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A B S T R A C T

Spare part availability is essential for advanced capital goods with a long service period. Sourcing becomes
challenging once the production of spare parts ceases, while the remaining service period is still long. In this
paper, we focus on fast moving parts with repair of failed parts as an alternative supply option. We proceed from
the methodology of Behfard et al. (2015) for slow movers, which assumes discrete demand distributions and
therefore leads to excessive computation times for fast movers. We find that the use of continuous demand dis-
tributions requires significant modifications, both for the approximation of the performance indicators and for the
optimization of the repair policy. We develop accurate heuristics to find the near-optimal Last Time Buy (LTB)
quantity and the repair policy that we apply for two control policies: pull return - push repair, and push return -
pull repair. We show that pull return - push repair is better to follow if return lead times are short and return costs
are low. For long return lead times, we find that when the return cost exceeds 35%–40% of the part's value, push
return - pull repair becomes more cost efficient. We also show that for relatively high demand of spare parts over
the planning period (>300 for a 10 years planning period) the continuous model is a good approximation for the
discrete model of Behfard et al. (2015). In addition, the computation time of our method is much lower then.
1. Introduction

Downtime of advanced capital goods may have serious consequences
in terms of costs, quality of service, and safety risks. Spare parts are
needed for keeping up the system during the life cycle of typically several
decades. At some point in time within the life cycle, the supplier of a
spare part may decide to stop the production because of new techno-
logical developments and/or decreasing demand volumes. Then, the
service provider responsible for keeping up the system faces the chal-
lenge how to cover future demand until the end of the remaining service
period (after supply disruption) that may last up to 15 years based on the
industry observations (Koopman (2011)). One option is to place a
so-called Last Time Buy (LTB) at the supplier just before supply has
ceased. Making LTB decisions is inevitably hard because of the high
demand uncertainty. Key causes are uncertainty in: (i) the size of the
installed base and its evolvement, and (ii) the parts failure rate over time,
which may be affected by usage patterns and wear-out. Though a proper
demand forecast for this long period is still point of interest for further
research, there are some methods that are being used in practice such as:
curve fitting based on demand history, or point forecasts based on the
size of the installed base and its projected evolution over the planning
period (Koopman, 2011). To avoid a stock-out, a high safety inventory is
ugust 2017; Accepted 13 December 2
required. This typically causes high excess stock at the end of the service
period, which has to be disposed at a low salvage value. To mitigate
stock-out risks, companies consider alternative sourcing options, e.g.,
repair of failed parts, retrieving parts from phased-out systems, buying
parts from a secondary market, or part redesign. This (partly) postpones
the decision on the number of required parts to source, and reduces the
inventory levels required. In this paper, we consider the repair of failed
parts that are returned from the field as the alternative sourcing option.
Our collaboration with industrial partners (computer machinery, print-
ing machines, and lithography systems) shows that repair of failed parts
is one of the most accessible alternatives in terms of quantity and
controllability of the process. The investigation of the other options is a
point of interest for future research.

This problem is related to inventory management and reusing parts
sent back from the field. The structure of the replenishment policy and
computation of the related parameters are a.o. discussed in , Inderfurth
(1997), Van Houtum and Zijm (1991), Zipkin (2000), Kiesmuller and
Minner (2003). Still, optimizing the LTB order quantity and evaluating
relevant performance indicators is not straightforward, since all the pa-
rameters are interdependent (e.g., dependency of the LTB quantity on the
ordering policy and the sourcing options).

Behfard et al. (2015) develop an approximate method for slow
017
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moving parts with a non-stationary, discrete demand distribution. They
find a near-optimal LTB quantity and base stock repair policy. When the
demand level increases (e.g. larger than 300 over the remaining life
cycle), the computation time quickly explodes, in particular when repair
lead times are long. We will show in Section 5 (Fig. 9) how the compu-
tation time explodes for high demand levels in the model Behfard et al.
(2015). Therefore, their method is not suitable for fast movers. We have
observed in industry (computer hardware, printing systems) that some
items may still have demand volumes up to several hundreds or even
more than thousand after regular supply has been discontinued. First,
this means that the method of Behfard et al. (2015) is not suitable for
such volumes. Second, it shows that it is reasonable to approximate the
discrete demand distribution by a continuous distribution. Silver et al.
(2017) advice to use a continuous distribution in inventory systems when
the mean during lead time exceeds 10. There are plenty of cases in the
industrial examples above where these conditions are satisfied. For
instance, we have observed the following real cases in Table 1 for the
parts used in printing systems:
Table 1
Total expected demand for fast moving parts (real industry cases).

Remaining service period after
LTB decision (years)

Total expected demand until
the end of the service period

5 4327
10 2502
A straightforward approach is to apply optimization by simulation
over all the possible scenarios (cf., Law (2015)). However, due to the
number of decision variables (i.e., the time-dependent base stock levels,
and the LTB quantity), this will typically require a very long computation
time. For example, the simulation time of 100.000 replications for a sce-
nario with a given LTB quantity and base stock levels takes 10 min
Therefore, as an alternative we propose to modify the model of Behfard
et al. (2015) by replacing discrete demand distributions by continuous
distributions. It will turn out that this requires substantial modifications in
the approximate performance analysis and the optimization procedure.

In the next section, we discuss the related literature. We present our
model, assumptions, and the notation in Section 3. Section 4 describes
the basic approach and discusses where complications arise due to the
use of continuous demand distributions, followed by the details on our
optimization method. We validate the accuracy of our approximations as
well as our optimization in Section 5 and derive some insights from the
numerical experiments. Finally, we summarize our main conclusions,
and give directions for future research in Section 6.

2. Literature review

There is extensive literature about spare part management. A key
method is METRIC for initial spare parts stocking and restocking in the
steady state situation, c.f., Sherbrooke (2004), and Van Houtum and
Kranenburg (2015). This method is not suitable when supply is dis-
continued within a finite planning period.

The specific literature on LTB decisions for spare parts can be classified
according to the sourcing options that are used to satisfy demand after
ceasing production. Some papers focus on service part demand forecast
and propose methods to compute the all-time requirement for a part
(Moore (1971); Ritchie and Wilcox (1977); Fortuin (1980); and Hong
et al. (2008)). Teunter and Klein Haneveld (1998, 2002) study the con-
ditions under which a multi-component LTB problem can be approxi-
mately decomposed into single component problems. Next, they
determine the ordering policy and the optimal LTB quantity when there is
an option to order again from external suppliers after the LTB decision, but
at a much higher price. Cattani and Souza (2003) study the benefits of
delaying an LTB order at the expense of extra costs for extending the
production period. Bradley and Guerrero (2009) study sequential LTB
decisions for various parts of a single product by making a decision for only
one part at each decision point until the end of the life cycle of the product.
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Other papers take into account additional sources of supply than LTB
as mentioned in the introduction. Teunter and Fortuin (1999) consider
retrieving of the parts from returned systems. They assume a push
ordering policy due to negligible remanufacturing cost, and investigate a
remove-down-to policy to dispose remanufactured parts in order to avoid
excessive holding costs. They model demand as a discrete random vari-
able, but an extension to continuous demand distributions is possible. Van
Kooten and Tan (2009) consider the repair option (with possible
condemnation during the repair process) next to an LTB order, and build a
Markovian model. Krikke and Van der Laan (2011) study the repair of
failed parts and retrieving parts from phased-out system next to an LTB
order. Timing and quantity of the returns is deterministic and known. As
service level, they use a maximum stock-out probability just before a re-
turn occurs. The last two papers both assume Poisson demand, and pro-
pose a Normal approximation for larger problem instances. Pourakbar
et al. (2012) study the point in time at which repair is not worth
considering anymore due to price erosion of the original product. Instead,
the failed product is replaced by a new one. Pourakbar et al. (2014)
consider phased-out systems as the supply source and extend the work of
Krikke and Van der Laan (2011) with uncertainty in timing and quantity
of the phased-out systems. The latter two papers are based on the
assumption that demand is Poisson distributed. Inderfurth and Kleber
(2013) consider extra production and retrieving parts from phased-out
systems as alternative supply sources. Though they formulate the model
for discrete demand, an extension to continuous demand is feasible.

There are only two papers that consider LTB decisions explicitly for
continuous demand distribution with alternative sourcing options.
Inderfurth and Mukherjee (2008) formulate a stochastic model with the
option of extra dedicated production runs and retrieving parts from
returned systems next to an LTB order. They assume that demand and
returns are independent random variables, and use a newsvendor model
to approximately determine the order-up-to levels. Shen and Willems
(2014) study as supply alternatives: (i) part substitution (by a technically
suitable alternative part), and (ii) line redesign (modifying the produc-
tion line to accommodate a new part). To the best of our knowledge,
there is no previous paper in which an LTB order decision with repair
alternative has been studied for fast moving parts under a non-stationary
continuous demand distribution over a finite planning horizon.

In recent years, quite some attention has been paid to the problem of
jointly controlling manufacturing of new products and reusing returned
products. An important issue is how to control the flow of the returned
parts. Under a pull policy, a part is processed on request, whereas under a
push policy processing occurs immediately. There are some situations
with a short return lead time or high return costs in which it does not
make sense to send all the parts immediately. Then, a pull policy is more
appropriate. Nevertheless, there are other situations with low return
costs, in which immediate return is better and then the products are
quickly available for further processing (c.f. Van der Laan and Teunter
(2006); Vercraene et al. (2014)).

In this paper, we propose accurate approximations for the total costs
and parts availability under a given LTB quantity and a given set of
repair-up-to levels in the remaining service period. Based on these ap-
proximations, we develop a computationally efficient optimization heu-
ristic to determine the repair policy and the LTB quantity for fast moving
parts under continuous demand. Furthermore, we consider two control
policies, “push return - pull repair” and “pull return - push repair” and
study the impact of the input parameters on the system performance and
the conditions under which one of the two policies outperforms the
other. Finally, we show that the continuous model can be used as a good
approximation for the discrete model in Behfard et al. (2015) under
specific conditions.

