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ABSTRACT
Program analyses are an important tool to check if a system ful�lls

its speci�cation. A typical implementation strategy for program

analyses is to use an imperative, general-purpose language like

Java, and access the program to be analyzed through libraries that

o�er an API for reading, writing and manipulating intermediate

code, such as BCEL or ASM for Java bytecode. We claim that this

hampers reuse and interoperability.

In this paper, we propose an Ecore-metamodel for covering Java

bytecode completely, which can act as a common basis for program

analyses. Code analyses as well as instrumentations can then be

de�ned as model transformations in a declarative language. As a

consequence, the implementation of program analysis becomes

more concise, more readable and more modular. We demonstrate

the e�ectiveness of this approach by two case studies: pro�ling of

timing performance and model checking of reachability require-

ments. We also provide tools to generate instances of our bytecode

metamodel from Java code in the class �le format and vice versa.

CCS CONCEPTS
• Software and its engineering → Model-driven software en-
gineering; Software functional properties;Domain speci�c languages;
Extra-functional properties;
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1 INTRODUCTION
A typical implementation strategy for program analyses is to use

an imperative, general-purpose language like Java, and access the

program to be analyzed through libraries that o�er an API for man-

aging intermediate code, such as BCEL or ASM for Java bytecode

[3, 7, 8, 12, 20]. Considering that many of these analyses involve
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the same concepts and operate on the same intermediate represen-

tation, reusing common steps or chaining them together would

save time and e�ort, and improve interoperability and maintenance.

Modern general-purpose languages o�er language-level modularity

mechanisms, such as libraries and inheritance, but we consider this

to be too low-level to e�ectively support reuse and extensibility of

program analysis components; instead, we promote model-based

de�nition of program analyses as a more e�ective mechanism [4].

The contribution of this paper, therefore, is a complete Ecore-

metamodel for Java bytecode, which can be used as a common basis

for arbitrary program analyses. Instances of our metamodel can

be created from compiled Java code and vice versa. Code analy-

ses can now be de�ned as model transformations, in one of the

well-researched domain-speci�c languages available for this pur-

pose. Furthermore, analysis results can be represented directly as

extensions of the bytecode model of the analyzed program, mak-

ing the results easily accessible to subsequent manipulation and

as input to other tools. We claim that, as a consequence, the im-

plementation of program analyses becomes more concise, better

readable and more modular [19]. We have implemented an Eclipse

plug-in, called JBCPP [13] to take care of the bytecode-to-model

and model-to-bytecode transformations.

We demonstrate the e�ectiveness of this approach by two ex-

ample cases that are implemented as model transformations: (a)

an analysis of the timing behavior and (b) generation of timed-

automata models for model checking of Java programs.

2 JAVA BYTECODE METAMODEL
We have de�ned the Java bytecode metamodel using the Ecore

format provided by the Eclipse Modeling Framework (EMF) [11].

The model transformations in the example cases have been imple-

mented using the Epsilon Transformation Language (ETL), which

is one of the domain-speci�c languages for model management

tasks provided by the Epsilon framework [17]. Transformations

are implemented in modules consisting of separate rewrite rules

(i.e., rules that de�ne how to create a partial target model based

on parts of the source model). These modules and the contained

rules can be re-used by importing or extending. These features of

ETL support reusability and extensibility. Both EMF and the Ep-

silon framework have large developer communities working with

model-driven engineering techniques [6, 18].

The metamodel mainly follows the organization of Java class �les

as de�ned in the Java Virtual Machine speci�cation [16]. In general,
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each kind of entity from the class �le format (like method declara-

tions, attributes or instructions) is represented as one Ecore class in

the metamodel. Lexical nesting (e.g., a method is nested inside its

declaring class) is represented as a containment relationship in the

metamodel (in terms of the previous example: the model object of

a method is contained in the model object of the class that declares

it). All containment relationships are navigable bidirectionally.

