
Parsing and Printing of and with Triples

Sebastiaan J.C. Joosten(B)

Computational Logic Group, UIBK Innsbruck, Innsbruck, Austria
Sebastiaan.Joosten@uibk.ac.at

Abstract. We introduce the tool Amperspiegel, which uses triple graphs
for parsing, printing and manipulating data. We show how to conve-
niently encode parsers, graph manipulation-rules, and printers using
several relations. As such, parsers, rules and printers are all encoded
as graphs themselves. This allows us to parse, manipulate and print
these parsers, rules and printers within the system. A parser for a con-
text free grammar is graph-encoded with only four relations. The graph
manipulation-rules turn out to be especially helpful when parsing. The
printers strongly correspond to the parsers, being described using only
five relations. The combination of parsers, rules and printers allows us
to extract Ampersand source code from ArchiMate XML documents.
Amperspiegel was originally developed to aid in the development of
Ampersand.

1 Introduction

We introduce a framework for language transformations, called Amperspiegel.
We see a language transformation as something that consists of three parts: a
parser, a series of semantic transformations, and a printer. To describe these
parts and their behaviour, we adopt the view that everything can be described
in relations.

Languages are described by encoding a Context Free Grammar in four rela-
tions. Transformations are described using a set of declarative rules in a subset
of relation algebra. The printing then occurs using the inverse of the parser.

Like the parser, also the transformation and the printer are expressed in rela-
tions. Consequently, the framework has some reflective capabilities. The name
Amperspiegel stems from the framework’s relation to Ampersand [4], while
emphasising that it has reflection.1 It is stand-alone software (http://github.
com/sjcjoosten/Amperspiegel), so it can be used in projects other than Amper-
sand as well. Code specific to this paper can be found at: http://cl-informatik.
uibk.ac.at/users/sjoosten/as/.

As an example, Sect. 7 creates a link between two tools: ArchiMate and
Ampersand. We show how to parse files that describe a software architecture
written in an ArchiMate XML file. The structure is transformed, and then

1 Adding to Amperspiegel’s reflection are the switches collect and distribute, which
are not described in this paper.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 159–176, 2017.
DOI: 10.1007/978-3-319-57418-9 10

http://github.com/sjcjoosten/Amperspiegel
http://github.com/sjcjoosten/Amperspiegel
http://cl-informatik.uibk.ac.at/users/sjoosten/as/
http://cl-informatik.uibk.ac.at/users/sjoosten/as/

160 S.J.C. Joosten

printed as a description of the same architecture as an Ampersand ADL file.
This is done using Amperspiegel.

The focus of this paper is on the concepts behind Amperspiegel, seen as a
stand-alone tool. Section 2 gives an overview of the tool and describes its use.
We define a parser, a rule engine, Amperspiegel’s embedding of a set of rules,
and a printer, in Sects. 3, 4, 5 and 6 respectively.

Related Work. Several tools combine parsing and printing with transformations,
including meta-programming languages such as Rascal [7] and Stratego [2], or
programming language workbenches such as Spoofax [6]. Amperspiegel offers
a fundamental approach to meta-programming, offering these features with a
minimal implementation. Excluding a file that configures the initial state of
Amperspiegel, it is under a thousand lines of Haskell code.

To achieve this, Amperspiegel borrows from several best practices. Using a
Context Free Grammar for parsing and for printing is done before by Mark van
den Brand [1]. Deriving new facts with rules, as Amperspiegel does, is similar
to the declarative programming language datalog± [3]. Its restriction to triples,
in a style like Amperspiegel, is described by Edward Robertson [9]. We have
not seen a Context Free Grammar described through relations, and this allows
to combine these concepts in a novel way. This makes building source-to-source
transformations surprisingly easy and modular.

2 Overview of Amperspiegel

To transform languages, Amperspiegel can parse input, apply rules, produce
output, and assemble these components in a single execution. This overview
shows how components are assembled. Amperspiegel interprets command-line
arguments as commands. They are executed from left to right.

The most important actions are ‘apply’, ‘parse’ and ‘print’. These actions
are performed on structures that correspond to a kind of labelled graph. We refer
to these structures as ‘graph’, and explain how they can be understood as a set
of homogeneous relations. This interpretation is important, as we expect the
Amperspiegel user to think of these structures as a description through several
relations.

Initially, there are pre-defined graphs in Amperspiegel. Some of these graphs
represent parsers. Using parse, a parser is used to parse an input file, creating
another graph. Graphs can be manipulated by rules using apply, again creating
a graph. A graph can be printed to stdout by print.

We illustrate Amperspiegel’s command line interface by showing how to exe-
cute:

ds1 := parse data file1

ds2 := parse rule file2

res := apply ds2 ds1

print data res

Parsing and Printing of and with Triples 161

This example uses built-in parsers and printers to read in some data (in
file1), apply some transformation to it (given by file2) and print the result
on stdout. It uses the same internal parser as a printer, called data to both read
the data and print the result. The transformation is parsed using an internal
parser called rule. For this code, Amperspiegel’s command-line interface is used
as follows:

amperspiegel -parse data file1 ds1 -parse rule file2 ds2 \

-apply ds2 ds1 res -print data res

Since Amperspiegel is used to translate a variation of one language into
another, a graph can be used in place of the default parser too:
Amperspiegel -parse cfg path-to/parser mdp -parse mdp my-data ds1
uses the parser path-to/parser, described in CFG syntax, to parse the file
my-data in the new syntax referred to as mdp.

