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Abstract. Previous work has shown how first-order logic can equiva-
lently be expressed through nested graph conditions, also called con-
dition trees, with surprisingly few ingredients. In this paper, we extend
condition trees by adding set-based operators such as sums and products,
calculated over operands that are themselves characterised by first-order
logic formulas. This provides a greatly improved way to specify compu-
tations such as: given that the price of a geranium plant equals 2 per
flower petal, return the average price of all geraniums with at least one
flower .

We claim the same level of expressive equivalence as before between
(extended) condition trees and a certain class of logic formulas; we show
that the latter go beyond what can be expressed in first-order logic.

On the practical side, we evaluate the performance and usability of
set-based operators by specifying and comparing the example geranium
property, with and without set-based operators, in the graph transfor-
mation tool groove.

1 Introduction

Graph transformation is a formalism that can be used for different purposes: to
define graph languages (as a generalisation of string grammars; see for instance
[8]), to define binary relations and functions over graphs (as a generalisation of
term rewriting; see for instance [22]) or as a rule-based formalism to describe the
behviour of a system (as a generalisation of, for instance, Petri nets; see [18]).
In each of these settings, it is of interest how powerful the graph transformation
rules are. Here a balance must be struck between sticking to the simplest kind of
rules, which have very well-defined properties but provide only low-level building
blocks, and allowing more elaborate, powerful rules, which enable one to specify
the language, relation or dynamic system at hand more directly and concisely
but whose effect is correspondingly harder to analyze.

In this paper, we follow the algebraic approach to graph transformation pio-
neered by the late Hartmut Ehrig.1 A good reference work for the theoretical
1 Ehrig was also a leading researcher in algebraic data specification, i.e. [7]; in that

capacity he was one of the founders of ACT-ONE, the data type specification lan-
guage of LOTOS, the standardisation of which in [20] was one of Ed Brinksma’s
early scientific achievements.
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background of the approach in general is the book [5]. The simplest kind of rules,
working on the simplest kind of graphs, consist only of a left hand side and a
right hand side, both of which are graphs. Applying such a rule to a given host
graph roughly consists of the following two steps:

– Finding a match of the left hand side to the host graph, in the form of a
graph morphism;

– Replacing the image of the left hand side in the host graph that was identified
by the match by a copy of the right hand side, while preserving some context.

From the point of view of analyzability, one of the advantages of these simple
rules is that the condition for their applicability as well as the scope of their
application are fixed by the left hand side: the rule tests for the presence of
a certain substructure in the host graph, and all ensuing changes are applied
within this substructure. This, however, is simultaneously a disadvantage when
one wants to specify a transformation consisting of an a priori unknown number
of small, identical changes. A good example is the effect of firing a transition
in a Petri net: in this situation, all input places should contain a token which,
moreover, should be consumed; and all output places should receive a token.
There is no bound on the number of input places or output places a transition
in an actual Petri net may have; so to achieve the desired effect using only
simple graph transformation rules, one has to take refuge to one of the following
solutions:

– Devise a fairly complicated protocol of simple rule applications in which the
input places are individually tested for the presence of a token, after which
those are also individually removed and tokens are placed on the individual
output places.

– Create one rule for every combination of m input places and n output places.
However, apart from the fact that this gives rise to an infinitary family of
rules, one also has to ensure that the rule for i × j input/output places is
not applicable to a transition with m × n input/output places with m > i
or n > j. This requires a test for the absence, rather than the presence, of
certain structures in the host graph, which in itself is beyond our simple rules
as well.

Because limitations of this kind were found to severely hamper the practical use
of graph transformation in practice, mechanisms to generalise and extend both
the applicability condition of rules as well as their effect have been studied for
quite some time. For instance:

– [14] proposes to enrich rules with so-called negative application conditions
(NACs) that test for the absence of structure, nullifying one of the obstacles
to the second solution discussed above.

– [6,23] generalise NACs to nested graph conditions, using which any first-order
property of graphs can be used as a rule applicability condition. In particular,
the nesting structure mimics the concept of alternating quantifiers.
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– [12,26] study the concept of amalgamation of rules, which is a composition
mechanism that allows building complex rules such as the Petri net firing rule
out of arbitrarily many copies of small “simple” rules. Such composed rules
are sometimes called multi-rules.

– [24,25] present nested rules, which can be seen as a marriage of nested graph
conditions and amalgamation: in terms of [26], the proof of the nested graph
condition serves as the amalgamation scheme. A nested rule can contain
universal quantification not only within its applicability condition, but also
within sub-rules, which then have an effect wherever in the host graph the
corresponding applicability sub-condition is satisfied.

However, first-order logic has its limitations, and there are in fact applicability
conditions and multi-rules that can still not easily be expressed using any of the
above techniques. For instance, there are cases where it is relevant to know or
compute a collective value for a set of sub-graphs characterised by some property.
This is where the current paper comes in. As an example, consider the following
task:

Given that the price of a geranium plant equals 2 per flower petal, compute
the average price of all geraniums with at least one flower.