The most relevant elements of the metamodel are shown in

textual form in Listing 1 and described below. Entities not relevant

for our case studies (e.g., �elds, local variables, etc.) are omitted.

1 package jbcmm : jbcmm = 'http://nl.utwente.fmt/jbcmm' {
2 class Project {
3 property classes#parent : Clazz[+] { ordered composes };
4 property mainClass : Clazz;
5 }
6 class AttributeOwner {
7 property attributes#parent: Attribute[?];
8 }
9 class Clazz extends AttributeOwner {
10 attribute majorVersion : ecore::EInt;
11 property modifiers : Modifier[*] { ordered composes };
12 property superclass : Clazz;
13 property subinterfaces : Clazz[*] { ordered };
14 property subclasses : Clazz[*] { ordered };
15 attribute name : String;
16 property parent#classes : Project[?];
17 property methods#parent : Method[*] { ordered composes };
18 }
19 class Method extends AttributeOwner {
20 property parent#methods : Clazz[?];
21 property modifiers : Modifier[*] { ordered composes };
22 attribute name : String;
23 attribute descriptor : String;
24 property instructions#parent : Instruction[*] { ordered

composes };
25 property firstInstruction : Instruction[?];
26 }
27 class Field extends AttributeOwner { ... }
28 abstract class ControlFlowEdge {
29 property start#outEdges : Instruction;
30 property end#inEdges : Instruction;
31 }
32 class UnconditionalEdge extends ControlFlowEdge;
33 class ConditionalEdge extends ControlFlowEdge {
34 attribute condition : Boolean;
35 }
36 class ExceptionalEdge extends ControlFlowEdge {
37 property exceptionTableEntry : ExceptionTableEntry[1];
38 }
39 class SwitchCaseEdge extends ControlFlowEdge {
40 attribute condition : ecore::EInt;
41 }
42 class SwitchDefaultEdge extends ControlFlowEdge;
43 abstract class Instruction {
44 property parent#instructions : Method[?];
45 attribute linenumber : ecore::EInt[?];
46 attribute index : ecore::EInt;
47 attribute opcode : String;
48 property outEdges#start : ControlFlowEdge[*] { ordered

composes };
49 property inEdges#end : ControlFlowEdge[*] { ordered };
50 }
51 abstract class MethodInstruction extends Instruction {
52 attribute owner : String;
53 attribute name : String;
54 attribute desc : String;
55 }
56 class InvokevirtualInstruction extends MethodInstruction;
57 class InvokespecialInstruction extends MethodInstruction;
58 ... }

Listing 1: An excerpt of the bytecode metamodel

• Project is the root of the Ecore model containing all

classes and a dedicated reference to the designated main

class.

• Class (Clazz in Listing 1) represents a class or an interface.

It contains zero or more Methods.

• Method represents a method in a class, specifying the sig-

nature of the method. If the method has an implementation,

it has a reference to its �rst instruction. The method also

has an unordered set of all contained instructions

• Instruction is an abstract entity that serves as the top

entity in the bytecode instruction hierarchy, and contains

the common properties of all instruction types. An instruc-

tion contains zero or more Control Flow Edges and a

reference to the instruction following it in the bytecode

(nextInCodeOrder). This reference is currently necessary

for technical reasons; in the future, we will remove this

necessity.

The subclasses of Instruction form a hierarchy or-

ganized according to shared semantics and structure of

instructions. An example by means of method call instruc-

tions is shown in Listing 1 (lines between 51 and 57). In

this example, the abstract MethodInstruction entity cap-

tures the common properties of all method call instructions:

the object type on which the method is invoked (owner),

and the signature of the called method (name and desc). It

is extended by the instantiable method call instructions,

represented by the Invoke...Instruction entities.