Amperspiegel’s graph-based notion of data is similar to that used for the
semantic web. Another way to view such a graph is as a structure interpreting
a set of binary-relation symbols.

Definition 1 (Graph). A directed labeled graph G = (L, V, E) is given by a
finite set of labels L, a set of vertices V , and a set of edges E ⊆ L× V × V.

In this paper we simply say graph when we mean a directed labeled graph. This
notion of graph is useful when thinking about the implementation of Amper-
spiegel. From the perspective of an Amperspiegel user, however, it is more
useful to think of this structure as a set of homogeneous binary relations. To
help strengthen this way of thinking, we suggestively write (v, w) ∈G r for
(r, v, w) ∈ E. Indeed, when the label r occurs in an Amperspiegel script, it
is natural to interpret it as a relation symbol. We say that a graph is finite if
and only if its set of vertices is finite.

There is no way to access the structure of nodes in Amperspiegel, except
through the edges in which they occur. Thus, the set of vertices is implicitly
equal to those vertices that occur in an edge. In the following sections, we show
how a finite graph can describe a parser, a printer and a data-transformation
(set of rules).

3 Parsing

To specify parsers, we use Context Free Grammars. While a Context Free Gram-
mar (CFG) is typically used to define a set of strings called ‘language’, we focus
on how CFGs relate to graphs. This section relates CFGs to graphs in two ways:
First, a CFG can be used to interpret a string as a parse graph. This allows
the Amperspiegel user to read graphs from a file that has a certain file format.
Second, a CFG can itself be encoded as a graph. This allows the Amperspiegel
user to specify and use its own CFGs.

Definition 2 (Context Free Grammar). A CFG g = (P,Σ, C, S) is given
by a relation C ⊆ P × (P + Σ)∗ and a start symbol S ∈ P , where P denotes the

162 S.J.C. Joosten

finite set of non-terminals, and Σ denotes the set of terminals. A pair in C is
called a production rule.

We present a CFG by listing C. The set of terminals Σ is disjoint from P , and
S = ‘S’. See for instance Example 1. Strings in (P + Σ)∗ are given by separating
elements in P + Σ with spaces.

Example 1. S �→ 0 L S S �→ ε L �→ S 1 L L �→ ε
It follows from convention that P is the two-element set containing S and L,

and that Σ contains 0 and 1.

3.1 Obtaining a Graph by Parsing a String

A CFG (P,Σ, C, S) gives rise to a parser graph G in which P are the labels, and
Σ∗×P are the vertices. This graph is infinite, as it contains all possible parses. It
is independent of the start nonterminal S. For a given string s, the parse graph
is the subgraph of G of nodes and edges reachable from the node (s, S), which is
guaranteed to be finite. We give an example before the definitions. The empty
string is written as ε (Fig. 1).

Fig. 1. The parse graph of Example 2

Example 2. For the CFG of Example 1, the parse graph of 0 1 1 0 is given by:

((0 1 1 0, S), (0, S)), ((1 1 0, L), (0, S)), ((1, L), (ε, S)), ((0, S), (ε, S)) ∈G S

((0 1 1 0, S), (1 1 0, L)), ((1 1 0, L), (1, L)), ((1, L), (ε, L)), ((0, S), (ε, L)) ∈G L

In Example 2, each edge in the parse graph is of the form ((s1, p), (s2, p′)) ∈G

p′, indicating that s1 parses as p via a production (p, · · ·p′· · ·) ∈ C, where the
substring s2 parses as p′. A parser graph captures all possible parse graphs, plus
edges to terminal symbols that help in our definition of parser graph.

Definition 3 (Parser graph). Given CFG (P,Σ, C, S), the graph G = (P,Σ∗×
P,E) is the parser graph of (P,Σ, C, S), in which E is the least set of edges such
that for each (p, p0 · · · pn) ∈ C, and for every s = s0 · · · sn ∈ Σ∗:
⎛
⎝∀i ≤ n.

⎛
⎝

(∃x, p′. ((si, pi), x) ∈G p′)
∨ ((pi, ε) ∈ C ∧ si = ε)
∨ (pi ∈ Σ ∧ si = pi)

⎞
⎠

⎞
⎠ ⇒ (∀i ≤ n. ((s, p), (si, pi)) ∈G pi)

This formula states that if each of p0 · · · pn can be parsed as a corresponding
s0 · · · sn, then p can be parsed as p0 · · · pn and corresponding edges exist in G.

Parsing and Printing of and with Triples 163

Definition 4 (Parse graph). A parse-graph for the string s and CFG (P,Σ,
C, S) is the subgraph of the parser graph G that is reachable from (s, S) via edges
in P .

A parse graph of s is finite. It contains only vertices (s′, v) in which s′ is a
substring of s and v ∈ P . There are at most n(n+1)/2+1 substrings in a string
of length n, and P is finite. Therefore every parse graph is finite.

