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Abstract. Program analyses are an important tool to check if a system
fulfills its specification. A typical implementation strategy for program
analyses is to use an imperative, general-purpose language like Java; and
access the program to be analyzed through libraries for manipulating
intermediate code, such as ASM for Java bytecode. We show that this
hampers composability, interoperability and reuse of analysis implemen-
tations.

We propose a complete Ecore-metamodel for Java bytecode as a com-
mon basis for program analysis implementations, as well as an Eclipse
plug-in to create bytecode metamodel instances from Java bytecode and
vice versa. Code analyses can be defined as model transformations in a
declarative, domain-specific language. As a consequence, the implemen-
tations of program analyses become more composable and more modular
in general. We demonstrate the effectiveness of this approach with a case
study.

Keywords: Java bytecode · Metamodel · Model transformation
Model-driven software engineering · Program analyses · Composition

1 Introduction

Program analyses are developed for, e.g., checking correctness, performance
or real-time requirements. In general, such analyses either determine statically
accessible properties, or they modify the code such that information is collected
at execution time. Thus, analyses are either static or dynamic, or hybrid analyses
combining both [14,18,19]. Much of the research in program analysis targets the
Java language; more precisely, it should be said that the bytecode format of the
Java Virtual Machine is targeted, as analyses usually inspect and instrument this
intermediate representation rather than the source code. This has several advan-
tages; for example, many different source languages compile to the Java byte-
code format, thus, multiple languages can be supported at once. Furthermore,
typically, the bytecode is available for the whole program, including third-party
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libraries. A typical implementation strategy for bytecode-level program analyses
is to use an imperative, general-purpose language like Java, and to access the
program to be analyzed through libraries that offer an API for inspecting or
instrumenting intermediate code, such as BCEL or ASM [5,9,11,15,22].

New analyses often conceptually extend or combine existing ones by optimiz-
ing the information collection or collecting additional information. Considering
that many of these analyses involve similar concepts and work on the same
intermediate representation, being able to extend and compose existing analy-
sis implementations would save time and effort, and improve interoperability
and maintenance. Though Java (and other general-purpose languages) offers
language-level modularity mechanisms, such as class libraries and inheritance,
they are not sufficient to implement program analyses in a composable fashion.
To compose two or more analyses (or parts thereof), the only possibility is to
apply one analysis to the output of the previous one. However, since an analy-
sis in general alters the bytecode, the subsequent ones do not see the original
code, which may invalidate their results. In this paper, we promote model-based
definitions of program analyses as a more flexible mechanism [6].

The contribution of this paper, therefore, is a complete Ecore-metamodel
for Java bytecode, which can be used as a common basis for arbitrary program
analyses. Instances of our metamodel can be created from compiled Java code in
the class file format, and vice versa. Code analyses can now be defined as model
transformations, in one of the well-researched domain-specific languages avail-
able for this purpose. Furthermore, analysis results can be represented directly
as extensions of the bytecode model of the analyzed program, making them eas-
ily accessible to subsequent manipulation and to other tools. We claim that, as
a consequence, the implementation of a program analysis becomes more compos-
able and modular [21]. We have implemented an Eclipse plug-in, called JBCPP
for the bytecode-to-model and model-to-bytecode transformations.1

We demonstrate the effectiveness of this approach with a motivating example
comparing the composability of two program analyses in the traditional (using
a general-purpose programming language) and in our implementation approach
(using a model transformation language utilizing our metamodel).

2 Motivation

While there are metamodels available for high-level programming languages (e.g.,
JaMoPP [17], MoDisco [7] and domain-specific languages developed with tools
like xText [13] or EMFText [16]), we are not aware of any program analyses
developed in a model-driven way using these source-level metamodels. There
are several reasons why program analyses are typically implemented based on
bytecode rather than source code:

– The bytecode is always available for the whole program, also for the third-
party components and libraries that are not available in source code.

