, J. Krcdl, and M. Stoelinga. 2016. The
Value of Attack-Defence Diagrams. In Principles of Security
and Trust (POST) 5th Int. Conf., Eindhoven, The Netherlands.
Springer, 163—-185.

N. Idika and B. Bhargava. 2010. Extending Attack Graph-Based
Security Metrics and Aggregating Their Application. IEEE Trans.
on Dependable and Secure Computing 9, 1 (2010), 75-85.
Isaca. 2012. Cobit 5. ISA.

W. Jansen. 2010. Directions in security metrics research. (2010).
S. Jha, O. Sheyner, and J. Wing. 2002. Two formal analyses of
attack graphs. In 15th IEEE Comp. Security Foundations (CSF).
IEEE, 49-63.

B. Kordy, L. P. Cambacédes, and P. Schweitzer. 2014. DAG-based
attack and defense modeling: Don’t miss the forest for the attack
trees. Computer Science Review 13-14 (2014), 1-38.

B. Kordy, S. Mauw, Sasa Radomirovic, and P. Schweitzer. 2010.
Foundations of Attack-Defense Trees. In Formal Aspects of Secu-
rity and Trust (FAST). Springer, 80-95.

B. Kordy, S. Mauw, and P. Schweitzer. 2012. Quantitative Ques-
tions on Attack-Defense Trees. In Info. Security and Cryptology
(ICISC). Springer, 49-64.

R. Kumar, D. Guck, and M. Stoelinga. 2015. Time Dependent
Analysis with Dynamic Counter Measure Trees. arXiv preprint
arXiv:1510.00050 (2015).

R. Kumar, E. Ruijters, and M. Stoelinga. 2015. Quantitative
Attack Tree Analysis via Priced Timed Automata. In Formal
Modeling and Analysis of Timed Systems (FORMATS). Springer,
156-171.

R. Kumar and M. Stoelinga. 2017. Quantitative Security and
Safety Analysis with Attack-Fault Trees. In Int. Symp. on High
Assurance System Engg. (HASE). IEEE, 25-32.

M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0:
Verification of Probabilistic Real-time Systems. In Proc. 23rd
Int. Conf. on Computer Aided Verification (CAV’11). Springer,
585-591.

E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke.
2011. Model-based Security Metrics Using ADversary VIew Secu-
rity Evaluation (ADVISE). In Quantitative Evaluation of Systems
(QEST). IEEE, 191-200.

T. Lodderstedt, D. A. Basin, and J. Doser. 2002. SecureUML:
A UML-Based Modeling Language for Model-Driven Security. In
Proc.of the 5th Int. Conf. on The Unified Modeling Language.
Springer, 426-441.

S. Mauw and M. Oostdijk. 2006. Foundations of Attack Trees. In
Info. Security and Cryptology (ICISC). Springer, 186-198.

N. Mead. 2013. SQUARE Process https://buildsecurityin.
us-cert.gov/articles/best-practices/requirements-engineering/
square-process. (2013).

S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. 2003. Effi-
cient Minimum-Cost Network Hardening Via Exploit Dependency
Graphs. In Annual Comp. Security App. Conference (ACSAC).
IEEE, 86-95.

S. Schivo, B. M. Yildiz, E. Ruijters, C. Gerking, R. Kumar, S.
Dziwok, A. Rensink, and M. Stoelinga. 2017. How to Efficiently
Build a Front-End Tool for UPPAAL: A Model-Driven Approach.
In Dependable Software Engineering. Theories, Tools, and App.
- Third Int. Symp., SETTA, Proc. Springer, 319-336.

B. Schneier. 1999. Attack Trees. Dr. Dobb’s Journal (1999).

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing.
2002. Automated Generation and Analysis of Attack Graphs. In
Symp. on Security and Privacy. IEEE, 273-284.

D. von Oheimb and S. Médersheim. 2012. ASLan++ — A Formal
Security Specification Language for Distributed Systems. In For-
mal Methods for Components and Objects (FMCO). Springer,
1-22.

L. Wang, S. Noel, and S. Jajodia. 2006. Minimum-cost network
hardening using attack graphs. Computer Comm. (2006), 3812—
3824.

L. Wang, A. Singhal, and S. Jajodia. 2007. Measuring the Overall
Security of Network Configurations Using Attack Graphs. In Data
and Applications Security (DBSec). Springer, 98—112.

https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/square-process
https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/square-process
https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/square-process
https://www.researchgate.net/publication/323847088

	Abstract
	1 Introduction
	2 Related work
	3 Typical security goals
	4 Structural Attack Models (sam)
	5 Specification language for security goals (locks)
	5.1 Static semantics of LOCKS
	5.2 Denotational Semantics of LOCKS

	6 Conclusion
	Acknowledgments
	References