• The control �ow information, which is implicitly available

in the class �le through the ordering of instructions or

targets of jump instructions, is explicitly stored as a prop-

erty of an instruction and is presented in our metamodel

via Control Flow Edges between instructions. For most

instruction types, there is exactly one outgoing edge (rep-

resented as an UnconditionalEdge), corresponding to the

successor instruction or to the single jump target for a

goto instruction. For branching or switch instructions, the

outgoing edges (ConditionalEdge) represent the targets

of the conditional jumps respectively a reference to the

instruction to be executed in the default case.

Instructions that are within the range of an exception

handler, additionally have an outgoing ExceptionalEdge.

This has an ExceptionTableEntry property (not shown

in the listing), which holds information about the type of

exceptions handled, the handler’s scope as well as the �rst

instruction of the handler.

2.1 Bytecode-to-Model and Model-to-Bytecode
Transformation

To conveniently create instances of our Java bytecode metamodel

from existing code, we have developed an Eclipse plug-in, called

Java Bytecode++ (JBCPP) plug-in [13]. To use this plug-in, a class

within the build path of an Eclipse Java project can be chosen, e.g.,

in the Package Explorer View. When the JBC++ button in the tool

bar is pressed, a model is created for the project. For this purpose,

it is expected that the selected class de�nes a main method, which

acts as the entry point of the project.
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For the set of all classes that comprise the project under analysis,

we create instances of our Java bytecode metamodel entities. This

number is typically excessively large because all classes in the

standard class library or third-party libraries are included. However,

typically, we want to focus analyses on the code developed in the

project itself, instead of re-used code. We therefore limit the classes

included in the model by excluding unreachable classes and classes

de�ned in libraries. This is, nevertheless, no restriction imposed by

our implementation but merely an optimization attempt.

Although there are several frameworks for parsing textual rep-

resentations of metamodels and generating model instances in this

way (as well as for generating textual representations from meta-

model instances), the existing frameworks are not applicable for

handling bytecode directly. One reason is that the tokens in the

bytecode are sequences of bytes rather than characters. But what is

more, for e�cient access to bytecode in memory, some instructions

have di�erent forms depending on their position in the bytecode.

Therefore, bytecode does not belong to a grammar class supported

by existing frameworks; and even if it did, the grammar de�nition

would consist of non-printable characters for terminals. Because of

these reasons, we use the ASM bytecode manipulation toolkit [5]

to parse class �les and instantiate model elements according to the

de�nitions found in there. In the end, the created model is stored

in the standard XMI format. This can subsequently be processed

by standard EMF-based tooling.

The generation of class �les from our models works analogously.

The model is traversed in the order in which elements appear in

the Java bytecode format and the ASM toolkit is used to create

de�nitions in this format. All generated class �les are stored in a

speci�c subfolder (organized according to the package structure) of

the Eclipse plug-in, which can be added to the classpath to execute

the bytecode generated (possibly after transformation).

To test our bytecode-to-model and the model-to-bytecode trans-

formation, we chain both transformations: First we generate a

model from a bytecode �le and then we generate a bytecode �le

from this model. If both �les are identical, we can be con�dent that

our implementation is correct, unless we have made mistakes in

both transformations that compensate each other by chance. In our

case, we do not get identical �les, but semantically equivalent ones.

The reason is that for some entities the order is not semantically

important, and for such cases, we do not preserve the order in the

bytecode. For example, local variables have an index in the bytecode

(rather than a name), and if indexes are re-numbered consistently

(which happens in our transformations) the result is equivalent but

not identical. Therefore, in our tests, we have to manually compare

the original and the result; in all our tests, we did not �nd any

discrepancy.

We have not yet spent e�ort on optimizing our implementation,

but we nevertheless have already performed some benchmarks, see

Table 1. The table presents for three real-world programs: the num-

ber of classes in their implementation, the number of implemented

methods, the number of elements in the extracted model and the

time (in seconds) required for extracting the model.