In mathematical notation, this can be expressed as follows:

(
∑

g∈G

price(g))/|G| where price : g �→ ∑
f∈Fg

2 ∗ petals(f)
G = {g |Geranium(g) ∧ Fg �= ∅}
Fg = {f |Flower(f) ∧ has(g, f)}

(1)

This has the following noteworthy features:

– Geranium(x), Flower(y) and has(x, y) are predefined predicates expressing,
respectively, that x is a geranium, y is a flower, and y is a flower of x,

– petals(x) is a predefined partial function returning the number of petals of x,
if x is a Flower.

– G and Fg (for g ∈ G) are defined as sets of, respectively, all geraniums and
all flowers of geranium g;

– price(g) is the price of geranium g, defined as twice the number of petals of
all flowers of g.

The need to use sets of entities (G and Fg) and set-based operators (
∑

and
the cardinality |G|) take this beyond what can be expressed in first-order logic.
Consequently, the computation of a formula such as the above is essentially as
tricky to specify using graph transformation, even with nested rules as in [25],
as the firing of a Petri net transition is with only simple rules: again, one has to
sum up first the flower petals and subsequently the individual geranium prices
one by one.
This paper proposes a way to directly support set-based operators. We present
this in three aspects: 1. a generalisation of nested graph conditions; 2. an exten-
sion of first-order logic; 3. an experiment showing the performance and concise-
ness gain with respect to the encoding of (1) using simple rules. We claim that
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this extension is not just theoretically interesting but also practically useful: in
the course of time, we have received multiple feature requests for our graph trans-
formation tool groove [11] to support functionality of this kind, most lately in
the context of [16].

The remainder of this paper is structured as follows: in Sect. 2 we present
the necessary background from algebra and graph theory; in Sect. 3 we recall
the theory behind nested graph conditions. Section 4 contains the main technical
contribution, viz. the extension to set-based operators. In Sect. 5 we report on
the experiment of encoding formula (1) above in terms of set-based operators;
and in Sect. 6 we summarise the findings and present related and future work.

2 Definitions

In this section, we set the stage by recalling some basic notions from algebra,
graph theory and logic that we need to present our contribution.

2.1 Algebra

We restrict ourselves to the domain of integers. This means we work with a fixed
signature Σ with consisting of the standard arithmetic operators, such as add
(addition), mul (multiplication) and div (division). Each operator has an arity
ν(o) ∈ N. Constants are included as nullary operators. We also use a universe
of variables V. From these ingredients, we define terms through the following
grammar:

t ::= x | o(t1, . . . , tν(o)) (2)
where x ∈ V and o ∈ Σ. The set of terms over a given set of variables V ⊆ V is
denoted T(V ).

Definition 1 (algebra, homomorphism). An algebra is a tuple A =
〈D, (F o)o∈Σ〉 consisting of
– a value domain D;
– a partial function F o : Dν(o) → D for each o ∈ Σ.

Given two algebras A1, A2, a homomorphism h : A1 → A2 is a partial function
h : D1 → D2 such that for all operators o ∈ O and all vi ∈ D (1 ≤ i ≤ ν(o)):

h(F o
1 (v1, . . . , vν(o))) = F o

2 (h(v1), . . . , h(vν(o)))

provided that all function applications are defined.

The functions F o are allowed to be partial so that division by zero can be
accounted for. Henceforth we identify an algebra A with its value domain and
just talk about the values of A, rather than of the domain of A. In fact, in this
paper we restrict ourselves to two particular (families of) algebras:
– The term algebra T(V ) for arbitrary finite sets of variables V ⊆ V, where each

function F o is total and constructs a new term by applying the corresponding
operator o to the operand terms.

– The natural algebra I consisting of the “actual” integers and the “actual”
functions for addition, multiplication, etc. (and division by 0 is undefined).
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2.2 Attributed Graphs

In the following, N denotes a universe of nodes, and L a universe of graph (edge)
labels.

Definition 2 (graph, morphism). A graph is a tuple G = 〈N,E〉 where

– N ⊆ N is a set of nodes;
– E ⊆ N × L × N is a set of edges.

Graph G is called attributed over an algebra A if A ⊆ NG. The class of all
graphs is denoted Graph and the subclass of attributed graphs GraphA.

Given two graphs G1, G2, a morphism f : G1 → G2 is a function f : N1 → N2

such that:
f : (n1, a, n2) �→ (f(n1), a, f(n2)).

Morphism f is called attributed if the Gi are attributed over Ai (i = 1, 2) and
f � A1 is a homomorphism from A1 to A2. The class of all morphism is denoted
Morph.

Morphism f is called injective if f(n1) = f(n2) implies n1 = n2.

We use src(e), lab(e) and tgt(e) to denote the source, label and target of an edge
e, and dom(f), cod(f) to denote the domain and codomain of a morphism f .
If G is attributed over A, we call the elements of A ⊆ NG data nodes and the
elements of NG \ A pure nodes. We also refer to a graph that is not attributed
as a pure graph.

Note that the node set of an attributed graph is typically infinite, because
algebra domains are. The only data nodes of such a graph we are usually inter-
ested in (and that are included in figures) are those that are connected by some
edge to a pure node.

In practice, the only attributed morphisms f we will consider are such that
either dom(f) and cod(f) are graphs over T(V1) and T(V2) for some V1 ⊆ V2 ⊆ V
and f � T(V1) is the identity homomorphism, or such that dom(f) is attributed
over T(V ) for some V ⊆ V and cod(f) is attributed over I.