3. Model and notation

We first explain our model and assumptions, and then introduce the
notation.
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3.1. Model description and assumptions

We consider an LTB order and as an alternative the repair of failed
parts where there is no fixed cost for repair jobs. The repaired parts are as
good as new with the same value and failure behavior as new parts.
Demand is non-stationary over time and follows a continuous distribu-
tion. To facilitate the analysis, we divide the service period T in equally
sized discrete intervals. The demands in the different intervals are in-
dependent and can be satisfied by both new and repaired parts. Each unit
of demand represents a failed part that can be returned and repaired with
a certain probability. Arrival of ready-to-repair parts (from the return
process) and ready-to-use parts (from the repair process) takes place only
after the relevant lead time. Unmet demand is backordered during the
finite service period, since contractual obligations enforce that the
installed base should always be maintained until the end of the service
period. During regular part supply, lost sales models are often applied,
where lost sales refers to the use of emergency shipments from another
location in the supply chain. As such options typically do not exist
anymore after stopping regular supply and demand has to be satisfied one
way or another, we have to rely upon backordering.

It is known that dynamic inventorymodels with nofixed ordering costs
and perfect repairs (100% repair yield) follow a base stock policy (Zipkin
(2000)). We assume that an accurate inspection on the reparability of
failed parts in the field is feasible. That is, already in the field it is known
which parts can be repaired and which not, and only the first category will
be returned. The restwill be scrapped at negligible costs. Therefore,we can
assume that the repair yield is 100%and apply a base stockpolicy.Wehave
observed in practice that the initial diagnosis tends to be good (even
though not perfect), and so the repair yield is typically very high. Note that
inclusion of imperfect repair in our model would seriously complicate the
computation of the base stock levels and the performance indicators.

The objective of our model is to find the LTB order quantity jointly
with the dynamic repair policy that minimizes the total expected relevant
costs over the remaining service period. The total relevant costs consist of
procurement, holding, repair, return, and shortage costs, minus the
salvage value of the parts remaining at the end of the service period. The
decision variables of the model are the LTB quantity ðQÞ and the base stock
levels ðst ; t ¼ 1; 2;…;TÞ for the repair decisions over the remaining
service period. That is, at the start of each interval, we may start a
number of repair jobs that raises the inventory position to st , insofar
sufficient ready-to-repair parts are available. As side results, we give as
service levels per interval: (i) the probability of running out of stock, and
(ii) the cumulative fill rate, i.e., the fraction of demand in the intervals
1,..,t that is satisfied from stock on shelf.

For ease of presentation, we assume that the initial stock level is zero,
and so are the initial repair and return pipelines. However, the extension
to positive initial levels is straightforward and will be explained at the
end of Section 4.4.

We consider the following assumptions:

1) Both the return lead time and the repair lead time are deterministic and
expressed as an integer number of intervals. It is a realistic assumption,
aswehave observed in the industry that typically an agreement ismade
with the third party repair shops to deliver the repaired parts within a
predefined duration. This is in connection with our model, as we
consider an accurate inspection on reparability of the failed parts prior
returning from the field and only technically repairable parts are
returned. Stochastic lead times significantly increases complexity of the
Fig. 1. Sequence of events
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analysis due to introducing another factor of uncertainty on calculating
the inventory position after reordering and evaluation of the perfor-
mance indicators while dealing with the capacity restrictions.

2) Ready-to-repair parts that are not repaired in a certain interval are
kept on stock for possible future repair at negligible costs; this is
supported by current practice where failed parts are typically valued
at, e.g., €0,01 per piece.

We consider two different control policies for the return of failed parts
and starting the repair jobs:

I. A push policy for the return of failed parts from the field, and a pull policy
for the repair of ready-to-repair parts. That is, all failed parts that are
repairable will be returned immediately after failure. These parts will
be kept on stock at the repair facility, until the installation inventory
position of ready-to-use parts drops below the base stock level for the
corresponding period. Here, the installation inventory position is
defined as the inventory level of ready-to-use parts (on-hand minus
backorders), plus the number of failed parts being repaired, excluding
the failed parts waiting for repair. Then, a number of repairs will be
started to raise the inventory position of ready-to-use parts to the base
stock level, insofar sufficient ready-to-repair parts are available. Here,
the inventory replenishment lead time is the throughput time of the
repair process only.

II A pull policy for the return of failed parts from the field, and a push policy
for the repair of ready-to-repair parts. That is, the return of failed parts
from the field is postponed until there is a need for ready-to-use parts.
We can see this as a two-echelon serial inventory system, consisting of
a first stock point with ready-to-repair failed parts, and a second stock
point with ready-to-use parts. Because of the push policy for repair,
the inventory at the second stock point is zero. In this setting, a
number of parts are returned from the field that raises the echelon
inventory position of ready-to-use parts at the repair shop to its base
stock level, insofar sufficient ready-to-repair parts are available in the
field. Here, the echelon inventory position is defined as the inventory
level of ready-to-use parts, plus the number of failed parts being
repaired, plus the number of failed parts being returned, excluding the
failed parts in the field waiting for return. When a failed part arrives
at the repair shop, repair is immediately started. The replenishment
lead time of the second stock point with ready-to-use parts equals the
sum of the return lead time and the repair lead time.

Because of the similarity between the two scenarios, we need exactly
the same methodology for the analysis of both scenarios with as key
differences: (i) the definition of inventory position, (ii) the definition of
replenishment lead time, (iii) calculation of the expected number of
returned failed parts that are dependent on the decision variables (base
stock levels, LTB quantity) in Scenario II, whereas that is constant in
Scenario I.

We first present the total cost function for the both scenarios, but for
ease of presentation, we elaborate the model and the analysis only for
Scenario I in Section 4. Note that the analysis of Scenario II is identical to
that of Scenario I if we modify the definition of inventory position and
replenishment lead time as explained above.

For both scenarios, we have a sequence of the events in each time
interval (at the start, during, and at the end of an interval) as shown in
Fig. 1:
at each time interval.
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3.2. Notation

In the remainder of this paper, we use the following notation:

Input parameters:
t : interval index, t 2 f1;2;…;Tg with T the total number of intervals.
l1: repair lead time.
l2: return lead time.
h: holding cost per ready-to-use part (new or repaired) per time interval.
cp: purchasing cost of a new part at the start of the planning period, t ¼ 1.
cr;t : repair cost for each repair job started in interval t. This cost may depend on time,
for example because parts become older and more difficult to repair, or because
lower repair resource utilization over time increases costs.

pt : return cost for each part returned in interval t.
sv: salvage value per ready-to-use part remaining in stock at the end of the service
period; this value may be negative, e.g., if environmental friendly disposal of the
parts yields extra costs.

cb;t : shortage cost per ready-to-use part at the end of interval t.
yt : return yield, i.e., the fraction of failed parts that are returned from the field at the
end of interval t and that are ready-to-repair.

State variables and derived states:
It : inventory position of the ready-to-use parts before the reorder decision at the
beginning of interval t. Note that It is the only state variable and the rest can be
derived based on it.

St : inventory position of ready-to-use parts after reordering at the start of interval t.
OHt : on-hand inventory of ready-to-use parts at the end of interval t.
BOt : shortage of ready-to-use parts at the end of interval t.
Rt : number of repair jobs started at the start of interval t.
Kt : number of ready-to-repair parts at the start of interval t.
Note that the definitions of Rt and St differ for Scenario (I) and (II).
Auxiliary variables:
Dt : demand in time interval t, a continuous random variable with density function ft(x)
and cumulative distribution function Ft(x).

Dt;τ : cumulative demand in the intervals t,..,τ, a continuous random variable with
density function ft,τ(x) and cumulative distribution function Ft,τ(x).

rt ðDt Þ: random number of failed parts Dt that can be returned from the field at the end
of interval t; we assume that it follows a binomial distribution with success
probability yt; demand is rounded to the nearest integer in case of real values. These
parts are available for repair process at the beginning of interval t þ l2.

Decision variables:
s*t : optimal base stock level of ready-to-use parts at the beginning of interval t;
s� ¼ ðs*1; ::; s*T Þ; s� is the vector containing the optimal base stock levels.

Q: number of parts procured at the start of the planning period as Last Time Buy
quantity.

Performance measurements:
TRCðQ; s�Þ: total expected relevant costs as function of LTB quantity and base stock
levels; it consists of the procurement, expected repair, holding, shortage, and return
minus the salvage value.

βt : cumulative fill rate in the interval 1,.., t.
αt : probability of running out of stock at the end of interval t.

3.3. Model presentation

Our goal is to minimize the total expected relevant costs, given in (1),
by determining the optimal base-stock levels, s� ¼ ðs*1; ::; s*TÞ and the LTB
quantity Q.TRCIðQ; s�Þ consists of the purchasing cost of the LTB quan-
tity at the beginning of the planning period, the expected holding,
shortage and repair costs, and the return cost of the failed parts (used for
repair), minus the salvage value of the remaining parts at the end of the
service period. Repair jobs can be started only from interval 2 þ l2 due to
the return lead time and the first time availability of the ready-to-repair
parts. Next, returning the ready-to-repair parts from the field does not
make sense after interval T-l1-l2-1, since any repair after interval T-l1
cannot be used before the end of the planning period. For Scenario I, we
find

The total expected relevant costs function for Scenario II is very
similar to (1). The only difference is in calculating the expected return
cost that should be in connection to the repair decisions:

A core element of our approach is that we can determine the optimal
base stock levels s* independently of the LTB quantity Q. The key reason
is that if unused failed parts are never discarded, the base stock levels for
infinite supply and finite supply are equal (Behfard et al. (2015)). Once
we have found the base stock levels, we can perform a numerical search
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over Q to find the minimum total expected relevant costs. In Section 4.3,
we will show that the evaluation of the cost functions is not trivial and we
need some approximations for the various cost elements. Due to the ca-
pacity restrictions (limited number of ready-to-repair parts), there is
uncertainty in the inventory position after reordering that is the key in
the evaluation of the total expected relevant costs TRCðQ; s*Þ. This un-
certainty introduces strong correlations among the different random
variables through the planning period.