1 The plug-in and the metamodel are available on the JBCPP homepage: https://
bitbucket.org/bmyildiz/java-bytecode-metamodel-repository.

https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
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– Many implicit features in the source code are resolved and represented explic-
itly in bytecode. Some examples are simple type names, which can only be
fully qualified by interpreting import statements, or the implicit default con-
structors.

– Java bytecode is the compilation target for various languages. Therefore,
implementing an analysis for Java bytecode generally makes it applicable
to programs written in these different source languages.

– A single statement in the source language is typically represented by multiple
finer-grained bytecode instructions, which makes Java bytecode more flexible.
For example, control flow is not limited to properly nested blocks. Therefore
code instrumentations often are easier to be defined at the bytecode level.

– Besides, at least for Java programs, almost no information from the source
level gets lost when compiling to bytecode. A notable exception are scopes
confined to blocks in the source code, e.g., for a for loop, the sections initial-
ization, condition, increment and body are not explicitly represented but can
typically be recognized by simple and local analyses [23].

2.1 Motivating Example

We will express our problem statement by employing two explanatory program
analyses. The first analysis is to count how often each method call in the program
is executed. To do so, this analysis instruments each invocation instruction in
the bytecode by inserting a call to the method InvocationCount.increase(). To
identify the instruction whose executions are counted, the analysis numbers all
invocation instructions in a method and generates an identifier based on the
fully qualified method name, that contains the invocation instruction and the
instruction’s number. This identifier is passed to the increase() method as an
argument. After the program execution, the results are written to a file. We call
this analysis invocation count.

The second analysis measures the time that elapses for each method invo-
cation. This analysis prepends each method invocation with code to store the
result of System.currentTimeMillis() in a local variable. Then, it appends code
to calculate the difference of the current time and the stored start time and to
pass the result to the method Time.increase(). This method receives a unique
identifier of the invocation instruction, which is computed in the same way as
for the invocation count analysis. The method Time.increase() stores the accu-
mulated elapsed time per invocation instruction, which again is dumped at the
termination of the execution. We call this analysis time in short.

Neither analysis instruments invocations that occur in its respective
increase() method or invocations of methods from the system class library, i.e.,
classes in a subpackage of java, to avoid endless recursions.

2.2 Implementing Program Analyses with a Bytecode Toolkit

Several toolkits for reading and manipulating Java bytecode are available
[3,8,10]. These toolkits basically support two styles for implementing program
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analyses: First, the bytecode is transformed to an object-oriented representation
and analyses subsequently process this representation, possibly altering it; this
facilitates random access to elements in the bytecode. Second, the bytecode is
traversed in one pass during which a visitor, implementing the analysis, reacts to
encountering relevant elements; in this style the bytecode is naturally traversed
sequentially. If a such-implemented analysis employs code instrumentation, each
encountered element is, by default, copied to the output, unless the analysis
decides to suppress or modify a visited element or insert something at its loca-
tion.

Both styles have the following points in common: (1) By default, there is no
way to combine multiple analyses other than to perform them sequentially; and
(2) it is not possible identify which elements in the resulting bytecode stem from
the original input or are inserted by an analysis.

In our examples, we employ the ASM bytecode toolkit and make use of the
visitor style since this is currently the most common implementation approach
for program analyses based on Java bytecode.

Listing 1.1 shows the visitor methods handling the encounter of a method
invocation of invocation count. What is not shown in the listing is that the visitor
does not descend into the methods InvocationCount.increase() but copies them
verbatim, such that the method invocation instructions within this methods are
not visited. The visitor method of time is implemented analogously.

1 @Override
2 public void visitMethodInsn(int opcode, String owner, String name, String desc, boolean

itf) {
3 if (! owner.startsWith("java/")) {
4 String id = getInstructionID();
5 super.visitLdcInsn(id);
6 super.visitMethodInsn(Opcodes.INVOKESTATIC, "ic_analysis/InvocationCount",

"increase", "(Ljava/lang/String;)V", false);
7 }
8 super.visitMethodInsn(opcode, owner, name, desc, itf);
9 }

Listing 1.1. Instrumenting method invocations for the invoction count analysis with
the ASM toolkit.