3.2 Describing a Context Free Grammar with a Graph

This section focuses on how CFGs have been implemented in Amperspiegel. We
encode a CFG as a graph, allowing a light-weight implementation. This also
allows us to express a CFG that can parse its own description and yield the
CFG parser itself.

The CFG (P,Σ, C, S) is encoded as a graph G = (L, V, E), by making C
explicit, and using a default element for S. The label choice ∈ L describes C.
Amperspiegel does not have sums or lists as built-in types, so we reconstruct the
type of vertices from the labels of edges. The structure of elements of (P + Σ)∗

is described using three labels: recogniser, continuation and nonTerminal.
Amperspiegel uses recogniser and continuation rather than, say, head and
tail. This choice is less likely to cause name clashes when combining graphs by
taking their union, as we will do in Sect. 7. We combine the edges labelled choice
with the ones that describe structure in a single graph, so V = P +Σ+(P + Σ)∗.
In the sense of Sect. 4, vertices in P + Σ act as constant symbols while vertices
in (P + Σ)∗ act as variable symbols.

Fig. 2. The CFG of Example 1 drawn as a graph

For Example 1, the corresponding CFG is given as a graph in Fig. 2. Nodes
that encode lists in (P + Σ)∗ are drawn in grey. The lists that make up these
nodes are written in Haskell notation to emphasise difference between S ∈ P and
[S] ∈ (P + Σ)∗.

164 S.J.C. Joosten

A CFG (P,Σ, C, S) corresponds to a graph G if:

(p, v) ∈G choice ⇔ (p, l(v)) ∈ C
�∃v′. (v′, v) ∈G nonTerminal

� ⇔ v ∈ P

l(v) =

�
v1 l(v2) if (v, v1) ∈G recogniser and (v, v2) ∈G continuation

ε otherwise

To ensure l is well-defined, the labels recogniser and continuation must
describe univalent relations in G (R is univalent iff (x, y), (x, z) ∈G R implies
y = z).

Example 3. The following CFG describes the language for CFGs. It omits pro-
duction rules for non-terminals P and Σ, as Amperspiegel has those production
rules built-in. These built-in production rules are the only way to get constant
symbols as vertices in the sense of Sect. 4. We write "�→" for the terminal in Σ,
to distinguish it from syntax.

S �→ ε S �→ S P "�→" choice

nonTerminal �→ P choice �→ continuation

continuation �→ ε continuation �→ recogniser continuation

recogniser �→ Σ recogniser �→ nonTerminal

The CFG in Example 3 describes the language of CFGs as used in this paper.
It defines a parser yielding parse-graphs with the labels choice, nonTerminal,
recogniser and continuation. So if G′ is the parse graph of some string and
the CFG in Example 3, then G′ can be interpreted as a CFG in Amperspiegel.

In such G′, some vertices are being interpreted as elements of Σ, and some
are labels in the parser-graph corresponding to the CFG of G′. These are the
vertices that are drawn in black in Fig. 2. To ensure G′ uses the vertices that
were intended, Amperspiegel allows us to write rules to determine equality on
vertices in G′. Rules are explained in the next section, but for completeness, we
mention the rules necessary with Example 3 for using the graph with the CFG
here. They use � for inclusion, and 1 for the identity relation:

P � 1 Σ � 1 nonTerminal � 1

4 Rules

To manipulate graphs in Amperspiegel, the programmer specifies rules. This is
done in relation algebra to obtain a declarative, point-free language with attrac-
tive algebraic properties. Rules are evaluated with a deduction engine compa-
rable to those for Datalog [3]. To this extent, Amperspiegel maintains a graph
containing what it knows, and then makes it more specific by what it can prove.
A typical use is to interpret a parse graph as initial knowledge, which is made
specific by edges that can be deduced using the rules. This section introduces
rules and shows how they are used.

Parsing and Printing of and with Triples 165

Rules are formed over expressions. Expressions are built from relation sym-
bols L, a reserved symbol 1 which stands for the identity relation, and tuples
(sets containing exactly one pair) written as 〈a, b〉 with a and b elements in a
set of constants K. We can also use the reserved symbol ⊥, which stands for
the empty relation. These are combined with the operations � , ⨾ , and
�. The operations stand for intersection, relational composition, and relational
converse, respectively. For a graph G = (L,K + N,E), in which the vertices are
constant symbols K or variable symbols N , the semantics of an expression X ,
written as [[X]]G ⊆ (K + N) × (K + N), is as in representable relation algebra.
We assume K and N to be disjoint:

[[l]]G = {(x, y) | (x, y) ∈G l} [[1]]G = {(v, v) | v ∈ (K + N)}
[[〈a, b〉]]G = {(a, b)} [[⊥]]G = {}

[[L � R]]G = [[L]]G ∩ [[R]]G [[L�]]G = {(y, x) | (x, y) ∈ [[L]]G}
[[L ⨾ R]]G = {(x, y) | ∃z. (x, z) ∈ [[L]]G ∧ (z, y) ∈ [[R]]G}

Definition 5 (Rule). If L and R are expressions over sets of constant symbols
K and labels L, then L � R is a rule. We say that a graph G satisfies a set of
rules R, in symbols: G � R, iff for all (L � R) ∈ R we have [[L]]G ⊆ [[R]]G. We
say that a set of rules R implies a rule r0, in symbols: R � r0, iff for all graphs
G we have (G � R) ⇒ (G � {r0}).