To find the optimal base stock levels s*, we use the stochastic dy-
namic programming (SDP) recursions as in (3) and (4). The decision
variables are the base stock levels st at the beginning of each interval
t¼ 1,..,T. We define the state as the inventory position before reordering It
at the beginning of the stage t. The action is increasing the inventory
position up-to st, if the inventory position before ordering It is lower than
st. Applying a backward recursion, we define the value function VtðItÞ as
the minimum expected costs from the start of interval t until the end of
the planning period T. The value function in period t consists of the
ordering cost, the expected holding and shortage costs a lead time later in
interval t þ l1, plus the unconditional value function in the interval tþ1
given Itþ1. We use the shorthand notation Xþ ¼ max{X,0}. The value
function VtðItÞ is connected to Vtþ1ðItþ1Þ as follows:

VtðItÞ ¼ cr;T :ðst � ItÞ þ E
�
h:ðst � Dt;tþl1 Þþ þ cb;t:ðDt;tþl1 � stÞþ

�
þ EDt ½Vtþ1ðItþ1 Þ� (3)

Itþ1 ¼ st � Dt (4)

At the end of the planning horizon, we have a salvage value of the
items remaining in inventory, so the value function equals
VTþ1ðITþ1Þ ¼ �sv:ITþ1. Note that these recursions are valid for both
Scenarios (1) and (2), provided that we use the appropriate definitions of
inventory position and replenishment lead time.

Solving this SDP for a discrete state space with limited size is
straightforward. However, here we deal with continuous demand, and
consequently the state space is continuous. In Section 4.2, we describe
more details on how to adapt the SDP formulation to make it applicable
for our case.

4. Approach and performance analysis

In this section, we first describe our approach to find the optimal base
stock policy and the LTB quantity. Then, we elaborate on the main dif-
ferences compared to the approach of Behfard et al. (2015) for discrete
demand. We explain how to determine the optimal base stock levels in
Section 4.2. Next in Section 4.3, we derive the expressions to evaluate the
performance indicators for given values of the decision variables. We
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propose the algorithm to find the near-optimal LTB quantity in Section
4.4.
4.1. Approach

As stated before, we determine the base stock levels independent of
the LTB quantity. This leads to the following procedure to find the
optimal LTB quantity (Fig. 2):
Fig. 2. Procedure to find the near-optimal LTB quantity and the repair policy.
1) We determine near-optimal base stock levels using Stochastic Dy-
namic Programming (SDP), assuming that there are ample ready-to-
repair parts. We first describe the algorithm for zero lead times, and
next explain how it can be extended to non-zero lead times. This
approach is commonly used in the literature for ease of explanation
(Zipkin, 2000).

2) We derive expressions for evaluating the performance indicators (i.e.,
total expected costs, fill rates and cycle service levels) for given values
of the decision variables (LTB quantity and the base stock levels). In
this analysis, the distribution of the inventory position after reor-
dering St has an important role in the computation of performance
indicators. St is a random variable and not necessarily equal to the
base stock level s*t for two reasons. First, the number of ready-to-
repair parts is finite, and so there might be insufficient number of
parts to reach the base stock level. Second, the inventory position due
to the LTB order is typically higher than the base stock levels in the
first periods of the planning period. Then, repair is not initiated.

3) We apply a numerical search to find the near-optimal LTB quantity
that minimizes the total expected costs.

The key differences with study of Behfard et al. (2015) due to the use
of continuous demand distributions are as follows:

a) The state space is continuous. Therefore, we cannot directly apply
SDP to determine the base stock levels. Therefore, we propose an
approximation for computing the value functions when determining
the base stock levels.

b) We use continuous approximations for the distributions of St
(t ¼ 1,..,T), the inventory position after the reorder decision at the
start of interval t. Computation of the total expected costs consists of
multiple double and triple integrals that we will reduce to single in-
tegrals for the sake of a fast numerical evaluation.

4.2. Base stock levels for repair decisions

There are three approaches to find the base stock levels for dynamic
inventory models with infinite supply, depending on the demand
behavior over time (Zipkin, 2000):

1) The demand is constant or inclining over time:

The optimal base stock level in interval t minimizes the current pe-
riod's costs and is not influenced by future demands and costs (a so-called
myopic policy). The optimal level base stock level s*t is the value satis-

fying Ftðs*t Þ ¼ cb;t�ðcr;t�cr;tþ1Þ
cb;tþh (Zipkin, 2000).

2) The demand is declining over time without significant drops:
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The myopic policy, as defined above, provides a near-optimal base
stock level. It can be shown that this is an upper bound for the optimal
base stock level.

3) The demand is declining over time with significant drops:

A myopic policy does not provide a good solution, and we need to use
SDP.
As we observed in practice (Koopman, 2011), supply disruptions
happen at the end of the life cycle while there are significant drops in
demand due to phasing out of the systems, or in the middle of the life cycle
while number of systems are steady (not growing). Surprisingly, we also
observed that disruption might even occur early in the life cycle while the
systems are still being produced and sold to the customers, so the installed
base may be inclining. This appears to be not an exception. As a result, a
simple myopic policy is not a good heuristic, and we have to apply SDP.

In the literature, there are other heuristics for the optimization of
dynamic inventory problems, such as look-ahead policies, and linear
decision rules (Truong (2014), Levi et al. (2007), Chen et al. (2008)).
These heuristics are applicable to cases where the demand is
non-stationary and correlated over the different periods. Heuristics are
also used when information on certain variables, such as the demand
distribution, is incomplete. In our case, the demand is independent over
time intervals, and their distributions are known. Therefore, we only
need a good approximation with continuous state space.

We have two options: (i) discretize and truncate the state space, or (ii)
approximate the value function by a simple continuous function based on
the evaluation of a limited number of support points. As the first option is
time-consuming due to the large number of the feasible points, we focus
on the second option. We use a backward recursion, and approximate the
value functions by piecewise linear functions. Let us introduce the
function mtðstÞ:

mtðstÞ: The minimum expected costs from the start of interval t until
the end of the planning horizon when the base stock level st is used
and the inventory position before ordering is It ¼ 0.

We first explain the procedure to determine the base stock level in the
last interval T, and then for any interval t< T. Recall that at the end of the
planning horizon, we have a salvage value of the parts remaining in in-
ventory, so the value function equals VTþ1ðITþ1Þ ¼ �sv:ITþ1. Note that
the definition of VtðItÞ is given in (3). Zipkin (2000) shows that we can
find the optimal s*t at any interval t by minimizing mtðstÞ. The relation
between mtðstÞ and VtðItÞ is given in (6):

mtðstÞ ¼ cr;t:st þ E
�
h:ðst � DtÞþ þ cb;t:ðDt � stÞþ

�þ EDt ½Vtþ1ðst � DtÞ�: (5)

VtðItÞ ¼
��cr;t:It þ mt

�
s*t
�

for It � s*t ;
�cr;t:It þ mtðItÞ otherwise:

(6)

For further properties on these functions, we refer to Appendix A. For
interval T, the derivative of mTðsTÞ to sT , denoted by m'

TðsTÞ, is given by
the following expression:

m0
T ðsTÞ ¼ cr;T � svþ h⋅FTðsT Þ þ cb;T ⋅½FT ðsTÞ � 1�⋅ (7)

Similar to the newsvendor problem, we see that mTðsTÞ is convex,
since m''

TðsTÞ ¼ ðhþ cb;TÞ⋅ fTðsTÞ � 0. Therefore, we find the optimal base
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stock level by solving the equation m'
TðsTÞ ¼ 0: We find that s*T is equal

to the minimum value of sT satisfying: FTðsTÞ ¼ cb;Tþsv�cr;T
cb;Tþh . Next, we

compute the value function VTðITÞ.
It is straightforward to compute VTðITÞ for all values IT � s*T , since

mTðs*TÞ is a constant. From (7), we see that m'
Tð0Þ ¼ cr;T � sv� cb;T and

that lim
sT→∞

m'
TðsT Þ ¼ cr;T � svþ h. That is, the function becomes linear as

sT→∞. Therefore, it seems reasonable to approximate VTðITÞ by a
piecewise linear function ~VTðITÞ for all values IT > s*T (Appendix A). We
need this approximate function for the next step of the backward recur-
sion to find our approximate function ~mT�1ðsT�1Þ. As the state in the next
interval (stage) is given by IT ¼ sT�1 � DT�1, we find:
~mT�1ðsT�1Þ ¼ cr;T�1⋅sT�1 þ E
�
h⋅ðsT�1 � DT�1Þþ

þ cb;T�1⋅ðDT�1 � sT�1Þþ
�þ EDT�1

�
~VTðITÞ

� (8)
For any interval t< T, we follow the steps below to determine the base
stock levels:

i. Compute the (approximate) expression for mtðstÞ; defined as
~mtðstÞ, as in (8).

ii. Determine the near-optimal base stock level s*t by first computing

the derivative ~m'
tðstÞ, and then searching for the value of st that

changes the sign of the derivative. We do this, because ~mtðstÞ is
not differentiable at the support points, and so the piecewise
linear function typically has a minimum value in one support
point (or possibly in two adjacent support points having exactly
the same function value).

iii. Derive the approximate value function ~VtðItÞ using a piecewise
linear function.

We checked the accuracy of the piecewise linear function approxi-
mation by comparing the results to the discretization method. We found
almost the same results, but with much lower computation times (a factor
10). We refer to Appendix A for further details on how we use piecewise
linear functions, the convexity of ~mtð:Þ, and the related derivatives.

For non-zero lead times, a decision in interval t influences the holding
and the shortage costs at the end of interval t þ l1 (a repair lead time
later). Therefore, we can still apply the abovementioned algorithm, if we
evaluate the single period costs (expected holding and shortage costs)
based on the lead time demand. Then, the last decision is made at time T-
l1.

4.3. Performance evaluation given the LTB quantity and the base stock
levels

To evaluate the key performance indicators (total expected relevant
costs, cumulative fill rates, and cycle service levels), we need the prob-
ability distribution of the inventory position after reordering at the start
of each interval St. The availability of ready-to-repair parts

minððs*t � St�1 þ Dt�1Þþ;Kt�1 � Rt�1 þ rt�l2�1ðDt�l2�1ÞÞ is the key factor
in determining the distribution of St (St ¼ St-1- Dt-1þ Rt). The recursive
stochastic equations are not straightforward to evaluate due to a strong
correlation between the inventory position after reordering, the number
of the ready-to-repair parts, and the size of the repair orders in subse-
quent time intervals. Therefore, we derive a simple approximate proba-
bility distribution for St (First approximation). Since this first
approximation does not always provide accurate results, we will intro-
duce a correction variable (Second approximation).