The results show that bytecode model extraction can take some

time, for example almost 25 minutes for extracting the model of

the Groove program, which is also the largest (in terms of number

Program Classes Methods Model Size Time

LiveGraph 131 350 24,049 18s

Groove 1,482 9,232 418,269 1,480s

Weka 1,041 8,322 756,063 764s

Table 1: Preliminary benchmarking results of Java bytecode
model extraction.

Figure 1: Metamodel extension to represent timing informa-
tion

of classes or methods) program used in our benchmark. While 25

minutes is a long time, it should be noted that the programs are

large with up to almost 1500 classes, which are all represented in

the extracted models. Therefore, these benchmarks demonstrate the

scalability of our approach. Besides, we expect that optimization

opportunities exist.

3 EXAMPLES
In this section, we demonstrate two example cases to show the

e�ectiveness of working with our metamodel. The �rst example

case, described in subsection 3.1, pro�les the timing performance of

Java programs in an iterative manner via instrumentation and rep-

resents the timing values as a model that conforms to an extension

to our bytecode metamodel. The second example case, described in

subsection 3.2, generates timed-automata models from instances of

our bytecode metamodel for model checking.

3.1 Example 1: Pro�ling Timing Performance
Pro�ling via automatic instrumentation is a frequently used tech-

nique [9, 14, 15]. In this example case, we present an example of

automatic instrumentation of the bytecode for pro�ling timing per-

formance using our bytecode metamodel. Having a bytecode model

at hand o�ers the advantages of writing the instrumentation code as

a model transformation using a domain-speci�c language designed

for this task, and utilizing the systematic extension mechanism of

the metamodeling technology to represent the generated pro�ling

information at the structure of the bytecode model, such that it can

easily be used in other analyses such as average timing behavior.

Figure 1 shows how we have used the extension mechanism

of Ecore to represent the timing information. JBC Metamodel
Extension is an extension to our bytecode metamodel, which keeps

the elements related to timing information and their reference to

the Instruction elements in the bytecode metamodel. Assuming
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Figure 2: Bytecode instrumentation via model transforma-
tion

that a bytecode model (which is an instance of the bytecode meta-

model) is available, the timing information for this model can be

attached (without modifying the model itself) by creating an exten-

sion model (which is an instance of the metamodel extension) and

setting necessary references to the original bytecode model.

The implementation for this example can be divided into 5 steps.

The �rst three steps, shown in Figure 2, correspond to the instru-

mentation of the class �le:

In Step 1, the original bytecode model, which is an instance of

the metamodel, is automatically derived from a project’s class �les

using the JBCPP plug-in.

In Step 2, a new bytecode model with instrumentation is gener-

ated via the model transformation. The transformation inserts the

static calls

startProfiling(instructionId: String)
stopProfiling(instructionId: String)

finishProfiling()

to a pro�ling library that we have implemented for this example.

The instrumentation considers the timing performance ofdiptio

method calls, whereby the passed instructionID is a textual refer-

ence to the Instruction object in the Java bytecode model which

was instrumented; this ID will later be used to relate the pro�le

data to the model.

First, the model transformation checks if any timing informa-

tion is available in the extension model. If no timing informa-

tion is available, only the main method of the project is instru-

mented. The transformation rule that conducts this task is given

in Listing 2. The @greedy tag forces this rule to be applied to all

method instruction subtypes. The rule starts with the rule name,

InstrumentMethodCallsInMain. The transform keyword de�nes

from which input elements to which output elements this rule

does the mapping. For this case, for each method instruction mi in

JBCModel, the static method call instructions startProfilingCall
and stopProfilingCall are created in InstrumentedJBCModel.

The guard keyword de�nes under which condition this rule will be

executed; i.e., that there is no timing information available in the

Figure 3: Attaching pro�ling information to original model

extension model and that mi is contained in the main method. The

body of the rule (omitted here for improving readability) sets up

instruction objects, corresponding to the described method calls,

and inserts them into the target model.