4.1 The Rule Engine by Example

We give a flavour of Amperspiegel’s deduction engine, by showing how one can
reason to construct a non-empty graph that satisfies a set of rules. Consider the
example:

Example 4. These rules state that the label l stands for a total and self-inverse
relation:

1 � l ⨾ l� (1)
1 � l ⨾ l (2)

l ⨾ l � 1 (3)

Rule 1 states that l is total, and Rules 2 and 3 say that it is self-inverse.

Fig. 3. Applying the rules of Example 4.

166 S.J.C. Joosten

We construct a non-empty graph G that has no constant symbols, satisfying
the rules of Example 4, to illustrate Amperspiegel’s rule engine. See Fig. 3. Take
G0 = ({l}, {v0}, {}) as initial non-empty graph. We identify a rule that does not
hold on G0, and a pair that shows why it does not. Rule 1 does not hold on G0

as there must be some v1 with (v0, v1) ∈G l. We therefore add the vertex v1 to
G0, plus an edge from v0 to v1 with label l, which gives rise to G1. On G1, rule 2
states that some v2 exists with (v0, v2) ∈G l and (v2, v0) ∈G l. Changing G1 to
fix this adds two more edges and another vertex, giving G2. Now rule 3 does not
hold for (v2, v1) ∈ [[l ⨾ l]]G2 . Therefore, we identify v1 and v2 giving us G3. This
is a graph for which all rules hold.

4.2 Rule Engine Semantics

This section explains how Amperspiegel’s rule engine is defined. We begin with
some notions and notations. We overload a function f : V1 → V2 to a function
over sets: f(V) = {f(v)|v ∈ V } for V ⊆ V1, edges: f(E) = {(l, f(v1), f(v2)) |
(l, v1, v2) ∈ E}, and graphs: f((L, V, E)) = (L, f(V), f(E)).

Our rule engine gradually changes a graph. We describe these changes in
a categorical manner, inspired by Wolfram Kahl [5]. Such a change can be
described by a homomorphism, which can be understood as a vertex map that
preserves constant symbols and edge labels. This definition is used to describe
all graph transformations.

Definition 6 (Graph homomorphism). Take the graphs with shared sets of
labels and constants G1 = (L,K + N1, E1) and G2 = (L,K + N2, E2). We say
that a vertex map f : K + N1 → K + N2 is a graph homomorphism iff ∀e ∈
E1. f(e) ∈ E2, and ∀k ∈ K. f(k) = k.

If there is a graph homomorphism f : G1 → G2, we say that G2 is more specific
than G1, or in symbols: G1 ≤ G2. Graph homomorphisms between graphs with
shared sets of labels and constants form a category in which graph homomor-
phisms are the morphisms. In the following, we assume fixed but arbitrary sets
L of labels and K of constant symbols.

We use pushouts to combine two graphs. Note that due to the requirement
that homomorphisms preserve constants, if K is non-empty, then the category of
graph homomorphism does not have all colimits and not even all pushouts, since
constants cannot be identified. For the pushouts that do exist, we introduce an
abbreviating notation.

Definition 7 (Pushout along interfaces). An interfaced graph is a pair
(G, s) where s is a sequence of vertices of G called interface. Given two inter-
faced graphs (G1, s1) and (G2, s2) with interfaces of the same length n, their
pushout along their interfaces, written (G1, s1)� (G2, s2) is the interfaced graph
(G3, g1(s1)) where G1

g1=⇒ G3
g2⇐= G2 is the pushout (if existing) of the span

G1
f1⇐= G0

f2=⇒ G2 over G0 = (L,K + {x1, . . . , xn}, {}), and f1 and f2 are graph
homomorphisms defined by fi(xj) = si(j).

Parsing and Printing of and with Triples 167

We aim to construct the least specific graph G such that G � R, called a
least consequence graph. We define this to show correctness of our algorithm.

Definition 8 (Consequence graph). Given a graph G0 and a set of rules R
over the same set of labels and set of constants. We say that G is a consequence
graph of G0 and R, if G � R and G0 ≤ G. Furthermore, G is a least consequence
graph if for each consequence graph G′ of G0 and R we have G ≤ G′.

To construct a consequence graph, Amperspiegel repeatedly takes a rule that
is not satisfied by a graph, and ‘patches’ this until there is nothing to repair. For
a rule L � R with a pair in [[L]]G0 that is not in [[R]]G0 , we do a step: A patch is
created with the shape of R, which is combined into G0 with a pushout.

Definition 9 (Patch). The patch of an expression X over sets of labels L and
constants K, in symbols (G, (v1, v2)) = Δ(X), is a graph over L and a pair of
vertices in that graph, inductively defined:

Δ(1) = ((L,K + {1}, {}), (1, 1))
Δ(R � S) = Δ(R) � Δ(S)
Δ(R ⨾ S) = (G′, (v1, v4))

where (G′,) = (GR, (v2)) � (GS , (v3))
and (GR, (v1, v2)) = Δ(R) and (GS , (v3, v4)) = Δ(S)

Δ
(
R

�)
= (G′, (v2, v1)) where (G′, (v1, v2)) = Δ(R)

Δ(〈a, b〉) = ((L,K, {}), (a, b))
Δ(l) = ((L,K + {v1, v2}, {(l, v1, v2)}), (v1, v2))

As with pushouts, Δ(X) may not be defined. Also, Δ(⊥) is intentionally left
undefined.