2.3 First-Order Logic

In its purest form, first-order logic (FOL) reasons about arbitrary structures,
using formulas composed from some predefined set of n-ary predicates. Here
we restrict to binary predicates, which coincide with the set of edge labels L
introduced above.

Furthermore, we also use a set of variables X , which for now is not connected
to the data variables V used above. The grammar of FOL is then given by:

φ ::= a(x, y) | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ | ∀x : φ | ∃x : φ (3)

for arbitrary a ∈ L and x, y ∈ X . We also use the notation Q X : φ with
Q ∈ {∃,∀} and finite X ⊆ X to denote the simultaneous existential or universal
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quantification over all variables in X. We use fv(φ) to denote the free variables
of a formula φ, defined in the usual way; we call formula φ closed if fv(φ) = ∅.

Formulas are evaluated over interpretations, which define a domain of dis-
course as well as actual relations for all predicate symbols. In our setting, inter-
pretations coincide with graphs, although in keeping with tradition we will
denote them I rather than G: for a given predicate symbol a ∈ L, the actual
binary relation as defined by a given interpretation (i.e., graph) I is nothing but
the set of pairs (src(e), tgt(e)) for all edges e ∈ EI with lab(e) = a.

We also need the concept of an assignment α, which is a partial mapping
α : X → NG mapping at least all free variables of φ to nodes in the interpretation.
For given assignments α, β, we use the following constructions:

α[x ← n] :y �→
{

n if x = y

α(y) otherwise.
α[β] :y �→

{
β(y) if y ∈ dom(β)
α(y) otherwise.

The semantics of FOL is given by a relation I, α � φ expressing “I satisfies φ
under α,” defined as follows:

I, α � a(x, y) if (α(x), a, α(y)) ∈ EI

I, α � φ1 ∧ φ2 if I, α � φ1 and I, α � φ2

I, α � φ1 ∨ φ2 if I, α � φ1 or I, α � φ2

I, α � ¬φ if not I, α � φ
I, α � ∀x : φ if I, α[x ← n] � φ for all n ∈ NI

I, α � ∃x : φ if there is a n ∈ NI such that I, α[x ← n] � φ.

α may be omitted if φ is closed.

3 Nested Graph Conditions

In this section, we recall nested graph conditions and their equivalence (in expres-
sive power) to FOL.

3.1 Conditions as Graphs

In order to understand in what sense a graph can represent a property also
expressible in FOL, consider that any graph C can be seen as a pattern that
occurs or does not occur in another graph G—where “occurring in” means that
there exists a morphism γ : C → G. For an equivalent FOL formula, we first
have to establish a correspondence of nodes (of C) to variables (in X ). For this
purpose, we fix a mapping ξ : N → X that associates a variable with every node.

Definition 3 (condition graph). A condition graph is a graph C such that ξ
is injective on NC .

We use ξC = ξ �NC to denote the restriction of ξ to the nodes of condition graph
C (hence ξ−1

C is well-defined). We also denote xn = ξ(n).



Taking Graph Conditions Beyond First Order 197

Fig. 1. Example graph condition with satisfying morphism γ (The dotted lines indicate
the node mapping)

Whether or not a function γ : NC → NG is a morphism from C to G is a
property of G that is equivalently expressed by the following formula, evaluated
over I = G with assignment α = γ ◦ ξ−1

C :

φC :=
∧

e∈EC
lab(e)(xsrc(e), xtgt(e)) (4)

This equivalence is formally stated by the following proposition.

Proposition 1. Let C be a condition graph, G a graph and α an assignment
to NC .

1. α ◦ ξC is a morphism from C to G if and only if G,α � φC .
2. There exists a morphism from C to G if and only if G � ∃ ξ(NC) : φC .

Clearly, morphisms in the satisfaction of condition graphs take over the role of
assignments in the satisfaction of FOL formulas, viz., to bind nodes of the target
graph [the interpretation] to nodes [variables] of the source graph [the formula].

Example 1. As an example, consider the graphs C and G in Fig. 1. Inscribed
node labels are syntactic sugar for self-edges with that label. C specifies that
there is a flowering geranium, which is equivalently expressed by

∃x, y : Geranium(x, x) ∧ Flower(y, y) ∧ has(x, y).

(In keeping with the decision to restrict FOL to binary predicates, this uses
Geranium(x, x) rather than Geranium(x) as in (1) to express that x is a
geranium; however, there is no conceptual difference between the two.) G actu-
ally has 3 pairs of Geranium-Flower-pairs that satisfy this condition, one of
which is identified by the morphism γ in the figure.

The compositional definition of � over FOL gradually builds up the assign-
ment α. To also take pre-existing bindings into account in the case of graphs, we
will use graph morphisms, rather than graphs, both for the conditions themselves
and for the combination of interpretation and assignment.
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3.2 Morphisms as Conditions

In the following we consider morphisms g : B → G, where B stands for the bound
graph, which can be seen as a sub-pattern of a condition graph that has already
been “found”. The nodes of B will turn out to correspond to free variables in
the formula to be checked. Accordingly, rather than just condition graphs C, we
consider condition morphisms.

Definition 4 (condition morphism). A condition morphism is an injective
morphism c : B → C between condition graphs, such that ξB = ξC ◦ c.

