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Fundamental challenges faced by real-time animal activity recognition include variation in motion data due to changing
sensor orientations, numerous features, and energy and processing constraints of animal tags. This paper aims at finding
small optimal feature sets that are lightweight and robust to the sensor’s orientation. Our approach comprises four main steps.
First, 3D feature vectors are selected since they are theoretically independent of orientation. Second, the least interesting
features are suppressed to speed up computation and increase robustness against overfitting. Third, the features are further
selected through an embedded method, which selects features through simultaneous feature selection and classification.
Finally, feature sets are optimized through 10-fold cross-validation. We collected real-world data through multiple sensors
around the neck of five goats. The results show that activities can be accurately recognized using only accelerometer data and
a few lightweight features. Additionally, we show that the performance is robust to sensor orientation and position. A simple
Naive Bayes classifier using only a single feature achieved an accuracy of 94 % with our empirical dataset. Moreover, our
optimal feature set yielded an average of 94 % accuracy when applied with six other classifiers. This work supports embedded,
real-time, energy-efficient, and robust activity recognition for animals.
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1 INTRODUCTION
Animal behavior is a commonly used and sensitive indicator of animal welfare and can provide rich information
about their environment [25, 34, 39]. Previous research has shown that the physical behavior of animals can
be an early indicator of diseases, pain, and heat-stress. It also provides information about social interaction
within a herd [7]. The behavior of groups of animals can even be an indicator of the occurrence of environmental
events such as forest fires [39], poaching activities [3], and environmental problems [34]. The Movement Ecology
field argues that the movement of individual organisms is associated with major problems including habitat
fragmentation, climate change, biological invasions, and the spread of pests and diseases [30]. A major challenge
in movement ecology research is to explicitly link the statistical properties of movement patterns to specific
internal traits and behaviors [30]. Therefore, enriching location data with actual behavioral statistics will greatly
support movement ecology research. For example, the amount of time that an animal spends performing various
activities such as eating, fighting, or running can help researchers understand the animal’s health, its stress
levels, or changes in its environment. Collaring technology has immense potential for research in the field of
basic and applied animal ecology [8]. Animals have been collared in many studies for varying research purposes,
including animal identification, tracking, and health monitoring. Current collars are usually equipped with
Global Positioning System (GPS) sensors. More recently, collars have additionally been equipped with motion
sensors such as accelerometers and gyroscopes. Equipping collars with advanced processing techniques supports
a wide range of existing and future applications. A long lifetime and smaller size of a monitoring collar require a
design with minimal complexity without compromising accuracy. The objective of this work is to meet these
requirements by discovering a small subset of features that can be used for real-time, energy-efficient, and robust
activity recognition of animals. We select features through a combination of filtering and wrapping techniques
– the so-called embedded method. The filter is based on the Chi-squares Test, while, the wrapper is based on
Sequential Forward Selection [15]. Since the Decision Tree (DT) and Naive Bayes (NB) classifiers have low
power consumption for the predicting phase, we perform Forward selection with the DT and NB classifiers on
motion data recorded from various sensor orientations. This results in small efficient subsets of features that are
lightweight and robust to sensor orientation, while still providing a very high accuracy value, i.e. above 95 %.
We also test the subsets of optimal features on other classifiers such as Neural Network (NN), Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), and k-Nearest Neighbors (k-NN). The results show that
the average accuracy is at least 80 % for typical activities such as being stationary, walking, eating, running, and
trotting. The high performance signifies that, even though the features set was optimized for either the Decision
Tree (DT) or Naive Bayes (NB) classifiers, the optimal features presented in this paper can be reused with other
classifiers while maintaining good accuracy.

1.1 Challenges
Monitoring and activity recognition of livestock and wildlife in widespread and remote areas using collar tags
is challenging for a number of reasons. First, activity recognition should be executed in real-time, on a collar
tag, while activities are being performed, since real-time activity recognition greatly enhances the value of
many applications in livestock and wildlife management. Moreover, real-time activity recognition provides an
embedded system with context regarding an animal’s current activity, which can allow the system to efficiently
adapt its resource usage, e.g. the device can sleep when the animal is sedentary. Second, a collar tag should
last a lifetime, especially in the case of wildlife monitoring. It is dangerous, expensive, stressful for the animals,
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and sometimes impossible to recapture the animals in order to charge or replace the collar tag. This means that
the energy consumption of any processing taking place on the collar tag must be kept to a minimum. Third,
collar tags have limited computational resources, mainly due to energy, weight, and size constraints. Finally,
animal tags are subject to rough environments and intense movement behavior and are likely to shift and rotate
throughout the day. Many studies assume that the orientation of a sensor on a body is fixed when classifying
activity [19, 36, 54]. However, the variability in sensor-orientation causes significant errors if activity classifiers
are sensitive to sensor orientation. Therefore, activity classifiers must be insensitive to sensor orientation.
Numerous features can be calculated from summaries (often expressed as windows or frames) of raw sensor

data. Due to resource limitations of collar tags, it is important to calculate only those features that are most
sensitive to changing behaviors and robust to sensor orientation. Thus, complexity should be kept to a minimum,
and the trade-off between activity recognition performance and resource efficiency should be carefully evaluated.
Complexity can be found in two parts of the application; first, in the calculation of features from the sensor
data, which act as datapoints for the classification task, and second, in the machine learning algorithm that is
used for this classification. It is our challenge to find an optimal combination of the two, which both minimizes
computational expense and maximizes performance.