Another example for an expression with undefined patch is 1 � 〈a, b〉, if a �= b,
since the necessary pushout would have to identify the constant symbols a and
b.

We use patches to work towards a consequence graph. This is done stepwise
through R-steps, that are given by the set of rules.

Definition 10 (R-Step). Let G be a graph. Let (L � R) be a rule, and let p
be a pair of vertices in G such that:

p ∈ [[L]]G p �∈ [[R]]G

Then G
L�R−−−→
p

G′ is a step where G′ = Δ(R) � (G, p) if defined, and G′ = �

otherwise. If R is a set of rules, then G
R−→ G′ is an R-step if there exists a rule

r ∈ R and a pair of vertices p in G such that G
L�R−−−→
p

G′. If there is no R-step
for a graph G, then we say G is in R-normal form. For notational convenience,
R−→ is an endo-relation on the disjoint union of � with graphs, where � counts

as an additional R-normal form.

168 S.J.C. Joosten

Correctness of ‘R-step’ is understood as follows: If there is a terminating
sequence G0

R−→ · · · R−→ Gn �= �, then Gn is a least consequence graph of G0.
This follows from observing that if Gi

R−→ Gi+1, then Gi ≤ Gi+1. If G is a
consequence graph of Gi and R, then G is also a consequence graph of Gi+1 and
R. This holds in particular if G is a least consequence graph. Finally, if Gn is
a graph in R-normal form, then Gn is a least consequence graph of Gn and R.
Furthermore, if G

R−→ �, then there is no consequence graph of G and R. This
shows soundness of finding a consequence graph through a normalising sequence
G0

R−→ G1 · · · R−→ Gn in which Gn is either � or a least consequence graph, which
is what Amperspiegel’s rule engine does.

Note that R−→ need not be weakly normalising or confluent, and the order in
which we apply rules can determine whether we reach a normal form. It is pos-
sible to have an infinite sequence of R-steps even though there are terminating
sequences. To make this less likely, Amperspiegel ensures fairness: A sequence
G0

R−→ G1 · · · is fair if for all pairs p there are finitely many i such that Gi
r−→
p

.

This condition is implemented by imposing a total order on the vertices, treat-
ing smallest vertices first, and making new vertices the largest elements in this
order.

Amperspiegel’s rule engine can terminate by finding the least consequence
graph, or discovering that no such graph exists by reaching �. The possibility
of non-termination makes it that it is not a decision procedure. We leave the
question whether Amperspiegel implements a semi-decision procedure as future
work. We conjecture that the problem whether no least consequence graph exists
is undecidable, yet semi-decidable, and that our procedure is a semi-decision
procedure.

5 Amperspiegel’s Embedding of the Rule Engine

This section shows how Amperspiegel uses the rule engine of the previous section
to implement more general graph transformations, including destructive rules.
We apply a rule system using the apply switch, which gets three arguments: a
graph that encodes the rules R, the name of a source graph Gs = (Ls, Vs, Es),
and the name for a target graph Gt = (Lt, Vt, Et). The label set for rules is
Ls + L′ + Lt. To ensure disjointness of these three sets of labels, pre, during
and post are used as a prefix to labels respectively. The graph of which a least
consequence graph is calculated is G0 = (Ls + L′ + Lt, Vs, E

′
s), in which E′

s

contains the appropriately relabelled edges of Es. The least consequence graph
of G0 and the rules R is then G = (Ls+L′+Lt, Vt, E). The target graph has the
edges Et = {(r, x, y) | (post r, x, y) ∈ E}, where post is the rightmost constructor
of the disjoint union Ls + L′ + Lt.

Consequently, the graph the procedure starts with only contains edges of
Gs. The target graph will be overwritten. After obtaining the consequences by
running the procedure, we only look at the edges that are in post(r) for some r
and put those in Gt. For convenience, we allow labels of the form during(r), to

Parsing and Printing of and with Triples 169

allow labels for edges that do not end up in Gt, but are also guaranteed not to
be used in Gs.

The user can use her own rules in Amperspiegel, as the rules are described
as a graph. This follows the same pattern as describing a CFG with a graph. For
an expression e, there is a pair (e, p) with p uniquely determined by e:

(e, p) ∈G conjunct ∪ compose ∪ converse ∪ pair ∪ pre ∪ during ∪ post ∪ id

such that (e, p) occurs in exactly one of the relations mentioned, say l. If l is
conjunct or compose, there are unique e1 and e2 such that (p, e1) ∈G eFst and
(p, e2) ∈G eSnd. These e1 and e2 are, in turn, expressions again. If l is pre,
during or post, p is a relation name (an unquoted string in K). For converse,
p is an expression. For pair, p is a pair of strings (quoted or unquoted) that can
be accessed through the relations pFst and pSnd. If l = id, p does not matter.
A set of rules is a relation between expressions.