4.3.1. First approximation of distribution St
We use the cumulative supply of ready-to-repair parts in the intervals

{1,..,t-1-l2} and the cumulative demand in the intervals {1,..,t-1} to find
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the approximate probability distribution. We denote the associated

random variable by bSt . We define three possible cases for bSt at each

interval t:bSt1 < s*t (Case 1), bSt2 > s*t (Case 2), and bSt3 ¼ s*t (Case 3).
These cases depend on the demand, supply, and the base stock levels as
follows:

½1� : bSt1 ¼Q�D1;t�1þ
Xt�l2�1

i¼1

riðDiÞ; Q�D1;t�1þ
Xt�l2�1

i¼1

riðDiÞ< s*t

½2� : bSt2 ¼Q�D1;t�1; s*t <Q�D1;t�1�Q;

½3� : bSt3 ¼ s*t ; Q�D1;t�1 � s*t �Q�D1;t�1þ
Xt�l2�1

i¼1

riðDiÞ:

(9)

In Case 1, the inventory position is equal to the maximum inventory
position if all the ready-to-repair parts have entered repair. In Case 2, the
inventory position without any repair exceeds the target level s*t . In Case
3, there are sufficient ready-to-repair parts to raise the inventory position

to the base stock level s*t . Since there is a probability mass at bSt3 ¼ s*t , we
fit two separate continuous probability distribution functions for Case 1

and Case 2. We define ðgð1Þt ð:Þ;Gð1Þ
t ð:ÞÞ and ðgð2Þt ð:Þ;Gð2Þ

t ð:ÞÞ as the proba-
bility density function (pdf) and the cumulative density function (cdf) for
Case 1 and Case 2, respectively. We denote the probability mass in Case 3

by prðbSt3 ¼ s*t Þ. Let Nt be the maximum value that the inventory position
after reordering can take at the beginning of interval t, i.e.,
Nt¼maxfs*t ;Qg. We compute the probability mass in s*t such that the total
probability is equal to one:

pr
�bSt3 ¼ s*t

� ¼ 1� Gð1Þ
t

�
s*t
�� �

Gð2Þ
t ðNtÞ � Gð2Þ

t

�
s*t
��

(10)

We need the probability distribution of bSt1 and bSt2 for the evaluation
of the performance indicators. Therefore, we use (9) to compute the first

two moments of bSt1 and bSt2, and fit an approximate distribution to these
moments.

½1� :

E
�bSt1

� ¼ Q� E
�
E
�
D1;t�l2�1 �

Xt�l2�1

i¼1

riðDiÞ
��D1;t�l2�1

��� E½Dt�l2 ;t�1�;

Var
�bSt1

� ¼ Var
�
E
�
D1;t�l2�1 �

Xt�l2�1

i¼1

riðDiÞ
��D1;t�l2�1

��þ
E
�
Var

�
D1;t�l2�1 �

Xt�l2�1

i¼1

riðDiÞ
��D1;t�l2�1

��þ Var½Dt�l2 ;t�1�:

(11)

½2� : E
�bSt2

� ¼ Q� E½D1;t�1�;
Var

�bSt2

� ¼ Var½D1;t�1�:
(12)

By defining three possible Cases for bSt as in (9), it may happen for
declining base stock levels that an inventory position before reordering
exceeds s*t even though Q � D1;t�1 � s*t . This happens if

Q � D1;t�1 þ
Pt�1

n¼2þl2Rn > s*t , with
Pt�1

n¼2þl2Rn > 0 (i.e., at least some re-
pairs have been started in the previous intervals). Case 2 in (9) does not
cover these cases, since we assume that no repair job has been started yet.

This causes underestimation of the density in Case 2 ðbSt2 > s*t Þ, and
overestimation of the density in Case 3 ðbSt3 ¼ s*t Þ. Therefore, a second
approximation is required to correct this issue by removing the over-
estimated density in Case 3 and allocating it as a correction to the
underestimated density in Case 2. As a result, in Case 1 the distribution ofbSt1 is well approximated and no correction is required. In the next sub-
section, we elaborate on this correction.

4.3.2. Second approximation of distribution St
We define the random variable CFt � 0 (correction variable) as the

gap between the inventory position before reordering ðbSt�1 þ CFt�1 �
Dt�1Þ and the base stock level s*t at time t. Let us define ~St as the inventory
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position after reordering by adding a correction variable to bSt :

~St ¼ bSt þ CFt; (13)

CFt ¼
�bSt�1 þ CFt�1 � Dt�1 � s*t

�þ
(14)

So the correction variable CFt depends on the demand in the previous
period, Dt-1, and upon the demand in preceding periods through CFt-1
(which depends on Dt-2 and CFt-2, etc.). The correction variable CFt does

not depend upon demand in the current periodDt. The correction variable
may appear for the first time in interval τ, as soon as s*τ < s*τ�1 (i.e., only
for declining base stock levels) and once repair jobs have been started
before. We need the probability density and distribution function of the
correction variable in interval t, denoted by htð:Þ and Htð:Þ, respectively.
Here htð0Þ denotes the probability mass in the point 0. After finding these
densities and distributions, we find the second approximation of the in-

ventory position after reordering ~St as function of the distribution bSt and

CFt . We define ð~gð1Þt ð:Þ; ~Gð1Þ
t ð:ÞÞ and ð~gð2Þt ð:Þ; ~Gð2Þ

t ð:ÞÞ as the pdf and cdf for
Case 1 and 2, respectively, and prð~St ¼ s*t Þ for Case 3:

½1� ~gð1Þt ðyÞ ¼ gð1Þt ðyÞ for y < s*t ;
½2� ~gð2Þt ðyÞ � gð2Þt ðyÞ þ ht

�
y� s*t

�
; for y > s*t ;

½3� pr
�
~St ¼ s*t

� ¼ pr
�bSt ¼ s*t

�� ð1� htð0ÞÞ; for y ¼ s*t :
(15)

As mentioned earlier, no correction variable is needed for Case 1

ðy < s*t Þ, so ~St ¼ bSt in Case 1. Therefore, we only need to remove the
overestimated density for y ¼ s*t (Case 3) and allocate that probability
mass to the values y > s*t (Case 2).

To determine the distribution of CFt, we differentiate between three
situations:

CFt ¼
�bSt�1 � Dt�1 � s*t

�þ
; for CFt�1 ¼ 0 and bSt�1 < s*t�1;

CFt ¼
�
s*t�1 � Dt�1 � s*t

�þ
; for CFt�1 ¼ 0 and bSt�1 ¼ s*t�1;

CFt ¼
�
s*t�1 þ CFt�1 � Dt�1 � s*t

�þ
; for CFt�1 > 0 and bSt�1 ¼ s*t�1:

(16)

We use (15) and (16) to determine the pdf of CFt. By recursively using
the pdf of the correction variable htð:Þ and the pdf of the inventory po-
sition ~gð1Þt ð:Þ; we derive the following expression for the pdf of CFt:

htðzÞ ¼ ∫ s�t�1
s�t

~gð1Þt�1ðyÞ:ft�1

�
y� z� s�t

�
dyþ

pr
�
~St�1 ¼ s�t�1

�
⋅ft�1

�
s�t�1 � z� s�t

�þ ∫ s�τ�s�t�1
0 ht�1ðuÞ:ft�1

�
yþ u� z� s�t

�
du:

(17)

As numerical integration is inefficient due to the recursive nature of
htð:Þ and ht�1ð:Þ, we use an approximation by computing the first two
moments of CFt, and fitting a suitable distribution.

4.3.3. Two-moment approximation for the distribution of CFt
We first compute the probability mass htð0Þ, and then derive ex-

pressions for the first two moments of CFt as in (16). Since the first time
that the correction variable appears is interval τ (i.e., repair jobs started
and the base stock level is declining), the correction in the preceding

equals CFτ�1 ¼ 0 and CFτ ¼ ðbSτ�1 � Dτ�1 � s*τ Þ
þ
according to (16). The

probability mass at interval τ when bSτ�1 � Dτ�1 � s*τ � 0 can be
computed as:

hτð0Þ ¼ ∫ s�τ�1
�∞gð1Þτ�1ðyÞ⋅

�
1� Fτ�1

�
y� s�τ

� �
dy

þpr
�bSτ�1 ¼ s�τ�1

�
⋅∫ ∞

s�τ�1�s�τ
fτ�1ðxÞdx⋅

(18)

Next, we compute the first two moments of CFτ using standard nu-
merical integration. For strictly positive values of CFτ; we fit a distribu-
tion to the first two moments of ðCFτjCFτ > 0Þ:
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E½CFτjCFτ > 0� ¼ E½CFτ�
1� h ð0Þ; E

�
CF2

τ

��CFτ > 0
� ¼ E CF2

τ

1� h ð0Þ: (19)

τ

� �
τ

We choose to fit a Gamma distribution with shape and scale param-
eters ðk; θÞ based on the moments in (19) (Tijms, 1986). We stress that

this approximation does not depend on the shape of the demand distri-
bution. We denote hτð:Þ in (20) as a mixture of the probability mass and
the pdf of ðCFτjCFτ > 0Þ. We scale the Gamma function for the strictly
positive correction variables, since we have a probability mass at
CFτ ¼ 0:

hτðf Þ ¼ Gammaðk; θ; f Þ:ð1� hτð0ÞÞ for CFτ > 0 (20)

The complete distribution of CFτ is given by (18) and (20). For any
interval t > τ, we find the distribution of CFt recursively using the same
procedure: First compute the point mass, and next fit a two-moment
approximation. Note that in Equations (18) and (19), we should also
take into account CFt-1>0 for any t > τ, according to the various situa-
tions as defined in (16).