As the listing shows, the instrumentation code is inserted into the output
by calling the respective super.visitXXX() methods. This is the case for original
instructions occurring in the input (e.g., line 8 in Listing 1.1) as well as the
additional code. The invocations to getInstructionID() (e.g., line 4 in Listing 1.1)
return the unique identifier of the method call instruction, as described in the
previous subsection.

2.3 Composing the Toolkit-Based Analyses

The two described analyses measure the total execution time of each method
call as well as an execution count for each method call. Thus, composing both
analyses would allow to compute the average execution time for each method
call.
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The typical approach of combining two analyses implemented in an approach
such as outlined above is to apply them sequentially. This is, analysis 1 is applied
to the original bytecode yielding intermediate bytecode as result. Second, anal-
ysis 2 is applied to this intermediate code yielding the final bytecode.

In the case of our example, both analysis instrument all method invocations:
This causes the intermediate code produced by the first instrumentation to con-
tain additional method invocations, which are then unintentionally instrumented
by the second analysis. As a result, depending on the application order of the
two instrumentations, either method invocations are counted or timed, which
were not part of the original program.

Furthermore, the identifier computed for each method call (getInstructionID)
is based on the position of the instruction in the bytecode, which changes because
of the instrumentations. Therefore, the identifiers of both analyses do not match.
Only the identifiers of the first analysis can be mapped to the original bytecode.

One might think that analyses implemented in the outlined approach could
also be composed by inheritance. However, this does not solve the problem,
as the visitor method (visitMethodInsn), which is implemented to react to the
encounter of a method call, is also called to insert additional method calls.

2.4 Problem Statement

The current state of the art bytecode manipulation toolkits follow approaches
that do not support composition of independently developed program analyses.
While it could be possible to employ specific patterns for extensibility and com-
posability when implementing a program analysis, we are not aware of such
approaches, let alone bytecode manipulation toolkits supporting this.

For this reason, we suggest a new approach, implementing program analyses
in a model-driven way. Model transformation approaches from the model-driven
engineering (MDE) world have a strong focus of declarative definitions, compos-
ability and extensibility, which is why we think that the ability to implement
program analyses as model transformations is a significant added value.

3 Java Bytecode Metamodel

To facilitate implementing program analyses in a model-driven way, we have
developed a metamodel (using the Ecore format provided by the Eclipse Model-
ing Framework (EMF) [1]) of Java bytecode, called JBCMM 2. Bytecode models,
instances of the metamodel, act as a basis for analyses. Furthermore, the meta-
model can be extended to meet various concerns such as the representation of
analysis results. In our metamodel, all relevant elements are uniquely identifiable.
For example, classes have a unique name (made up of the package name plus the
simple class name), and the name and descriptor of a method is unique within

2 Published on the JBCPP homepage: https://bitbucket.org/bmyildiz/java-bytecode-
metamodel-repository.

https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
https://bitbucket.org/bmyildiz/java-bytecode-metamodel-repository
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a class. In addition to the names used in the bytecode specification, additional
elements like instructions have names in our metamodel to make them identifi-
able. These names have to be unique within their scope, e.g. the fully qualified
identifier of an instruction is composed of the instruction name, the containing
method’s name and descriptor and the declaring class’s name.

Therefore, information generated by an analysis can be uniquely associated
with model elements by using these fully qualified identifiers, staying valid inde-
pendently of which modifications are applied to the model. Java bytecode (thus
also our metamodel) accommodates for storing a mapping between bytecode and
the source line from which it was compiled. Therefore, it is also possible to trace
each object in a JBCMM model to the corresponding source line.