To take full advantage of rules as graphs, Amperspiegel allows a graph to con-
tain both a grammar and rules, given by taking the union of the corresponding
triples. We use these two together, by a switch called -Parse (note the capital
P), that first parses and then applies the rules to the result. This makes many
syntactical extensions straightforward to achieve. Take for instance the opera-
tion dom(R), containing all pairs (x, x) for which x is in the domain of R, defined
as follows:

dom(R) = (R ⨾ (R�)) � 1

We allow the relation dom to be used without changing Amperspiegel, by adding
the following rule to the parser (for readability, we underline labels instead of
writing post):

pre dom � conjunct ⨾ (eFst ⨾ compose ⨾ (eFst � eSnd ⨾ converse) � eSnd ⨾ id)

With this, we have seen an example of using rules in order to extend the
syntax of rules. Section 7 contains another example where a syntax extention
was useful.

6 Printing

We consider printer as a reverse operation to parsing. It is not always possible
to reconstruct the original string. Consider for instance the following CFG, for
lists with at least two words:

Start �→ Word Word Start �→ Word Start

Word �→ e a t Word �→ t e a

Printing of graphs that contain only univalent relations can be done unam-
biguously if for every non-terminal, each symbol occurs at most once on the right
hand side of its production rules. We change the CFG to meet this condition,
without changing the language it accepts:

170 S.J.C. Joosten

Start �→ Word1 Word2 Start �→ Word Start e′ �→ e

Word �→ e′ a′ t′ Word �→ t e a a′ �→ a

Word1 �→ Word Word2 �→ Word t′ �→ t

When printing graphs that aren’t a parse graph, we may encounter relations
that are not univalent. For this purpose, we add the label separator to a graph
describing a CFG, in addition to the four existing labels. The type of edges with
this label can be thought of informally as (P + Σ) × Σ, although Amperspiegel
does not consider any structure on vertices.

The syntax for a printer closely follows that of a parser. The main differ-
ence is that we allow a relation to be named between square brackets, along
with an optional separator string. This means that we can largely reuse the
parser for a CFG as defined earlier. We drop the production-rule recogniser �→
nonTerminal from Example 3, and replace it with:

recogniser �→ idNonTerminal

recogniser �→ "[" recRelation "]" nonTerminal

recogniser �→ "[" recRelation "SEPBY" separator "]" nonTerminal

One can think of idNonTerminal as a typed identity relation for those instances
where we want to use the nonTerminal symbol as a label.

We recognise recRelation and separator as strings, and use the following
rules:

idNonTerminal � 1 recRelation � 1

idNonTerminal � nonTerminal

7 Using Amperspiegel to Transform ArchiMate Files into
Ampersand Code

In previous sections we discussed parsing, rules to evaluate, and printing. These
are the necessary ingredients for transforming data structures. To demonstrate
that Amperspiegel can do nontrivial work, it has been put to the test of practice.
We picked a problem that was being solved at the time of writing in a software
project in the Dutch government: to transform source code from ArchiMate [8]
to Ampersand [4].

The specifics of the tools Ampersand and ArchiMate are not important to
understand the transformation, but we give a little background: ArchiMate is
a modeling tool to get an overview of a business, similar to UML yet more
coarse grained. The tool helps users to build, visualise and modify architectures
cooperatively, but does not feature a way to turn such architectures into code.
For this purpose, we are interested in using another tool that describes archi-
tectures that does produce code, namely Ampersand. Ampersand can generate
web-applications based on architectures, but often an architecture is already
described in another language, in our case: ArchiMate.

Parsing and Printing of and with Triples 171

To understand the transformation, it suffices to know that ArchiMate files
are XML files describing ‘elements’. Between these elements there are ‘relations’.
Elements are things like actors, business components, services, and infrastruc-
ture. A relation can be ‘implements’, describing which infrastructures implement
which services.

The purpose of this section is to describe how one can create transformations
with Amperspiegel. We define an XML parser, interpret the resulting graph as
an ArchiMate model, and turn it into an Ampersand model. This section uses
verbatim Amperspiegel syntax.

In the development of the XML parser, we keep the specification of syntax
and rules in a single file. This changes the syntax for describing a CFG slightly:
Each line should end with a dot, to keep the grammar unambiguous. We form
rules, using |- as notation for �, prefixed with RULE. We use KEEP relationName
as syntax-sugar for:

RULE pre relationName |- post relationName

To achieve this, the parser for CFG’s populates the relation keep, and the set
of rules that is then applied to the result contains the rule:

RULE pre keep |- post rule;(post eFst;post pre /\ post eSnd;post post)

Similarly, [expression -> elementName] is a shorthand for the expression:

expression;<elementName,elementName>;expression~ /\ I

These short-hands are useful for the development of the XML
parser and the transformation that follows it. We used them with-
out changing Amperspiegel itself. We changed the Amperspiegel-scripts
that define the parser for Amperspiegel-scripts instead. In the parser,
"[" pointExpression "->" pointElement "]" is added in the right hand side
of a production-rule for an expression. We also add these rules:

RULE pre pointExpression |- (post conjunct;(post eFst;(post compose;(post

eFst /\ ((post eSnd;post compose);(post eSnd;post converse))))))

RULE pre pointElement |- (post conjunct;((post eFst;((((post compose;

post eSnd);post compose);post eFst);pre pair)) /\ post eSnd))

7.1 Parsing XML

Building an XML parser lies outside of the scope what Amperspiegel was
initially intended for: parsing Ampersand-like scripts. Consequently, Amper-
spiegel’s lexer is not designed for parsing XML; it ignores comments and
whitespace. Fortunately, we can get away with this by restricting ourselves
to XML without text. This means tags, including attributes, are fine, but
<tag>text like this</tag> is not. Such a tag would have to be replaced by
an attribute-value, such as: <tag value="text like this" />.