Using the approximate probability distribution of St, we can evaluate
the performance indicators and find the LTB quantity using the procedure
that we will describe in Section 4.4.

4.3.4. Expected total relevant costs and service levels
TRCIðQ; s�Þ as in (1) and (2) consists of the several components,

namely the purchasing cost, the expected holding, shortage, and repair
costs minus the salvage value, plus the return cost. Below, we derive
expressions for each cost component.

4.3.5. Expected on-hand inventory
In the intervals t2{1,…,l1þl2þ1}, demands should be covered by the

LTB quantity solely, since repairs cannot be completed due to the return
and the repair lead time. Given that the first ready-to-repair parts are
available at the end of interval 1, the first time that repaired parts can be
available for use is at the start of interval 2 þ l2þl1. We compute E½OHt �
from the repair lead time demand and the actual inventory position after
reordering a repair lead time ago:

E½OHt� ¼
�
E½ðQ� D1;tÞþ �; for 1 � t � l1 þ l2 þ 1;
E½ðSt�l1 � Dt�l1 ;tÞþ �; for l1 þ l2 þ 2 � t � T :

(21)

We evaluate (21) for 1 � t � l1þl2þ1 using standard numerical
integration. However, for l1þl2þ2 � t � T that the evaluation becomes
more difficult due to two separate probability density functions for ~St >
s*t and ~St < s*t as in (15), we find (22) (online Appendix 1):

E½OHt� ¼ ∫
s*t�l1
0

�
~G
ð1Þ
t�l1

�
s*t�l1

	
� ~G

ð1Þ
t�l1

ðyÞ
	
:Ft�l1 ;tðyÞ dy

þ ∫ Nt

0 Ft�l1 ;tðxÞ:
�
~G
ð2Þ
t�l1

ðNtÞ � ~G
ð2Þ
t�l1

ðyÞ
	
dy

� ∫
s*t�l1
0 Ft�l1 ;tðxÞ:

�
~G
ð2Þ
t�l1

�
s*t�l1

	
� ~G

ð2Þ
t�l1

ðyÞ
	
dyþ

�
~G
ð2Þ
t�l1

�
s*t�l1

	

� ~G
ð1Þ
t�l1

�
s*t�l1

		
:

0
@∫

s*t�l1
0 Ft�l1 ;tðxÞdx

1
A:

(22)

For a special case of the distributions Ft�l1 ;t and ð~GðiÞ
t�l1 i ¼ 1;2Þ (i.e.,

Coxian and Normal distribution respectively), we find a closed-form
expression for E[OHt] (Online Appendix 2).

4.3.6. Expected backorders
Using the fact that the inventory level (on hand stock minus back-

orders) equals the inventory position a lead time ago minus the lead time
demand, cf. Zipkin (2000), we have:

E½OHt� � E½BOt� ¼ E
�
Smaxðt�l1 ;1Þ

�� E
�
Dmaxðt�l1 ;1Þ;t

�
: (23)



Table 2
Input parameters in the numerical experiments.

Varying parameters Value 1 Value 2

Repair cost per part 50% of the new part
price

200% of the new part
price

Shortage cost per part/
interval

300 600

Total expected demand 500 1500
Return yield 0.6 0.8
Return lead time 1 (1 month) 3 (3 months)
Repair lead time 1 (1 month) 3 (3 months)
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4.3.7. Expected number of repairs
We approximate the expected number of repairs started at time t as:

E½Rt� ffi ðE½St� � E½St�1� þ E½Dt�1�Þþ: (24)

4.3.8. Service levels
Now it is straightforward to compute the cumulative fill rates and the

cycle service levels:

βt ¼ 1�
Pt

i¼1E½BOi�Pt
i¼1E½Di�

; αt ¼ Pr


St�l1 � Dt�l1 ;t > 0

�
: (25)

Using the expressions for all the performance indicators, we tackle the
cost optimization problem using a straightforward numerical search.
1 www.plm.automation.siemens.com/.
4.4. Algorithm to find the optimal LTB quantity and bases stock levels

Let us summarize our algorithm to determine the repair policy and
the optimal LTB quantity. We apply a numerical search (bisection) to find
the value Q* that minimizes TRCðQ; s�Þ. For the initial lower bound (LB)
and upper bound (UB) of Q in the bisection search, we use

LB ¼ Pl1þl2þ1
t¼1 E½Dt � and the minimum value that satisfies

F1;TðUBÞ � maxðcb;t Þ
maxðcb;t Þþh. LB refers to the expected demand until the moment

that first ready-to-use parts are available, and UB refers to the number of
parts required for a single period problem without repair. Define the
midpoint as MP ¼ ⌈(LB þ UB)/2⌉. This yields the following algorithm:

Step 1 Compute the near-optimal base stock levels s� ¼ fs*1; s*2;…; s*T�l1g
(Section 4.2).

Step 2 Find the distribution of the actual inventory position after reor-
dering for the base stock levels s� (found in Step 1), and for each
value Q 2 fLB; MP; UBg (Section 4.3).

Step 3 Compute the total expected relevant costs TRCðQ; s�Þ for each
value Q 2 fLB;MP;UBg using (1) or (2) (depending on the
considered scenario) and the base stock levels s� (Section 4.3).

Step 4 If convergence to the optimal total expected costs is satisfactory
(i.e., the relative difference between the calculated total expected
costs forQ¼ LB andQ¼UB is less than a predefined threshold ε),
choose the near-optimal Q* ¼ MP and go to Step 6. Otherwise, go
to Step 5.

Step 5 Choose a support point (SP) equal to ⌈(MPþ UB)/2⌉ to determine
the search section in the next step. Find the distribution of the
actual inventory position after reordering for the base stock levels
s� (Step 1) and the value Q ¼ SP, then compute TRCðSP; s�Þ. If
TRCðSP; s�Þ > TRCðMP; s�Þ, then replace the values of the search
triplet points as Q 2 fLB; ⌈ðLBþMPÞ=2⌉; MPg. Otherwise,
replace the values as Q 2 fSP; ⌈ ðSPþMPÞ=2⌉; MPg. In either
case, go to Step 2.

Step 6 Compute the service levels for Q* using (25).

We conjecture that the cost function has a single minimum. Due to
complexity of the analysis, we were not able to prove this. Though,
extensive numerical experiments did not reveal any counter example.

So far in our analysis we have assumed zero stock level and zero
pipelines of in-return and in-repair parts at the beginning of the planning
period. In case that there are initial ready-to-use parts while making the
LTB decision, we need to deduct the procurement cost of those parts
while computing TRCðQ; s�Þ and finding the optimal LTB quantity. If
there are parts in the repair pipeline or the return pipeline, we further
need to modify two parts of our model. First, we take into account arrival
of those parts in (9) and (11) while determining the approximate dis-

tribution of the inventory position after ordering bSt . Second, in
computing the performance indicators, we need to modify the expected
repair, expected on-hand inventory, and expected returns. Repair jobs
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can be started from t ¼ 1 and not from t ¼ l2þ2 in (1), since there might
be available ready-to-repair parts right from the beginning. For the on-
hand inventory, we need to consider the arrival sequence of repair jobs
in the pipeline for evaluating (21). This yields a modification in the in-
tervals 1� t� l1þ1 and l1þ2� t� T. For the expected returns, we should
add up the parts in return pipeline for the return costs in (1).

5. Model validation and insights

We first check the accuracy of our approximations by comparison to
discrete event simulation (Section 5.1), followed by managerial insights
that we obtained from numerical experiments in 5.2. In 5.3, we examine
under which conditions Scenario (I) outperforms Scenario (II). Finally, in
5.4 we study when our proposed heuristic for fast moving parts can be
used as a good approximation for slowmoving parts to benefit from faster
computation times.
5.1. Accuracy of the model

We built a simulation model in Plant Simulation,1 and we compare
the cost and the service levels from our approximate method to the
simulated values with the same base stock levels, LTB quantity, and de-
mand pattern. We consider 128 problem instances for Scenario (I). In all
instances, the planning period between LTB and the remaining service
period is equal to 10 years (a value that we encountered in practice),
divided in 120 intervals of 1 month. The price of a new part is €100, and
any part left over at the end of the service period has no value. The
holding cost per part per year equals 25% of the new part price, and the
return cost per part is negligible. For simplicity, we assume that the repair
cost and the shortage cost per part per interval are constant over time. We
vary the other key input parameters as stated in Table 2. Table 3 shows
two different yearly mean demand patterns with accumulated values of
500 and 1500 and coefficient of variation (cv) per interval. The mean
demand per interval (1 month) is equal to the mean yearly demand
divided by 12. The variance of demand per interval is derived by
multiplying demand per interval by the given variance to mean ratio (20
and 30). In practice, the demand uncertainty increases with the number
of periods ahead due to the inaccuracy involved in long-term forecasts.
We assume that demand is Gamma distributed, as this distribution is also
suitable when demand is highly uncertain. All combinations yield 128
problem instances for which we find the near-optimal LTB quantity and
the base stock levels.

In Table 4, we compare the estimated performance indicators to the
results from simulation with 50,000 replications in terms of mean ab-
solute percentage errors. We see that the total expected costs and the
individual cost components (the repair costs, the obsolescence costs, and
the holding costs) are well approximated. For the shortage costs, we see
larger errors, especially when shortage cost is high, i.e., when the overall
fill rate is high. However, the low values of the expected shortages make
the errors relatively large, but typically small in absolute sense. Next, we

http://www.plm.automation.siemens.com/


Table 4
Relative error of the results from the model compared to the simulation (%).

High overall fill rate Low overall fill rate

Mean absolute
percentage
error

90%
percentile

Mean absolute
percentage
error

90%
percentile

Total costs 0.47% 0.83% 0.38% 0.80%
Shortage costs 5.1% 9.5% 3.2% 6%
Obsolescence
costs

1.4% 3.3% 1.8% 4.1%

Repair costs 0.6% 1.25% 0.57% 1.17%
Holding costs 0.12% 0.17% 0.10% 0.14%

Fig. 3. Impact of the return yield on reduction of the total costs as function of
the repair cost.

Table 3
Pattern of the expected yearly demand.