3.1 Structure of Java Bytecode Metamodel

The metamodel mainly follows the organization of Java class files as defined
in the Java Virtual Machine specification [2]. In general, each kind of entity
from the class file format (like method declarations, attributes or instructions) is
represented as one Ecore class in the metamodel. Lexical nesting (e.g., a method
is nested inside its declaring class) is represented as a containment relationship in
the metamodel (in terms of the previous example: a method is contained in the
class that declares it). To simplify implementation of analyses, all containment
relationships are navigable bidirectionally.

The most relevant elements of the metamodel are shown in graphical form in
Fig. 1 and described below. Entities not relevant for our case studies (e.g., fields)
are omitted here, but are treated analogously.

Fig. 1. A view from the bytecode metamodel

Project, the root of the Ecore model, contains all classes and refers to the
designated main class. Clazz represents a class or an interface, storing type hier-
archy information, type-level declarations such as annotations or modifiers, and
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all the members declared inside the class. Method stores method-level declara-
tions and (for non-abstract methods) contains the method’s instructions and a
reference to the first instruction.

Instruction is an abstract entity that build the root of a hierarchy of
bytecode instruction entities, containing the properties shared all instruction
types. Also, an instruction contains zero or more ControlFlowEdges. The sub-
classes of Instruction form a hierarchy organized according to shared seman-
tics and, thus, also shared structure of instructions. For example, all instruc-
tions for invoking methods are represented as the subtype MethodInstruction,
which is further extended by types for the specific kinds of invocation such as
InvokestaticInstruction.

The control flow information, which is implicitly available in the class file
through the ordering of instructions or targets of jump instructions, is explicitly
stored as a property of an instruction and is presented in our metamodel via a
hierarchy of ControlFlowEdges between instructions. Concrete types of edges
are unconditional, different types of conditional or exceptional control flow edges.

3.2 JBCPP Plug-in

To conveniently create instances of our Java bytecode metamodel from existing
code, we have developed an Eclipse plug-in, called Java Bytecode++ (JBCPP).

In [24] we have evaluated the performance of JBCPP when processing
projects at different scales. The largest model derived from a Java program
with over 1,000 classes consisted of over 750,000 objects. The generation of the
model took almost 90min. This shows that our approach is feasible at least for,
e.g., nightly analysis runs, but performance improvements are needed.

1 pattern InstrumentInvocationCountIncrease
2 thisMethodInstruction:InOutJBCModel!MethodInstruction {
3 match: thisMethodInstruction.isPatternApplicable()
4

5 do {
6 var newLcdInstruction = thisMethodInstruction.getNewLcdStringInstruction(

thisMethodInstruction.uuid );
7 var newInvokeStaticInstruction =

thisMethodInstruction.getNewInvokeStaticInstruction();
8 var parameterList = new OrderedSet();
9 parameterList.add("Ljava/lang/String;");

10 newInvokeStaticInstruction.methodReference = getMethodReference( "increase",
"Lic_analysis/InvocationCount;", "V" , parameterList);

11 createNewUnconditionalEdge(newLcdInstruction, newInvokeStaticInstruction);
12 insertBefore (newInvokeStaticInstruction, thisMethodInstruction);
13 }
14 }

Listing 1.2. Implementation of the invocation count analysis as a model
transformation.

We have used the Epsilon Pattern Language (EPL) to implement these trans-
formations, which is one of the domain-specific languages for model management
tasks provided by the Epsilon language family [20].
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In EPL, the transformation actions are defined in terms of patterns, which
in the first place filter by the type of model objects to which they are applica-
ble. Second, the match part can filter based on the properties and attributes of
the selected model object. When both the type-based and the property-based
filtering selects a model object, the transformation specified in the do part is
executed.