An XML parser can then be defined as follows (Start is Amperspiegel’s start
symbol for a CFG):

172 S.J.C. Joosten

Start > "<?xml" attributeList "?>" tagList.

Start > tagList.

tagList > tag tagList.

tagList > .

tag > "<" tagName attributeList ">" tagList "</" tagName ">".

tag > "<" tagName attributeList "/>".

tagName > UnquotedString .

attributeList > attribute attributeList.

attributeList > .

attribute > attributeName "=" attributeValue.

attributeValue > QuotedString.

attributeName > UnquotedString.

RULE pre UnquotedString |- I

RULE pre QuotedString |- I

RULE pre tagList |- I

RULE pre attributeList |- I

RULE (pre tagName) ~ ; pre tagName |- I -- univalence of tagName

KEEP attributeName KEEP attributeValue KEEP attribute

KEEP tagName KEEP tag

The first lines describe a CFG for XML. Note that the lines end with a
dot, in order to distinguish KEEP statements from a continuation in which KEEP
acts as recogniser. The rules for tagList and attributeList cause tag and
attribute to be relations, rather than partial functions from the head of the
list. We can forget the order-information of attributeList and tagList since
for ArchiMate this order is irrelevant.

The rule for univalence of tagName requires a closing tag to match the open-
ing tag, because the parser generates two tagName edges from the first tag rule
to different tag names, which, after the contraction of UnquotedString edges,
are string constant symbols. Parsing <openingtag></closingtag> will result in
trying to identify two constants in K and produce the message:

Rules caused "openingtag" to be equal to "closingtag"

The XML we parse is well-formed, so these errors do not occur in practice.

7.2 Transforming a Graph

We parse XML such as the following. Figure 4 shows the first two lines parsed:

<element identifier="id-1311" xsi:type="BusinessProcess">

<label xml:lang="en" value="Collect Premium"/></element>

<element identifier="id-1208" xsi:type="BusinessService">

<label xml:lang="en" value="Premium Payment Service"/></element>

<relationship identifier="id-1329" source="id-1311"

target="id-1208" xsi:type="RealisationRelationship" />

Parsing and Printing of and with Triples 173

Fig. 4. Graph from applying parser and rules of Sect. 7.1 to two lines of XML.

The corresponding Ampersand code we will transform this XML into is:

CLASSIFY BusinessProcess ISA Element

CLASSIFY BusinessService ISA Element

RELATION RealisationRelationship :: Element * Element

POPULATION [("Collect Premium" , "Premium Payment Service")]

Here are some of the rules which we use to transform the parsed XML:

RULE pre attribute;[pre attributeName -> identifier]

; pre attributeValue |- I

RULE pre tag;[pre tagName -> label] |- during lab

RULE pre attribute; [pre attributeName -> value]

; pre attributeValue |- during value

RULE during lab; during value |- post label

The first rule states that identifiers are unique to elements, allowing us to
use these as handlers. The second introduces a temporary abbreviation lab for
<label> tags. The third introduces the abbreviation value for value attributes.
The last creates the relation label from the value of pairs in lab.

To obtain all element types without duplicates, we use these rules:

RULE pre attribute; [pre attributeName -> xsi:type]

; pre attributeValue |- during dtype

RULE pre tag; [pre tagName -> element] |- during element

RULE during element; during dtype |- during X ; post type

RULE post type |- I

The first two rules create temporary shorthands: dtype and element. The third
rule looks only at the element types, and creates a tuple in type with that target
(and a fresh source). The fourth rule states that the source of that tuple should
be equal to the target, removing duplicates. Finally, we obtain all relations and
their triples:

174 S.J.C. Joosten

RULE [pre tagName -> relationship];during dtype |- post elem ~

RULE pre attribute; [pre attributeName -> source] ; pre attributeValue

|- post source

RULE pre attribute; [pre attributeName -> target] ; pre attributeValue

|- post target

RULE post elem ; post elem ~ /\ I |- post relation

Figure 5 shows the triples computed by Amperspiegel for the XML excerpt.

Fig. 5. The triples after applying the rules of Sect. 7.2

7.3 Printing a Graph

We define a printer such that there are no identifier values in the final output.
Since the relations are not necessarily well typed in ArchiMate files, we create a
type ‘Element’ to stand in for any type.

The printer is defined as follows:

Start > [I SEPBY "\n"] Statement.

Statement > "CLASSIFY" [type] UnquotedString "ISA Element".

Statement > "RELATION" [relation] UnquotedString

":: Element * Element\nPOPULATION [" [elem SEPBY "\n ,"] Pair "]".

Pair > "(" [source] Labeled "," [target] Labeled ")".

Labeled > [label] String.