Human activity recognition through wearables, such as smartphones and smartwatches, is currently a popular
research topic [42]. Robustness to sensor orientation has been widely researched in the field of human activity
recognition. Sensor orientation independence can be tackled in two ways [42]: (i) using orientation-independent
features: to only use those features that are insensitive to orientation [38, 43]; (ii) transformation of the input
signal: for which in most cases – for all input data – the coordinate system of the mobile device is transformed
into a global coordinate system before activity classification [12, 32]. However, continuous calibration of raw
measurement data is computationally intensive and, as aforementioned, should be avoided for animal tags.
Studies on human activity recognition which claim to use orientation-independent features often make use of
the magnitude of the 3 axes of the accelerometer [38, 43]. However, multiple features can be derived from the 3D
vector of the accelerometer, and to the best of our knowledge an extensive analysis of the 3D vector has not yet
been performed.
In summary, the monitoring of animal behavior using collar tags in remote areas faces the following main

challenges:

• Limited energy supply;
• Large number of features to be used for online activity recognition with limited processing capability of
the collar tags;

• Sensitivity to sensor orientation.

1.2 An Overview of our Approach
Our main objective is to discover a small optimal set of features that are orientation-independent and can
discriminate between various activities using a low-complexity classifier. Therefore, from the raw data collected
by collar tags, we propose the extraction of only the most informative orientation-independent features.
Extracted features are used locally – by the collar tag – to classify the animal activities using a lightweight

classification approach such as the Decision Tree. Summary results of activity recognition are then sent to a sink
node, using a low-cost and long range communication link such as a Low Power Wide Area Network (LPWAN),
that has recently become popular in the Internet of Things (IoT) paradigm. By doing so we aim to resolve the
problem of energy consumption and communication overhead.

To evaluate this approach, analysis was performed on a total of 126 features, captured by six 3D accelerometers
and 3D gyroscopes in different orientations on five farm animals. As a result, global individual movements and
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herd interaction can be analyzed by a central server using an advanced inference approach that utilizes the
characteristics which were derived locally on the tags.

1.3 Contributions
The main contributions of this paper are:

• This work extends research on human activity recognition and provides a robust technological basis for
many applications in movement ecology, livestock management, and wildlife conservation

• We reveal features that are orientation-independent, robust, and suitable for implementing animal activity
recognition on real-time embedded platforms

• We show the significance of inertial sensors over orientation sensors in activity recognition performance
• We evaluate the performance of the selected features on 5 different goats
• We develop a video-based toolkit for labeling activities on motion sensor data
• We verify the classification performance of 6 different classifiers with our feature sets
• We make our dataset publicly available at [18]

The rest of the paper is organized as follows: Firstly, related work is discussed in Section 2, after which data
acquisition and pre-processing methods are described in Section 3. Subsequently, the proposed feature selection
methodology is detailed in Section 4, before the results of various evaluations are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2 RELATED WORK
In recent years, there has been a considerable rise in interest in activity monitoring of livestock and wildlife
using sensors and embedded devices. Existing approaches that identify animal behavior rely on data-loggers,
the subsequent collection of data, and centralized processing [6–9, 14, 21, 24, 25, 31, 41, 46, 48, 50, 53]. In real-
world applications, these approaches require transferring data to a central location. However, the transmission
demands high bandwidth which dramatically reduces the precious battery life of a collar tag due to the high
energy consumption of radios. Recent studies acknowledge the potential of collaring applications and have
evaluated offline activity recognition of cows [7, 9, 14, 25, 48], sheep [24, 46], and vultures [31]. Smith et al. [44]
studied features in cattle behavior models, using a greedy search to identify feature subsets that were most
effective in classifying activities of steers. The authors elaborated on this work [45] and classified five general
activities of dairy cows. By means of an ensemble method, the authors trained multiple binary classifiers for each
activity independently. Embedded feature selection was used to select a subset of features that produced the best
performance for each activity. The orientation of the sensor attached to the cows was fixed in both studies [44, 45]
and the authors did not consider orientation-dependency. The goal of the work presented here is to find features
that are orientation-independent, to evaluate these features on various classifiers, and to investigate the impact
of the feature-subset size. We simultaneously recorded the activities from six unique orientations in order to find
features that are truly orientation-independent and evaluate them on data from animals that were not used in the
feature selection process (unseen animals).