Morphism g : B → C satisfies condition morphism c : C → D if (just as in
the case of condition graphs, see Proposition 1) a third morphism γ : C → G
exists, which however (in addition) satisfies γ ◦ c = g; in other words, γ has to
respect the image of the bound graph. This is represented by the commuting
diagram.

Notationally, this is expressed by the (overloaded) relation �:

g � c if there is some γ : cod(c) → cod(g) such that γ ◦ c = g. (5)

In fact, γ is a witness or proof that c exists in (the codomain of) g. We also use
[[ c ]] to denote the semantic function of c that maps any g : B → G to the set of
proofs of c on g, thus:

[[ c ]] : g �→ {γ ∈ Morph | γ ◦ c = g}. (6)

A condition morphism c : B → C is equivalent to the following formula:

φc := ∃ ξ(NC \ c(NB)) : φC (7)

The equivalence is formally stated by the following proposition:

Proposition 2 (condition morphism equivalence). Let c : B → C be a
condition morphism and g : B → G a morphism; then g � c if and only if
G, g ◦ ξ−1

B � φc.

It should be noted that the injectivity of c is required for this to work: if
there were distinct n1, n2 ∈ NB such that c(n1) = c(n2), then φc would have
to include a predicate equating xn1 and xn2 . For simplicity we have chosen to
omit equality from the version of FOL used in this paper and restrict condition
morphisms to injective ones; in the conclusions we briefly discuss what would be
required to generalise the setup.

Vice versa, (we claim without proof that) any formula φ from the following
fragment of FOL can be easily encoded into an equivalent graph condition:

φ ::= a(x, y) | φ1 ∧ φ2 | ∃x : φ.
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Fig. 2. Example condition morphism with satisfying morphism: g � c

Example 2. Figure 2 is a variation on Fig. 1 where the bound graph B pre-
identifies the particular Geranium of which we want to know whether it has a
Flower. A proof γ of the satisfaction of c on g is drawn in.

3.3 Trees as Conditions

In the following, we use diagrams, which are special kinds of graphs, of which
the nodes are labelled with elements of Graph and the edges are labelled with
elements of Morph with domain and codomain corresponding to the edge source
and target. We will apply the usual trick of identifying diagram nodes and edges
with their labels; in the context of this paper this will not give rise to ambiguities.
If G is a node in a diagram D, outD(G) = {f ∈ D|dom(f) = G} denotes the
set of morphisms in D with domain G. Such a diagram D is tree-shaped if it is
acyclic and has a single node rt(D) with no incoming edges, whereas all other
nodes have precisely one incoming edge. If D is tree-shaped, then for any node
G of D we use D[G] to denote the subtree of D rooted in G.

Definition 5 (condition tree). A condition tree C is a tree-shaped diagram
consisting of condition graphs and condition morphisms, in which, moreover,
every graph C is labelled with a boolean operator OC ∈ {∨,

∧} and every mor-
phism c with a quantor Qc ∈ {∀,∃}.

C is called closed if rt(C) is the empty graph.

Satisfaction of a condition tree is once more expressed by a relation C � g, where
dom(g) = rt(C), recursively defined as follows:

g � C if Ort(C)
c∈outC(rt(C)) Qc γ ∈ [[ c ]](g) : γ � C[cod(c)]. (8)

In this definition, we use a notational trick by which the quantors Q and logical
connectives O are actually used in their natural-language meanings.
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Fig. 3. Example condition tree C and morphism g such that g � C

We call a FOL formula φ and a condition tree C equivalent if for any graph
morphism g : rt(C) → G:

G, g ◦ ξ−1
rt(C) � φ if and only if g � C. (9)

Example 3. Figure 3 shows a condition tree C that expresses the property “all
geraniums either have a flower or are fresh”, and a morphism g for which C is
satisfied. Note that C2 and C3, which are childless in C, are labelled

∧
: this

specifies that all their outgoing morphisms must be covered, which is vacuously
satisfied. An equivalent FOL formula is:

∀x : Geranium(x, x) → ((∃y : Flower(y, y) ∧ has(x, y)) ∨ fresh(x, x)).

A key result, reformulated from [25], is that conditions trees and FOL for-
mulas are expressively equivalent. This generalises Proposition 2 to condition
trees.

Theorem 1 (condition tree equivalence).

1. For every FOL formula φ, there is an equivalent condition tree Cφ;
2. For every condition tree C, there is an equivalent FOL formula φC .

3.4 Proof Trees

For the extension to set-based operators in the next section, it is useful to present
an alternative characterisation of the satisfaction of condition trees defined in
(8). Given a morphism g : B → G and a condition morphism c : B → C in a
condition tree C, a set of morphisms Γ ⊆ (C → G) is said to cover c if Qc = ∃
and |Γ ∩ [[ c ]](g)| > 0, or Qc = ∀ and [[ c ]](g) ⊆ Γ .