The relation I is used in the first line of the printer. This determines which
statements to print, and which not. For our purpose, we print all statements, by
adding the rules:

RULE post type |- post I

RULE post relation |- post I

To summarise how we use Amperspiegel’s tool-chain:

– Parse a CFG describing an XML parser in the file xml.cfg. To the result,
apply the rules for CFGs. Put the result in the graph ‘xml’. On the comman-
dline of Amperspiegel we write: -Parse xml.cfg cfg xml.

– Parse rules to convert the XML data specific to ArchiMate, and the corre-
sponding printer specific to Ampersand. The corresponding file is archi.cfg.
To Amperspiegel we pass: -Parse archi.cfg cfg archi

Parsing and Printing of and with Triples 175

– Parse the ArchiMate xml file Archisurance.xml and apply the rules that go
with the XML parser. This uses the graph ‘xml’: -Parse Archisurance.xml
xml. Since we omit the third argument, the result is put in the graph
‘population’.

– Apply the rules in the graph ‘archi’ to population. Put the result in
population: -apply archi.

– Print the graph ‘population’ using the printer defined in ‘archi’. In Amper-
spiegel: -print archi.

We sequence the listed operations on the command line:

Amperspiegel -Parse xml.cfg cfg xml -Parse archi.cfg cfg archi \

-Parse Archisurance.xml xml -apply archi -print archi

For the example XML code of Sect. 7.2, this produces exactly the mentioned
Ampersand code. Parsing and printing a file of about 600 lines produces 209
lines in eleven seconds.

8 Discussion

Most parser implementations are a partial function from strings to finite tree
structures. We use a standard parsing algorithm, and turn the result into a
graph. Consequently, CFGs that generate infinite trees yet finite graphs remain
future work.

Applying rules is slow: Amperspiegel traverses the right hand side expressions
for every pair and applies the patch as it constructs it. Sharing work between
applications of a rule may improve performance. We plan to use Amperspiegel
to generate code out of a set of rules, hopefully boosting the performance of
Amperspiegel. Ideally, we would also use Amperspiegel to generate code out of a
CFG or a printer, making the core of Amperspiegel even simpler. As mentioned,
Amperspiegel only consists of a thousand lines of Haskell code. We hope to
further reduce this number in the process.

9 Conclusion

We introduced Amperspiegel, and used it for a source-to-source transformation,
producing Ampersand code from ArchiMate code. To do so, the Amperspiegel
syntax was extended in a convenient manner. This shows how triple graphs can
be used to describe simple programs in a flexible, modular way.

Acknowledgements. I thank Wolfram Kahl for helping me greatly improve this
paper’s clarity in an intensive process of iterative feedback. I also thank the anony-
mous reviewers and Stef Joosten for their comments on an earlier version of this paper.
Supported by the Austrian Science Fund (FWF) project Y757.

176 S.J.C. Joosten

References

1. van den Brand, M., Visser, E.: Generation of formatters for context-free languages.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 5(1), 1–41 (1996)

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. a
language and toolset for program transformation. Sci. Comput. Program. 72(1),
52–70 (2008)

3. Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: questions and answers. In:
Proceedings of the Fourteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 682–685 (2014)

4. Joosten, S.: Software development in relation algebra with Ampersand. In: Pous,
D., Struth, G., Höfner, P. (eds.) RAMiCS 2017. LNCS, vol. 10226, pp. 177–192.
Springer, Cham (2017)

5. Kahl, W.: Algebraic graph derivations for graphical calculi. In: d’Amore, F., Fran-
ciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS, vol. 1197, pp. 224–
238. Springer, Heidelberg (1997). doi:10.1007/3-540-62559-3 19

6. Kats, L.C., Visser, E.: The Spoofax language workbench: rules for declarative spec-
ification of languages and ides. In: ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA 2010), vol. 45, pp.
444–463. ACM (2010)

7. Klint, P., van der Storm, T., Vinju, J.: RASCAL: a domain specific language for
source code analysis and manipulation. In: Proceedings of the 2009 9th IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation, pp. 168–
177. SCAM 2009 (2009). http://dx.doi.org/10.1109/SCAM.2009.28

8. Lankhorst, M.M., Proper, H.A., Jonkers, H.: The architecture of the ArchiMate
language. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer,
P., Ukor, R. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 367–380. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01862-6 30

9. Robertson, E.L.: Triadic Relations: An Algebra for the Semantic Web. In: Bussler,
C., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 91–108.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31839-2 8

http://dx.doi.org/10.1007/3-540-62559-3_19
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1007/978-3-642-01862-6_30
http://dx.doi.org/10.1007/978-3-540-31839-2_8

	Parsing and Printing of and with Triples
	1 Introduction
	2 Overview of Amperspiegel
	3 Parsing
	3.1 Obtaining a Graph by Parsing a String
	3.2 Describing a Context Free Grammar with a Graph

	4 Rules
	4.1 The Rule Engine by Example
	4.2 Rule Engine Semantics

	5 Amperspiegel's Embedding of the Rule Engine
	6 Printing
	7 Using Amperspiegel to Transform ArchiMate Files into Ampersand Code
	7.1 Parsing XML
	7.2 Transforming a Graph
	7.3 Printing a Graph

	8 Discussion
	9 Conclusion
	References