For our example, the pattern is defined on MethodInstruction instances,
represented by thisMethodInstruction. The guard in line 4 checks if
thisMethodInstruction is not a call to a method of classes in the system library
and that the call does not appear inside the analysis’ increase() method. After
the matching, the do part starts. From line 6 to line 10, the two bytecode instruc-
tions that will be inserted are generated. In line 11, these bytecode instruc-
tions are connected with a control flow edge. Finally, in line 12, the newly cre-
ated instructions are inserted before thisMethodInstruction via the insertBefore
operation. This operation redirects any incoming edges of thisMethodInstruction
to the first instruction of instrumentation, and creates a new control flow edge
between the last instruction of instrumentation and thisMethodInstruction.

Patterns implemented independently in different EPL modules can be easily
composed: A new transformation can be implemented that imports both the
module for the invocation count and the module for the time analysis. Then, both
modules will be applied to the same input model at once, yielding one output
model that has the extra (instrumented) instructions added by both analyses
for all method call instructions present in the input model – and only for these
instructions. Since both analyses use the unique identifiers of call-instruction
objects in the input model, the data produced by both analyses can be easily
mapped back to the original method calls.

4 Related Work

There are not many attempts in the field of metamodeling of bytecode. Eichberg
et al. [12] provide an XML Schema-based metamodel of bytecode supporting
multiple instruction set architectures, such as Java bytecode. They report the
benefits of using an explicit metamodel: ease of changing and extending a meta-
model in case of new requirements, and facilitating the development of generic
analyses with the help of a well-defined data structure. A similar approach, how-
ever working at the level of source code is MoDisco [7]. Their approach is to
derive a language-independent model from source code, which then acts as store
for analysis results. Like the work of Eichberg et al., they do not facilitate code
instrumentation using the model.

Heidenreich et al. [17] propose an Ecore metamodel for the Java source code
language, including a parser to create instances of this metamodel from Java
code and Eclipse plug-ins to create Java source code from the instances of this
metamodel. We can use JaMoPP to investigate our claim that implementing
(hybrid) analyses as transformations of a bytecode metamodel is more suitable
than using a source code metamodel.
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5 Conclusion

In this paper, we have presented our complete Java bytecode metamodel and
the JBCPP plug-in to be used for the bytecode-to-model and model-to-bytecode
transformations. The metamodel allows code analyses to be written as model
transformations in well-studied domain-specific languages. In this way, program
analyses become more composable and the results of these analyses can be associ-
ated with the entities in bytecode via unique identifiers, which have been demon-
strated with the motivating example.

The scalability of this approach has not yet been evaluated systematically,
but we have made an initial assessment. For four realistically sized programs we
derived byteceode models, transformed them and converted them back to byte-
code (also cf. [24]). The relevant sizes and times are shown in Table below. The
data already shows that our approach is feasible even of realistic programs. We
expect significant performance gains through better engineering of the derivation
and bytecode generation. By incrementalizing our approach we believe that the
performance can reach a sufficient level for use in practice.

Model size Duration [seconds]
Classes Methods Instr. Flow edges Total Deriv. Trans. To bc Total

LiveGraph 131 350 11, 795 11, 740 24, 016 18 51 35 104

Groove Gen. 930 5, 392 99, 738 98, 634 204, 694 1, 414 86 364 1, 864

Groove Sim. 1, 482 9, 232 203, 030 203, 071 416, 815 1, 480 300 977 2, 757

Weka 1, 041 8, 322 367, 774 374, 854 751, 991 764 803 2, 402 3, 969

As future work, we will re-implement several published static and dynamic
analyses in our approach and compare them to their original implementations.
One result of this exercise will be the provision of a library of reusable and
composable fine-grained building blocks of program analyses.

In our previous work, we have proposed a framework to derive timed-
automata models for model checking purposes from instances of an earlier version
of the bytecode metamodel [24]. The framework transforms the bytecode models
to extended models in order to handle recursion and to enrich them with loop
and timing information. All these steps are implemented via model transforma-
tions. At the end of the process, the framework produces timed-automata models
compatible with the uppaal [4] model checker. We will update this framework
to the most recent version of our Java bytecode metamodel.
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