A proof of a condition tree C on a morphism g : rt(C) → G is itself a
tree-shaped diagram P , with a mapping π to C that preserves all graphs and
morphisms of P , and for every graph P a morphism γP : P → G, such that
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Fig. 4. Proof for g � C in Fig. 3. G is the Geranium-node in C1 and F the Flower-
node in C2

(i) γrt(P ) = g
(ii) γcod(p) ◦ p = γdom(p) for all edges p in P

(iii) If Oπ(P ) =
∨

for P in P , then outP (P ) covers some c ∈ outC(π(P ));
(iv) If Oπ(P ) =

∧
for P in P , then outP (P ) covers all c ∈ outC(π(P )).

P is called a minimal proof if it is no longer a proof when a single branch is
removed. In practice, we always use minimal proofs.

Example 4. Figure 4 shows a proof P of the satisfaction g � C in Example 3.
The morphisms γi for the nodes Pi of P are constructed step by step, starting
with the empty morphism (γ0 = g) and adding images along the way. Note that
this is not the only proof of C on g: from P1, another mapping from F exists
to the other flower n3 of Geranium-node n0, whereas from P2, the fact that
Geranium-node n1 is fresh means that it is also possible to cover c2 rather
than c3.

The following proposition states that a condition tree is satisfied by a morphism
g if and only if there exists a proof of this kind. In other words, proofs are
witnesses of the satisfaction of a condition tree.

Proposition 3. Let C be a condition tree and g a morphism with dom(g) =
rt(C); then g � C if and only if there exists a proof P for C on g.

4 Set-Based Operators

All of the theory in Sect. 3 can be extended without any problem whatsoever to
attributed graphs, with the understanding that condition graphs C are always
attributed over TΣ(VC) for some fixed VC ⊆ V and host graphs are attributed
over I, that V ⊆ X (all data variables are logical variables) and that ξ is the
identity over V (hence every algebra variable stands for itself). To re-establish the
connection to FOL (Theorem 1), all that is required is to extend basic predicates
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Fig. 5. Flowering geraniums, subject to the price computation sum(mul(2, x) | x, f0 :
has(g0, f0) ∧ petals(f0, x))

to range over terms rather than just variables, i.e., so that they are of the form
a(t1, t2), and to extend the semantics accordingly to

I, α � a(t1, t2) if (hα(t1), a, hα(t2)) ∈ EI

where hα : T(VI) → I is uniquely determined by the assignment α.
This sets the stage for the introduction of set-based operators. Essentially,

these arise from commutative and associative binary operators in Σ; essentially,
they are operators that can be applied to arbitrary finite (in some case only non-
empty) multisets of operands without regard for their ordering. Examples are:

– card, which just returns the number of operands;
– sum and mul, which compute the product, respectively sum;
– max and min, which compute the maximum, respectively minimum.

We use ΣO, ranged over by O, to denote the collection of set-based operators.
Clearly, each of the O has a corresponding operation FO : 2I → I. The core idea
of this paper is that the operands can be computed over sets of graphs that
are themselves characterised through universal quantification. This gives rise to
terms of the form O(t | X : φ), which computes t for all assignments to the
(hitherto free) variables in X that cause φ to be satisfied.

Example 5. Let t = sum(mul(2, x) | x, f0 : has(g0, f0) ∧ petals(f0, x)) be a term,
to be computed over the graph in Fig. 5. Note that g0 is a free variable in t, which
should be assigned one of the Geranium-nodes in the graph before the term
can be evaluated. If α : g0 �→ n0, then has(g0, f0) ∧ petals(f0, x) can be satisfied
by assigning n3 to f0 and 5 to x, or by assigning n4 to f0 and 2 to x; hence t
evaluates to 2 ∗ 5 + 2 ∗ 2 = 14. Alternatively, if α : g0 �→ n1 then t evaluates to
8, and if g0 �→ n2 then t becomes 0.

To formalise this, we extend and combine the term grammar (2) and the FOL
grammar (3):

t ::= x | o(t1, . . . , tν(o)) | O(t | X : φ)
φ ::= a(t1, t2) | | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ | ∀x : φ | ∃x : φ. (10)
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The function fv is extended with fv(O(t | X : φ)) = fv(t) \ X . We use S to
denote the set of terms according to this grammar, and S(V ) for those terms
that take their free variables from V ; and we call the resulting logic set-based
operator logic (SBOL).

Note that (10) has a recursive dependency between the rules for t and φ;
hence, to interpret SBOL, we need to simultaneously extend the notion of homo-
morphism as well as the semantics of FOL. Clearly, to evaluate a set-based
operator application, we need to have an interpretation available; hence we use
“extended homomorphisms” hI,α to map S to I, where I is an interpretation and
α an assignment:

hI,α : O(t | X : φ) �→ FO|hI,α[β](t)β : X → I, I, α[β] � φ.

Here, β may assign any of the elements of the interpretation I to the variables
in X. This should be compared to the semantics of universal quantification as
in ∀X : φ, where the assignment is likewise extended to all variables in X before
φ is evaluated. The SBOL semantic rule for predicates is then straightforward:

I, α � a(t1, t2) if (hI,α(t1), a, hI,α(t2)) ∈ EI .

O-terms are encoded in condition trees by treating them as data variables with
additional constraints, namely that the value they are assigned equals the out-
come of the corresponding set-based operation. The tricky part is that the sub-
term t in an O-term O(t | X : φ) must be evaluated in the same context as
φ, which corresponds to a child of the condition tree node in which the O-term
itself appears. This is illustrated by the following example.