Year 1 2 3 4 5 6 7 8 9 10

Mean demand 1 (500) 80 77 71 65 58 49 40 30 20 10
cv per interval (1) 1.73 1.76 1.83 1.92 2.03 2.21 2.44 2.82 3.46 4.89
cv per interval (2) 2.12 2.16 2.25 2.35 2.49 2.71 3 3.46 4.24 6

Mean demand 2 (1500) 240 230 215 195 175 150 120 90 60 25
cv per interval (1) 1 1.02 1.05 1.1 1.17 1.26 1.41 1.63 2 3.09
cv per interval (2) 1.22 1.25 1.29 1.35 1.43 1.54 1.73 2 2.44 3.79
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observed that the approximation accuracy improves for higher variations
of demand. For details, see online Appendix 3 for the results of 128
problem instances with lower coefficients of variation.

To check how much the near-optimal LTB quantity from the model
differs from the true optimum, we find the optimal LTB quantity by
performing a numerical search with the simulation model using the same
base stock policy. We find a maximum relative difference of 1% in the
LTB quantity and a maximum relative difference 0.9% in the total ex-
pected costs compared to the results of our model. We conclude that the
LTB quantity and the performance indicators are very close to the opti-
mum value indeed.

The average runtime for computing the near-optimal base stock pol-
icy and evaluating all the performance indicators for a single LTB
quantity varies between 6 s (mean demand 500) and 40 s (mean demand
1500). The average runtime for the joint optimization of the LTB quantity
and the repair policy varies between 60 and 400 s. The computation
times are measured using a computer with a 2.83 GHz Core 2 quad
processor.

We also study whether it is worthwhile to use larger (aggregated)
intervals to benefit from faster computations. For this purpose, we use the
same set of numerical experiments, in which the only difference is the
length of an interval, i.e. 3 months instead of 1 month. We only consider
those problem instances that resemble the same length for the lead times
in both of the experiments, i.e. the instances with a lead time of 3 in-
tervals (each equal to 1 month) in the first experiment compared to the
instances with a lead time of 1 interval (equal to 3 months) in the second
experiment. The demand in each interval equals to the cumulative de-
mand in 3 subsequent intervals. As in the first set of experiments, we
assume that demand is independent over intervals. We compared the
computation times, LTB quantities and the total costs in those instances.
The computation times are on average 5 times smaller, but we find a
larger LTB quantity (on average 9%), since we have less opportunities for
intermediate replenishment decisions. As a consequence, we observe on
average 5% higher total costs. We conclude that it is better to use in-
tervals that are not too large, because this facilitates quick reactions to
changes in the inventory position by conducting repairs.

In Appendix B, we implement our proposed heuristics based on the
data from two industry cases and show the decision variables (near-
optimal LTB quantity and base stock levels) and the side results.
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5.2. Insights from the model

We study the impact of the key parameters such as repair cost, return
yield, return and repair lead time, and demand variability on the per-
formance indicators. We find similar key insights as in Behfard et al.
(2015), such as: i) the postponement advantage of the repair option, i.e.,
repair option is worth considering though it can be more expensive than
buying a new part, ii) high sensitivity of the repair policy and LTB
quantity to the lead times, though aggregating return and repair lead
time into just one lead time has small impact on the LTB quantity, iii)
high sensitivity of the repair policy and LTB quantity to demand
variability.

In addition, we study the impact of the return yield on: 1) the total
expected costs and 2) discard rate of failed parts for different values of the
repair cost. Consider the problem instance with a mean demand of 1500
with CV in the range of [1–3.1], and a shortage cost of 600 as in Section
5.1. Both the return lead time and the repair lead time are equal to 3
months. Fig. 3 shows the impact of the return yield on the reduction of
the total expected costs as function of the repair cost. We see that a high
return yield leads to a significant reduction in the total expected costs,
even if the repair cost is higher than buying a new part. However, the
reduction in the total costs diminishes for very high return yields. When
the repair cost is higher than buying a new part, it is not worthwhile to
spend much effort to improve the return process (i.e. increase the return
yield), since the reduction in the total expected costs is not significant.

In Fig. 4, we study the percentage of failed parts that should be dis-
carded during the planning period for various return yields as function of
the repair cost. When there is no repair option (yield¼ 0), all failed parts
are discarded. When the repair option is available (yield>0), the discard
rate of failed parts is significantly reduced, even for high repair costs.
Therefore, repair also has a strong impact on the sustainability of these
types of supply chains. We observe 50%–90% reduction in obsolescence
at the end of the planning period compared to the case when there is no
repair.



Fig. 6. Impact of the return lead time on the break-even point.

Fig. 7. Impact of the demand variability on the break-even point.

Fig. 4. Impact of the return yield on reduction of discard rate failed parts as
function of the repair cost.
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5.3. Comparing Scenario (I) to Scenario (II)

As we explained in Section 1, we can use two control policies in our
model, i.e., Scenario (I) with push return - pull repair and Scenario (II)
with pull return - push repair. It is worthwhile to study under which
conditions which scenario outperforms the other. As one of the insights
from the model, aggregating the return lead time and the repair lead time
into just one repair lead time hardly changes the LTB quantity (maximum
five units differences in the numerical experiment). We perform an
extensive numerical experiment over the key parameters (return lead
time, demand variability, and return yield). In each instance, the mean
demand is 1500, and the shortage cost is equal to €600 per part per in-
terval. Each interval is equal to 1 month.

Fig. 5 shows the impact of the return cost on the relative difference in
the total expected costs of Scenario (I) versus Scenario (II). When the
return lead time is zero, Scenario (I) with a push return always yields
higher total costs than Scenario (II), since all the ready-to-repair parts are
returned from the field. Due to zero return lead time, it is not necessary to
consider a push return policy. When the return lead time is strictly pos-
itive, there is a break-even point in the return cost. That is, for the return
cost lower than the break-even point, Scenario (I) outperforms Scenario
(II), and for higher return cost Scenario (II) outperforms Scenario (I).
Fig. 5 shows this break-even point as return costs being 70% of the
product value, when the return lead time is 1 month. In Figs. 6–8, we
study impact of the return lead time, the return yield, and the demand
variability on the break-even point.

We see that the break-even point increases when each of the pa-
rameters increases (and all other parameters remain the same). That is,
Scenario (II) outperforms Scenario (I) only for relatively large values of
the return cost (recall that the new part price equals €100). Fig. 6 shows
that the return lead time has a larger impact on the break-even point than
Fig. 8. Impact of the return yield on the break-even point.

Fig. 5. Impact of the return cost on the relative difference in the total costs.
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the demand variability and the return yield. It is because in Scenario (II),
the base stock level at interval t should cover larger demand over the
interval [t, t þ l1þl2]. Therefore, the costs of inventory and backorders
are larger in Scenario (II) due to the longer lead times (return þ repair
lead time instead of repair lead time only). It is remarkable that for all of
the studied parameters (return lead time, return yield, and demand
variability), increments in the break-even points decrease when the
parameter increases.

5.4. Approximating the discrete model with the continuous model

In the model of Behfard et al. (2015) with discrete demand, the
computation time explodes when total demand over the planning hori-
zon increases (say �1000). In this subsection, we study when we can use



Fig. 10. Relative difference in optimal LTB quantity from the discrete and the
continuous model.

Fig. 9. Computation time from the discrete and the continuous model.
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our model with continuous demand to approximate the LTB quantity for
slow movers, and benefit from a faster computation. We compare the
discrete model with Negative binomial demand to the continuous model
with Gamma demand, where the mean and the variance are the same. In
the discrete model, the return yield and the repair yield are separate
parameters. Therefore, as an approximation we merge them into one
return yield parameter in the continuous model by multiplying the repair
yield and the return yield. We compare: i) the computation time, and ii)
the optimal LTB quantity for different demand levels and coefficient of
variation as in Table 5 (for higher variations, computation of the discrete
model quickly explodes).

We consider problem instances with a planning horizon of 10 years.
Both the return and the repair lead time are equal to 1 interval (two
months). The shortage cost per part per interval is equal to €600, the
repair cost is equal to €70 and the value of the part is €100. Both the
return yield and the repair yield are assumed to be 0.9. Fig. 9 shows the
computation time to evaluate a single scenario in terms of repair policy
and performance indicators, for different demand levels:

We see that computation time quickly increases for the discrete model
when the total demand over the planning horizon becomes large. How-
ever, the increase is far slow for the continuous model.

Fig. 10 shows the relative difference in the optimal LTB quantity
computed for different demand levels using the discrete and the
continuous model:

We find that for low mean demand, the continuous model does not
yield a good approximation for the optimal LTB quantity. The reason is
that a Gamma distribution differs significantly from a Negative binomial
distribution. Then, the continuous approximation is not valid anymore.
Nevertheless, for large mean demand (total mean demand >300), the
continuous model provides a good approximation.
Table 5
Pattern of the expected yearly demand.

Year 1 2 3 4

Mean demand (300) 48 46.2 42.6 39
CV per interval 0.86 0.88 0.91 0.96

Mean demand (500) 80 77 71 65
CV per interval 0.67 0.68 0.71 0.74

Mean demand (700) 112 107.8 99.4 91
CV per interval 0.56 0.57 0.6 0.62

Mean demand (900) 144 138.6 127.8 117
CV per interval 0.5 0.51 0.53 0.55

Mean demand (1000) 160 154 142 130
CV per interval 0.47 0.48 0.5 0.52
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We also examine impact of the demand variability and the return
yield on the optimal LTB quantity computed by the discrete and the
continuous model. We observe that higher demand variability leads to a
relatively large difference (about 8%) in the computed LTB quantities. A
high variability of demand and a high skewness of the continuous dis-
tribution lead to a lower base stock levels and a lower LTB quantity. We
find relatively small difference in the optimal LTB quantities when we
decrease the return yield (max 3% difference), since LTB order is main
source of supply in such case.