Second, if there already exists timing information in the form of

an extension model, only the implementations of the method calls

whose execution time are over a threshold (speci�ed as a parameter

of the transformation) are instrumented. The idea of re�ning the

instrumentation scope for pro�ling is inspired from the work in

[1].

In Step 3, the JBCPP plug-in creates the (instrumented) class �les

from the instrumented bytecode model.

1 @greedy
2 rule InstrumentMethodCallsInMain transform mi:JBCModel!

MethodInstruction to startProfilingCall:InstrumentedJBCModel
!InvokestaticInstruction, stopProfilingCall:
InstrumentedJBCModel!InvokestaticInstruction

3 {
4 guard: ExtensionModel!Timing.allInstances().size() = 0 and mi.

parent.name = "main" and mi.parent.descriptor = "([Ljava/
lang/String;)V"

5

6 ...
7 }

Listing 2: Example transformation rule

The remaining two steps, shown in Figure 3, correspond to the

run-time pro�ling and representing of the observed timing infor-

mation as an extension model:

In Step 4, the timing information is generated by executing the

instrumented classes. The generated timing information is also a

model conforming to a simple metamodel since using a model as

an input to a model transformation is much more practical than

generating a text-based �le and parsing it later.

In Step 5, the generated timing information is again expressed as

an extension model via model transformation. The transformation

actually updates the existing extension model: It keeps the existing

timing information unchanged and instantiates new timing infor-

mation entities and sets their references to related instructions in

the original bytecode model.
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3.2 Example 2: Model-Derivation Framework
for Model Checking

One of the analysis approaches for checking if a system ful�lls its

speci�cation is model checking. Model checkers exhaustively check

whether a model of a system meets required properties.

In our previous work, we have proposed a framework to de-

rive timed-automata models for model checking purposes from

instances of an earlier version of the bytecode metamodel [21]. The

framework transforms the bytecode models to extended models in

order to handle recursion and to enrich them with loop and timing

information. All these steps are implemented via model transfor-

mations. At the end of the process, the framework produces timed-

automata models compatible with the uppaal [2] model checker.

4 RELATEDWORK
There are not many attempts in the �eld of metamodeling of byte-

code. Eichberg et al. [10] provide an XML Schema-based metamodel

of bytecode supporting multiple instruction set architectures, such

as Java bytecode. They report the bene�ts of using an explicit meta-

model: ease of changing and extending a metamodel in case of new

requirements, and facilitating the development of generic analyses

with the help of a well-de�ned data structure. Whereas their ap-

proach focuses on supporting static analyses only, our approach is

capable of supporting dynamic analyses as well, including the possi-

bility to represent (dynamic) analysis results directly as extension of

the analyzed code’s model. Furthermore, with the EMF framework

and its Ecore facility to de�ne our metamodel, we use a technology

speci�cally designed for metamodeling and model transformation

purposes. Since we use a standard framework for metamodeling

purpose, we also bene�t from a large number of available domain-

speci�c languages, such as ETL, designed for model management

tasks to implement analyses.

5 CONCLUSION
In this paper, we have presented our Java bytecode metamodel

and the current state of our implementation of the JBCPP plug-

in to be used for the bytecode-to-model and model-to-bytecode

transformations. The metamodel allows code analyses to be written

as model transformations in a semi-declarative, domain-speci�c

language. In this way, the implementations of program analyses

become shorter, more readable and more modular in general.

We have demonstrated the e�ectiveness of our approach with

two examples. In addition to the mentioned bene�ts in the previous

paragraph, these examples have shown that the metamodeling

approach o�ers a systematic extension mechanism to represent the

information needed for analyses without modifying the metamodel.

As future work, we will re-implement several published static

and dynamic analyses in our approach and compare this to their

original implementations. We will do so by implementing building

blocks of these analyses as modular model transformations. We

expect to deliver a library of reusable implementations of tasks re-

quired by existing program analyses. Furthermore, we are planning

to update the framework we presented in [21] with the new version

of the metamodel and integrate the timing pro�ling example with

the framework.
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