Example 6. Consider the following predicate, based on the term t from
Example 5:

φ = price(g0, sum(mul(2, x) | x, f0 : has(g0, f0) ∧ petals(f0, x))).

This formula is satisfied by a graph G if the node assigned to g0 has a price-
labelled edge to the value of the sum-term. However, the subterm mul(2, x) used
in computing the sum must be evaluated in a child of the condition graph encod-
ing φ itself, with a corresponding universal quantification of the variables x and
f0. This dependency is encoded by the additional, sum-labelled dotted line in
the condition tree of Fig. 6.

Definition 6 (extended condition tree). An extended condition tree X is
a condition tree C with, for every ∧-labelled graph C in C, a partial mapping
τC : VC → (ΣO × T × Morph) mapping some of the variables in VC to triples
〈O, t, c〉, where c ∈ outC(C) is ∀-labelled and t ∈ Ncod(c).

Thus, τC identifies which data nodes in C encode terms of the form O(t |X : φ),
indicating what is the operator O, what is the term t and which child in the
condition tree corresponds to the subformula φ. For instance, in Fig. 6, τB maps
node p ∈ NB to 〈sum,mul(2, x), c〉.



204 A. Rensink

Fig. 6. Extended condition tree for price(g0, sum(mul(2, x) | x, f0 : has(g0, f0) ∧ petals
(f0, x)))

The satisfaction of an extended condition tree X by a morphism g is deter-
mined by a minimal proof P of the condition tree C underlying X which should
satisfy conditions (i)–(iv) in Sect. 3.4 and in addition

(v) For all nodes P in P and x ∈ NP such that τπ(P )(x) = 〈O, t, c〉, if Γ ⊆
outP (P ) covers c then γP (x) = FO|γcod(p)(t)p ∈ Γ .

In other words, to evaluate a set-based operator node x in a given proof tree node
P , where x is labelled by τπ(P ) as 〈O, t, c〉, we collect the outgoing morphisms
of P that cover (i.e., prove) the ∀-quantified condition morphism c, and for all
of these we look up the value of t in the concrete host graph. The concrete
operation FO is applied to the resulting (multi)set. Thus, x effectively encodes
the term O(t | X : φX[cod(c)]), where X = ξ(Ncod(c) \ NP ) is the set of variables
fresh in cod(c).

Example 7. Figure 7 shows a proof tree for the extended condition tree of Fig. 6.
The two children of the root, P1 and P2, assign n3, resp. n4 to f0, and accordingly,
5 resp. 2 to x; the term mul(2, x) hence evaluates to 10, resp. 4. Now condition
(v) above kicks in, emposing the constraint

γ0(p) = F sum{γ1(mul(2, x)), γ2(mul(2, x))} = F sum{10, 4} = 14.

It is interesting to note that where proof trees are ordinarily built from parents
to children, condition (v) has a dependency in the other direction: the value of
a set-based operation can only be computed after a covering set of children has
been established.

This is the core ingredient in the following main theorem of this paper,
extending Theorem 1, which we present here without proof.

Theorem 2 (extended condition tree equivalence).

1. For every SBOL formula φ, there is an equivalent extended condition tree Xφ;
2. For every extended condition tree X, there is an equivalent SBOL formula

φX .
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Fig. 7. Proof for the extended condition tree of Fig. 6

Both directions can be proved by induction, on (respectively) the structure of
SBOL formulas and the depth of extended condition trees. The interesting case
for Clause 1 is, obviously, how to deal with terms of the form O(t | X : φ): this
requires the introduction of a ∀-labelled child which a τ -mapping. Vice versa,
for Clause 2, every τ -mapping gives rise to an O-term.

5 The Geranium Experiment

The original motivation of this paper was not to develope a new theoretical
concept but to extend the existing tool groove [11] with a feature allowing the
use of set-based operators. We will now illustrate the capabilities of the tool.
It should be noted that, because the implementation preceded the theoretical
foundation exposed in this paper, notations in the tool are not identical to the
ones in the previous sections.

5.1 Two-Step Computation

Figure 8 shows two rules in groove that specify, successively, the simultaneous
computation of the price of all geraniums in the world, and the computation
of the average price of geraniums with at least one flower. The applicability
condition of these rules is given by condition trees with set-based operators.

The figure shows two nested rules in groove syntax, the complete explana-
tion of which is out of scope here. An important aspect is that the condition tree
is flattened in that all graphs are combined; the structure of the tree is recovered
through quantifier nodes.

– The root of the condition tree is always the empty graph—i.e., condition trees
are always closed;

– The root has only a single child, called the base, which is existentially quan-
tified and consists of all nodes without @-connector to any quantifier node,
plus all edges between them;
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Fig. 8. Two-step computation of average geranium prices using multi-rules. (Color
figure online)

– Quantifier nodes point to their parents in the condition tree through in-
connectors; quantifier nodes without outgoing in-connectors are children of
the base;

– Except for the base, every level of the condition tree consists of the nodes
linked by @-connectors to the corresponding quantifier node or one of its
ancestors, plus all edges between them;

– As an additional feature, not formalised in Definition 5, one of the quantifier
nodes in Fig. 8b is labelled ∀>0 rather than ∀. This indicates that, in a proof
tree, a covering of this level should contain at least one element (corresponding
to the fact that, in (1), we only want the average price of flower-bearing
geraniums).