6. Conclusion and direction for further research

In this paper, we consider the repair of failed parts as an alternative
source of supply to an LTB order. We propose heuristics to find the near-
optimal LTB quantity and the repair policy for fast moving parts with
continuous demand distribution. Our model is applicable for two
different return and repair policies: (I) a push return and a pull repair
policy and (II) a pull return and a push repair policy. We find the
following insights form the model:

- Improving the return yield has significant impact on reduction of total
expected costs and discard rate of failed parts. This is also true for a
repair cost higher than the cost of buying a new part. This highlights
the importance of reusing the returned parts for sustainability pur-
poses. Note that reductions are less significant when yield reaches a
decent level (about 80%).

- For short return lead times, Scenario (I) with push return always
outperforms Scenario (II) with pull return. However, for long return
lead times, there is a break-even point in the return cost after which
5 6 7 8 9 10

34.8 29.4 24 18 12 6
1.01 1.1 1,22 1.41 1.73 2.44

58 49 40 30 20 10
0.78 0.85 0.94 1.09 1.34 1.89

81.2 68.6 56 42 28 14
0.66 0.72 0.8 0.92 1.13 1.6

104.4 88.2 72 54 36 18
0.58 0.63 0.7 0.81 1 1.41

116 98 80 60 40 20
0.55 0.6 0.67 0.77 0.94 1.34
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Scenario (II) outperforms Scenario (I), i.e., for return cost higher than
the break-even point it is beneficial to apply pull return policy.

- The return lead time, the return yield, and the demand variability all
have an impact on the break-even point for the choice between Sce-
nario I (push-pull) and Scenario II (pull-push). We observe that the
return lead time has the largest impact on the break-even point.

- Finally, we find that our proposed continuous model can be used as an
accurate and a fast approximation for the discrete model of Behfard
et al. (2015) to find the LTB quantity and the repair policy for high
levels of demand (>300) and high yield rate (>0.8). Moreover, it is
notable that our model yields more accurate results for higher vari-
ations in demand.

This work can be further extended to a pull policy for both the returns
169
and the repairs when lead times are not negligible. Then we get a two-
echelon serial system with base stock levels and/or dispose-down-to
levels for the return process as well as the repair process. It makes the
analysis more complex, particularly in the computation of the inventory
positions after reordering. Considering more alternative sources of sup-
ply in addition to the repair of the failed parts is another interesting
option for further investigation.
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Appendix A. Approximate the value function to determine the optimal base stock levels

For determining the base stock levels (Section 4.2), we should compute the value function VtðItÞ for any value of It :

VtðItÞ ¼
��cr;t :It þ mt

�
s*t
�
; for It � s*t ;

�cr;t :It þ mtðItÞ; otherwise:
(A.1)

For all values It � s*t , it is straightforward to compute VtðItÞ. However, we need an approximation for all values It > s*t when demand is declining. We
use a piecewise linear function as an approximation. The piecewise linear function ~VtðItÞ is based on a set of support points ðxk;VtðxkÞÞ for k¼ 0,1,…,n.
The spaces between the support points are not necessarily equidistant:

~VtðItÞ ¼

8>>>><
>>>>:

�cr;t :It þ mt

�
s*t
�
; for It � s*t ;

a1:It þ b1; for x0 ¼ s*t < It � x1;
a2:It þ b2; for x0 ¼ s*t < It � x1;
…

anþ1:It þ bnþ1; for xn�1 < It � xn ¼ UBt :

(A.2)

For the piecewise linear interpolation with two support points ðxk;VtðxkÞÞ and ððxkþ1Þ; Vtðxkþ1ÞÞ, the approximate function ~VtðItÞ is:

~VtðItÞ ¼ VtðxkÞ þ Vtðxkþ1Þ � VtðxkÞ
ðxkþ1 � xkÞ :ðx� xkÞ; for s*t < xk < It � xkþ1: (A.3)

For the approximation, we are mainly interested in the values s*t< It � s*t�1, since It cannot be higher than the base stock level in the previous interval
when demand is declining ðIt ¼ St�1 � Dt�1Þ. Because we still do not know the optimal base stock level s*t�1 to determine the exact upper bound for It at
interval t, we define UBt as an approximate upper bound for s*t�1 (and so for It). Since a myopic policy gives an upper bound for the optimal base stock

level, we can compute UBt from myopic policy and the minimum value of x that satisfies: UBt ¼ Ft�1ðxÞ � cb;t�1�ðcr;t�1�cr;t Þ
cb;t�1þh (Zipkin, 2000).

We use a bisection search to determine the support points for the piecewise linear approximation. At each iteration, we compare the computed value
function from the approximated function at the middle point of the piece with the actual value function at the same point, and we check whether the
relative error is lower than an acceptable error ðεÞ. If the error was not acceptable, we continue by making more pieces of smaller distances. We can
adjust ε to have higher or lower accuracy in our approximation. Our numerical experiments showed that ε¼ 1 provides fairly good results compared to
high accuracy with ε ¼ 0.1.

In general, for any t < T, we find near-optimal base stock levels from the approximate equation ~mtðstÞ, and by computing its derivative:

~mtðstÞ ¼ cr;t⋅st þ E
�
h⋅ðst � DtÞþ þ cb;t ⋅ðDt � stÞþ

�þ EDt

�
~Vtþ1ðst � DtÞ

�
⋅ (A.4)

~m0
tðstÞ ¼ cr;t þ ðhþ cb;tÞ:FtðstÞ � cb;t þ ϕtþ1: (A.5)

The parameter αtþ1 is derived from the piecewise linear approximation. Because the derivative does not exist in support points, we look for a value st
where the sign of the derivative changes:

https://doi.org/10.1016/j.ijpe.2017.12.012
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ϕtþ1 ¼ �cr;tþ1:
�
1þ Ft

�
st � s*tþ1

��� ft
�
st � s*tþ1

�
:
�
cr;tþ1:s*tþ1 � mtþ1

�
s*tþ1

��þXn�1

ðaiþ1:½Ftðst � xiÞ � Ftðst � xiþ1Þ� þ ðaiþ1:xi þ biþ1Þ:ftðst � xiÞ � ðaiþ1:xiþ1

i¼0

þ biþ1Þ:ftðst � xiþ1ÞÞ:
(A.6)

Next, we derive the approximate value function as:

~VtðItÞ ¼
��cr;t :It þ ~mt

�
s�t
�
; for It � s�t ;

�cr;t :It þ ~mtðItÞ; otherwise:
(A.7)

Note that ~mtð:Þ is convex if ~Vtþ1ð:Þ is convex, which is true if ~mtþ1ð:Þ is convex. Since VTþ1ð:Þ is convex, all the value functions are convex as long as we
use a convex approximation of the value function.

To check the accuracy of this approximation, we performed numerical experiments under various scenarios: i) demand pattern (constant, inclining,
declining, and a mixture), ii) zero lead time, and positive lead times, and iii) high and low level of demand. Next, we computed the base stock levels for
the same problem instances using discretization. Comparison shows that both methods provide almost the same base stock levels. However, the
computation times of our proposed method are much lower than of the discretization method (a factor 10). It is remarkable that the number of the
required pieces to approximate the value function varies between two and five pieces within our experiments. This means that the piecewise
approximation is accurate enough.

Appendix B. Model results for industrial cases

In this section, we present two cases and implement our proposed heuristics to calculate the near optimal LTB quantity and the base stock levels for
the repair jobs. These are two cases from a company that is active in printing machines. Due to confidentiality of key information, we have modified the
data slightly and kept the part identifications anonymous. Still, the data patterns and cost parameters are realistic. We divide the planning horizon in
intervals of one month. We assume that the demand per month within each year is independent and identically distributed. So the monthly demand has
as mean value: the forecast demand in that year divided by 12, and as coefficient of variation: the coefficient of variation of demand in that year
multiplied by√12. Note that the demand over the repair lead time of 2 months is always 30 or larger, which satisfies the rule of thumb given by Silver
et al. (2017) for applying a continuous demand distribution (mean lead time demand should be at least 10).

For both cases, the following information holds:

	 The return cost of failed parts from the field is negligible.
	 The salvage value of parts remaining in inventory at the end of the service period is zero.
	 Return yield ¼ 0.7, return lead time ¼ 1 month
	 Repair yield ¼ 0.9, repair lead time ¼ 2 months
	 Annual holding cost ¼ 27% of the original part price
	 Repair cost ¼ 70% of the original part price

For clarity of presentation, we assume that no ready-to-repair parts exist at the time of the LTB decision.
Case 1:
The period from the LTB decision until the end of the service period is 10 years (120months). The original part price at the time of LTB is €45. For the

shortage cost per part backordered at the end of eachmonth, there is no clear monetary indication in industry. Therefore, we show the decision variables
and key performance indicators based on € 250 per backordered part, and provide a sensitivity analysis on this parameter next. The total forecast
demand over the 10 year planning horizon is 2502 parts. In Table B1, we give the declining demand pattern over these 10 years, both in terms of mean
and coefficient of variation of the demand per year.

Table B1
Pattern of the expected yearly demand.

Year 1 2 3 4 5 6 7 8 9 10
170
Mean demand
 324
 310
 290
 280
 259
 240
 222
 205
 192
 180

CV
 0.2
 0.3
 0.4
 0.6
 0.8
 0.9
 1
 1.2
 1.4
 1.6
Our model leads to the following values for the decision variables and key performance indicators:
Near-Optimal LTB quantity ¼ 1570. The base stock levels for the repair decisions are shown in Figure B1.
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Fig. B1. Repair-up-to levels Case 1.
The overall cumulative fill rate equals 96% and the number of parts to be disposed at the end of the service period is expected to be 6% of the total
part supply (number of parts procured at the LTB decision plus the expected number of repaired parts). Further, we find that 43% of the demand is
satisfied by repaired parts. In this case, part repair is relatively expensive, and under normal circumstances the company would not repair these parts.
Our model reveals that it is attractive to deploy the repair option. If the repair option is not used, the expected total costs are twice as high, and 35% of
the parts procured at LTB would be disposed at the end of the service period (so about six times more).

Figure B2 shows the overall cumulative fill rate, the fill rate in the last year, and the percentage demand satisfied by repairs based on the various
shortage costs per part. This figure can be used as an indication for the decision makers to set their inventory parameters based on the desired fill rate.
Larger shortage cost will yield to higher fill rate particularly in the last interval in expense of higher total costs due to larger LTB at the beginning. We
also observe that the usage of the repair option decreases with an increasing fill rate.