The green nodes and edges in Fig. 8 (the Price-node in Fig. 8a and the Global-
node in Fig. 8b) are created when the rule is applied; if, as in the case of Fig. 8a,
there is also a @-connector from such a creator node to a quantifier, that means
an instance is that node is created for every match of the corresponding condition
tree level.

The computation of the average price consists of applying these two rules
in succession. Figure 9 shows an example computation, starting with the host
graph in Fig. 9a; the application of the rule in Fig. 8a results in Fig. 9b, after
which the rule in Fig. 8b results in Fig. 9c.

5.2 One-Step Computation

The above solution still does not actually express the whole expression (1) in a
single go: instead, the function price is first computed, then used. A single rule
that encodes the entire condition is given in Fig. 10.
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Fig. 9. Example average price computation

Fig. 10. One-step computation of average geranium prices

This rule uses more primitive syntax for expressions, which requires some
further explanation.2 Elliptical nodes are data nodes, which can be either data
values or variables. Diamond-shaped ones correspond to operations: their out-
going πi-labelled edges collect a list of arguments, and the remaining outgoing
edge applies an operator to that list, depositing the result in its target node.
Examples of such operators are: mul, which stands for multiplication (in this
case, the multiplication of 2 to the number of petals of a Flower), 2 instances of
sum, which is the set-based summation, and div, which divides the summed-up
geranium prices by the number of geraniums involved—the latter being made
available through an outgoing count-edge of the universally quantified level.

2 The reason for reverting to more primitive syntax is simply that the groove’s
expression parser cannot yet cope with the nested set-based operators used in this
rule.
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In terms of Fig. 9, the rule in Fig. 10 can be applied to the start graph Fig. 9a,
directly leading to a graph that corresponds to Fig. 9c without the Price-labelled
nodes.

5.3 Iterative Computation

In the absence of set operators, one would have to encode the computation of
the individual geranium prices as well as their average price using a sequence of
simple rules that iteratively add up the numbers of petals of each geranium to get
the correct value of price, and the prices and count of the flowering geraniums to
compute the average. Besides requiring more rules as well as a way to schedule
them, this also introduces bookkeeping into the graph to keep track of which
flowers or geraniums were already counted. We do not show the solution here,
as this would entail explaining much more about the groove tool; however, it
is packaged together with the others and available online.3

5.4 Experimental Results

Table 1 reports the performance of the three implemented solutions: one-step
(Sect. 5.2), two-step (Sect. 5.1) and iterative (Sect. 5.3). The computation has
been applied on host graphs ranging in size from 60 nodes (essentially 10 disjoint
copies of the start graph in Fig. 9a) to 600 nodes (100 disjoint copies of that same
graph), by running the relevant rules 1000 times and taking the average time for a
single computation. groove is written in Java; to ged rid of some of the known
issues in measuring the performance of Java programs, we started all experi-
ments with a “warm-up run” to allow the Just-In-Time compilation to kick in.

Table 1. Performance of the geranium experiment

Graph size
(#nodes)

One-step
(ms)

Two-step
(ms)

Iterative
(ms)

60 0.59 0.72 5

120 0.99 1.29 17

180 1.32 1.57 37

240 1.44 2.40 67

300 1.48 2.90 108

360 1.71 3.18 140

420 1.96 3.52 190

480 1.90 3.99 249

540 2.11 4.64 316

600 2.39 5.15 395

3 See groove.cs.utwente.nl/downloads/grammars/.

http://groove.cs.utwente.nl/downloads/grammars/
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Fig. 11. Relative performance and scaling of the three implemented solutions

Even so, the precise run-time figures deviate within a margin of about 10% when
repeating the same experiment, without, however, affecting the qualitative out-
come and conclusions in any meaningful way.

The experiment has been conducted on a laptop with an Intel i5-6300U CPU
running at 2.40 GHz, using Java 8 with sufficient memory to avoid major garbage
collections. The groove rule system used is available online and can be run in
the newest version of the tool groove.4

The results are shown graphically in Fig. 11. The left hand side compares all
three approaches on a logarithmic scale, the second is limited to the one-step
and two-step solutions that use the set operators and uses a linear time scale.

5.5 Evaluation

It can be seen from the data provided that not only are the one-step and two-step,
set operator-based solutions several orders of magnitude faster than the iterative
solution, they also scale much better: on the sample size of our experiment, the
trend seems linear for the set operator-based solutions whereas the degradation
in performance is clearly worse for the iterative solution.

A second observation is that the one-step solution performs better than the
two-step solution, even at small problem sizes; the difference becomes more pro-
nounced at larger sizes, seeing that the slope of the approximately linear trend
is shallower for the former.

Both of these observations can be explained by a superficial analysis of the
run-time effort involved. There are two effects in play when the graph size grows:
matching becomes harder and transformation sequences become longer.

– For the set operator-based solutions: the number of matches remains the same
(all rules have exactly 1 match) but the size of that match—which is noth-
ing else than a proof tree—grows linearly. The length of the transformation
sequence is not affected: it is always 1 for the one-step solution and 2 for
the two-step solution. All in all, it makes sense that the running time of the
computation increases linearly with the size of the host graph.