Fig. B2. KPI's based on the various shortage costs.
Case 2:
The period from the LTB decision until the end of the service period is 5 years (60 months). The original part price at the time of LTB is €10. We show

the decision variables and key performance indicators based on €50 per backordered part, and next provide a sensitivity analysis on the shortage costs.
The total forecast demand over the 5 years planning horizon is 4327 parts. In Table B2, we give the declining demand pattern over these 5 years, both in
terms of mean and coefficient of variation of the demand per year.
Table B2
Pattern of the expected yearly demand Case 2.

Year 1 2 3 4 5
171
Mean demand
 1016
 940
 835
 806
 730

CV
 0.2
 0.4
 0.6
 0.9
 1
Our model leads to the following values for the decision variables and key performance indicators:
Near-Optimal LTB quantity ¼ 2600. The base stock levels for the repair decisions are shown in Figure B3.
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Fig. B3. Repair-up-to levels Case 2.
The overall cumulative fill rate equals 96% and the number of parts to be disposed at the end of the service period is expected to be 3% of the total
part supply (number of parts procured at the LTB decision plus the expected number of repaired parts). Further, we find that 38% of the demand is
satisfied by repaired parts. As in the previous case, part repair is relatively expensive, and under normal circumstances the company would not repair
these parts. Our model reveals that it is attractive to deploy the repair option. If the repair option is not used, the expected total costs are about 1.5 times
more, and the expected dispose rate at the end of the service period is 25% (about 8 times more). Compared to the first case, we observe that the
expected number of parts disposed at the end of the service period is somewhat lower, and a somewhat lower fraction of demand is served using repair
of failed parts. This is due to a shorter remaining service period.

Figure B4 shows the overall cumulative fill rate, the fill rate in the last year, and the percentage demand satisfied by repairs based on the various
shortage costs per part. as the previous case, the larger shortage cost will yield to higher fill rate particularly in the last interval in expense of higher total
costs due to larger LTB at the beginning and using less from the repair option.

Fig. B4. KPI's based on the various shortage costs.
References

Behfard, S., van der Heijden, M.C., Al Hanbali, A., Zijm, W.H.M., 2015. Last time buy and
repair decisions for spare parts. Eur. J. Oper. Res. 244 (2), 498–510.

Bradley, J.R., Guerrero, H.H., 2009. Lifetime buy decisions with multiple obsolete parts.
Prod. Oper. Manag. 18 (1), 114–126.

Cattani, K.D., Souza, G.C., 2003. Good buy? Delaying end-of-life purchases. Eur. J. Oper.
Res. 146 (1), 216–228.

Chen, X., Sim, M., Sun, P., Zhang, J., 2008. A linear decision-base approximation
approach to stochastic programming. Oper. Res. 56 (2), 344–357.

Fortuin, L., 1980. The all-time requirement of spare parts for service after sales-
Theoretical analysis and practical results. Int. J. Oper. Prod. Manag. 1 (1), 59–70.

Hong, J.S., Koo, H.Y., Lee, C.S., Ahn, J., 2008. Forecasting service parts demand for a
discontinued product. IIE Trans. 40, 640–649.

Inderfurth, K., 1997. Simple optimal replenishment and disposal policies for a product
recovery system with leadtimes. Oper. Res. Spec 19 (2), 111–122.

Inderfurth, K., Kleber, R., 2013. A advanced for multiple-option spare parts procurement
after end-of-production. Prod. Oper. Manag. 22 (1), 54–70.

Inderfurth, K., Mukherjee, K., 2008. Analysis of spare part acquisition in post product
lifecycle. Cent. Eur. J. Oper. Res. 16, 17–42.

Kiesmüller, G.P., Minner, S., 2003. Simple expressions for finding recovery system
inventory control parameters. J. Oper. Res. Soc. 54, 83–88.

Koopman, C.W., 2011. Optimizing the Last Time Buy Decision at the IBM Service Part
Operation Organization. Public MSc thesis. University of Twente, The Netherlands.
www.dinalog.nl.
172
Krikke, H.R., van der Laan, E., 2011. Last time buy and control policies with phase-out
returns: a case study in plant control systems. Int. J. Prod. Res. 49 (17), 5183–5206.

Law, A.M., 2015. Simulation Modeling and Analysis. McGraw-Hill.
Levi, R., Pal, M., Roundy, R.O., Shmoys, D.B., 2007. Approximation algorithms for

stochastic inventory control models. Math. Oper. Res. 32 (2), 284–302.
Moore, John R., 1971. Forecasting and scheduling for past-model replacement parts.

Manag. Sci. 18 (4), 200–213.
Pourakbar, M., Frenk, J.G.B., Dekker, R., 2012. End-of-life inventory decisions for

consumer electronics service parts. Prod. Oper. Manag. 21 (5), 889–906.
Pourakbar, M., van der Laan, E., Dekker, R., 2014. End-of-Life Inventory problem with

phase-out returns. Prod. Oper. Manag. 23 (9), 1561–1576.
Ritchie, E., Wilcox, P., 1977. Renewal theory forecasting for stock control. Eur. J. Oper.

Res. 1, 90–93.
Shen, Y., Willems, S.P., 2014. Modeling sourcing strategies to mitigate part obsolescence.

Eur. J. Oper. Res. 236, 522–533.
Sherbrooke, C.C., 2004. Optimal Inventory Modelling of Systems. Wiley, New York.
Silver, E.A., Pyke, D.F., Thomas, D.J., 2017. Inventory and Production Management in

Supply Chains. CRC Press.
Teunter, R.H., Fortuin, L., 1999. End-of-Life service. Int. J. Prod. Econ. 59, 487–497.
Teunter, R.H., Klein Haneveld, W.K., 1998. The final order problem. Eur. J. Oper. Res.

107, 35–44.
Teunter, R.H., Klein Haneveld, W.K., 2002. Inventory control of service parts in the final

phase. Eur. J. Oper. Res. 137, 497–511.
Tijms, H.C., 1986. Stochastic modelling and analysis; a computational approach. John

Wiley & Sons.Truong, V.A. (2014). Approximation algorithm for the stochastic
multipored inventory problem via a look-ahead optimization approach. Math. Oper.
Res. 39 (4), 1039–1056.

http://refhub.elsevier.com/S0925-5273(17)30418-8/sref1
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref1
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref1
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref2
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref2
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref2
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref29
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref29
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref29
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref3
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref3
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref3
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref4
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref4
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref4
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref5
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref5
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref5
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref30
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref30
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref30
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref6
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref6
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref6
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref7
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref7
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref7
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref31
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref31
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref31
http://www.dinalog.nl
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref10
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref10
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref10
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref11
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref12
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref12
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref12
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref13
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref13
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref13
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref14
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref14
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref14
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref15
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref15
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref15
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref16
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref16
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref16
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref17
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref17
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref17
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref18
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref19
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref19
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref20
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref20
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref21
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref21
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref21
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref22
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref22
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref22
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref23
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref23
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref23
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref23
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref23
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref23


S. Behfard et al. International Journal of Production Economics 197 (2018) 158–173
Truong, V.A., 2014. Approximation algorithm for the stochastic multi pored inventory
problem via a look-ahead optimization approach. Math. Oper. Res. 39 (4),
1039–1056.

Van der Laan, E.A., Teunter, R.H., 2006. Simple heuristics for push and pull
remanufacturing policies. Eur. J. Oper. Res. 175, 1084–1102.

Van Houtum, G.J., Kranenburg, B., 2015. Spare Parts Inventory Control under System
Availability Constraints. Springer; International Series in Operations Research and
Management Science, p. 227.
173
Van Houtum, G.J., Zijm, W.H.M., 1991. Computational procedures for stochastic multi-
echelon production systems. Int. J. Prod. Econ. 23, 223–237.

Van Kooten, J.P.J., Tan, T., 2009. The final order problem for repairable spare parts under
condemnation. J. Oper. Res. Soc. 60, 1449–1461.

Vercraene, S., Gayon, J.P., Flapper, S., 2014. Coordination of manufacturing,
remanufacturing and returns acceptance in hybrid manufacturing/remanufacturing
systems. Int. J. Prod. Econ. 148, 62–70.

Zipkin, P., 2000. Foundations of Inventory Management. McGraw-Hill.

http://refhub.elsevier.com/S0925-5273(17)30418-8/sref32
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref32
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref32
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref32
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref24
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref24
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref24
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref25
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref25
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref25
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref26
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref26
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref26
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref33
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref33
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref33
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref27
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref27
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref27
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref27
http://refhub.elsevier.com/S0925-5273(17)30418-8/sref28

	Last Time Buy and repair decisions for fast moving parts
	1. Introduction
	2. Literature review
	3. Model and notation
	3.1. Model description and assumptions
	3.2. Notation
	3.3. Model presentation

	4. Approach and performance analysis
	4.1. Approach
	4.2. Base stock levels for repair decisions
	4.3. Performance evaluation given the LTB quantity and the base stock levels
	4.3.1. First approximation of distribution St
	4.3.2. Second approximation of distribution St
	4.3.3. Two-moment approximation for the distribution of CFt
	4.3.4. Expected total relevant costs and service levels
	4.3.5. Expected on-hand inventory
	4.3.6. Expected backorders
	4.3.7. Expected number of repairs
	4.3.8. Service levels

	4.4. Algorithm to find the optimal LTB quantity and bases stock levels

	5. Model validation and insights
	5.1. Accuracy of the model
	5.2. Insights from the model
	5.3. Comparing Scenario (I) to Scenario (II)
	5.4. Approximating the discrete model with the continuous model

	6. Conclusion and direction for further research
	Acknowledgments:
	Supplementary data
	Appendix A. Approximate the value function to determine the optimal base stock levels
	Appendix B. Model results for industrial cases
	References