4 See sf.net/projects/groove.

http://sf.net/projects/groove
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– For the iterative solution: here the numer of matches grows linearly with the
size of the host graph, but the size of each match is constant. Since (for the
purpose of this experiment) the exploration is set to linear (meaning that
there is no backtracking in the exploration of the rule system), only 1 of the
n matches is selected each time; however, the total number of steps grows
linearly in the size of the graph. Concretely, in our solution, computing the
solution for the largest graph (size 600) takes 703 steps. All in all, based on
these observations, one may expect the running time to increase (at least)
quadratically with the size of the host graph.

Besides a difference in performance, there is also a clear difference in conciseness
of our three solutions: the single rule of Fig. 10 is (somewhat) smaller than the
two rules of Fig. 8, whereas our iterative solution consists of 5 (smaller) rules
plus a control program that schedules them. Moreover, all solutions except the
one-step need to add elements for the graph for bookkeeping purposes: in the
case of the two-step solution, this consists of the Price-nodes created by Fig. 8a
and used by Fig. 8b, whereas the iterative solution does not only use such Price-
nodes but also counted-markers for those flowers and geraniums that have already
been taken into account.

Finally, we claim that there is also a difference in understandability. Though
the primitive syntax of Fig. 10 is not ideal, this is a matter of supporting further
syntactic sugar. The main difficulty in understanding the set-operator based
solutions lies in the concept of condition trees, which can admittedly be tricky
in practice, but once mastered is (to our opinion) quite usable. In contrast, the
iterative solution requires an understanding of the way the 5 smaller rules work
together, which is far from straightforward.

6 Conclusion

To summarise: the contribution reported in this paper consists of

– The extension of nested graph conditions to set-based operators such as sum,
product and cardinality, increasing their expressiveness beyond first-order
logic;

– The extension of first-order logic to set-based operator logic SBOL, which we
claim to be expressively equivalent to the extended graph conditions;

– The implementation of set-based operators in groove, leading to a clear
gain in performance, conciseness and understandability in rule systems where
set-based operators play a major role, as illustrated by a single case study.

6.1 Related Work

Within graph transformation, patterns and techniques to specify multi-rules have
been studied for some time, leading to concepts such as star operators [19],
subgraph operators [3], collection operators [13], cloning rules [15] and set-valued
transformations [10]. More recently, pattern rewriting [17] has been developed
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and applied in the context of chemical reactions [1]. We believe that all these
concepts can be seen as special forms of amalgamation as proposed first in [26]
and generalised later in [12], as can our own nested rules from [24,25]. However,
the treatment of set-based operators presented in this paper, though inspired by
the mechanisms of amalgamation, goes beyond it in expressiveness.

On the tool front, many of the graph transformation tools that are currently
being maintained support some form of multi-rules. Examples are fujaba [21]
which features set nodes, and henshin [2] which knows the concept of an amal-
gamation unit. Again, we believe that these are limited to (essentially) the first-
order level and cannot directly express set-based operators.

It should also be recognised that there are alternative ways to achieve the
effect of multi-rules. For instance, viatra2 [4] allows the specification of recur-
sive patterns through the control language, and fujaba can specify some degree
of parallel rule application through storyboards.

6.2 Future Work

In the theoretical exposition in this paper, we have kept things simple wherever
we could. In particular, we have restricted our algebra to integers only, and
our condition morphisms to injective ones. On the first count, we foresee no
difficulty to extend to other datatypes, using multi-sorted algebras to ensure
well-typedness. On the second count, we have already shown in [23] that allowing
condition morphisms to be non-injective corresponds to introducing equality
as a basic predicate in the logic; we have no reason to believe that the same
correspondence fails to hold in the extended case of this paper.

On the logic side, it would be interesting to know whether SBOL as intro-
duced in (10) actually corresponds to a known fragment of logic. Clearly it is
well within monadic second-order logic, since all that can be done with sets in
SBOL is applying set-based operators to them; this is far less than the ability
to use sets as first-class values. As one reviewer suggested, the fact that the
effect of set-based operators can be mimicked by an iterative solution justifies
a hypothesis that the introduction of fixpoints of some kind into FOL may be
sufficient to cover SBOL—although we feel that this will quite likely be more
powerful, maybe even quite a bit so.

On the implementation side, the support of set-based operators in groove
can certainly be further improved, especially by providing further syntactic sugar
for nested set-based operators as used in Fig. 10 (see Footnote 2). It should be
noted that groove does support other datatypes besides integers, and also
supports non-injectivity in condition morphisms.

Acknowledgement. My scientific career got underway under the inspiring supervi-
sion of Ed Brinksma, who instilled and shared a fascination with the maths behind it
all, without losing sight of intuition and pragmatics. Even if I do remember throwing a
frustrated pen at him at one occasion, I am glad to have had Ed as mentor and friend.



212 A. Rensink

References

1. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction
patterns using rule composition in graph grammars. CoRR abs/1208.3153 (2012).
http://arxiv.org/abs/1208.3153

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2 9

3. Balasubramanian, D., Narayanan, A., Neema, S., Shi, F., Thibodeaux, R., Karsai,
G.: A subgraph operator for graph transformation languages. In: Ehrig and Giese
[9]. http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/72
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