Real-time activity recognition systems with wearables have been widely studied for humans, and have a certain
overlap with animal activity recognition. Yang et al. [52] consider only time-domain features and disregard
frequency-domain methods such as FFT and wavelet analysis in order to limit time and processor consumption
in their implementation of a real-time activity recognition system. They state that Mean, Root Mean Square
(RMS), and Standard Deviation are the most common and practical time-domain features to be used for activity
recognition. They state that mean offers both the highest accuracy and the easiest implementation. By calculating
only the mean value of the accelerometer data, 87.55 % accuracy in the classification of five activities was
achieved using a Naive-Bayes classifier. Liang et al. [23] built on this by applying a ’two-step feature extraction’
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method for classifying 11 activities using data from a smartphone’s onboard tri-axial accelerometer. Although the
aforementioned papers describe the extraction of basic features such as mean, standard deviation, and magnitude
in order to reduce the feature dimension, feature selection remains a useful, yet unexplored, issue to distinguish
the most prominent of a large array of features. Zhang et al. [54] investigate feature selection for human activity
recognition, stating that high-quality feature selection is ’essential’ for the improvement of classification accuracy.
They discussed three methods: Sequential Forward Selection (SFS), Relief-F, and Single Feature Classification
(SFC). SFS, which was found to deliver the best performance, adds features one by one sequentially, evaluating
the accuracy for each sequential combination. This method is the simplest form of greedy feature selection,
which is employed by Marais et al. [24] to classify sheep behavior, finding the maximum and minimum values for
each axis in a frame as the most important feature out of mean, standard deviation, variance, skewness, kurtosis,
energy, frequency-domain entropy, correlation between axes, and average signal magnitude. This combination
of features is widely used in activity classification [2, 4, 25, 37]. Previous approaches either select features by
using randomly selected training and test data from the full dataset [24], providing similar proportions of each
specimen’s data in both the training and the test set by visual or statistical analysis [33], or by comparing various
feature combinations found in the literature to reach the highest performing combination [16, 36]. However,
these methods do not aim to optimize feature sets for robust orientation-independent classification. Lester et
al. [22] address the problem of creating a generic algorithm suited to an individual ’out-of-the-box’ by training
and testing their algorithm on a dataset that contains activity data from a large and diverse group of individual
animals. However, they do not address robustness of the selected features.

A number of works have reported the effects of various placements of sensors on the human body [1, 26, 28].
Error in activity recognition due to sensor orientation is often tackled by ensuring that the device orientation is
defined in advance relative to the subject’s orientation [6, 48, 51]. Ngo et al. [32] use a tilt-correction method
and an orientation-compensative matching algorithm is applied in order to solve the remaining relative sensor
orientation angle between training and test data. Florentino-Liano et al. [12] transform the measurements from
the device’s frame into a fixed frame using a rotation matrix. However, these approaches require undesirable
additional computational expense. Another solution to this problem is to use orientation-independent features
such as the magnitude of an accelerometer as implemented in [43] and [38]. Fixing a device to an animal’s body in
a particular orientation is impractical and orientation compensating techniques are not always efficient. Therefore,
we aim to find features that are orientation-independent and efficient, yielding accurate activity recognition.

3 DATA ACQUISITION AND PRE-PROCESSING
This section first presents a data acquisition system with sensor nodes that comprise motion and orientation
sensors such as 3D accelerometers and 3D gyroscopes. A description of how the sensor data are pre-processed
for feature selection is then given. All experiments with the animals complied with Dutch ethics law concerning
working with animals.

3.1 Data Collection
In order to find orientation-independent features, movement data should be recorded simultaneously by sensors
in various orientations. Therefore, data were collected from six sensor nodes that were fixed with different
orientations to a collar around the neck of goats. In practice, activity recognition only requires one sensor node,
however, the main purpose of this exercise was to investigate the effect of sensor node position and orientation
on activity recognition. For our data collection, we recorded the activities of five goats on two farms in the
Netherlands. Goats were chosen because they belong to the family of Bovidae, together with many other wild
animals such as antelope and wildebeest, and are therefore representative of several wild animals. Additionally,
goats are widely available in the Netherlands and easy to work with. In total, data were collected from three
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domestic pygmy goats and two bigger, more wild goats. The three pygmy goats are shown in Figure 1. Figure 2
shows the two larger goats along with a sensor collar in Figure 2b.

We collected data during 7 days in 2 periods of approximately 4 hours between 08:00 and 17:00 with 2 collars
simultaneously and a sampling rate of 100Hz; data acquisition was bound to these time periods because of the
opening times of the petting zoo, safety of the animals (they needed to be watched at all times), and battery
lifetime of the sensor nodes. The sensor nodes among the collars were synchronized with a precision of <100 ns.
Figure 3 shows a 3D sketch of the collar and the sensor positions with their respective x, y, and z-axes. All efforts
were put in to maximize the difference in positions and orientations between the six sensors for all three x ,
y, and z axis. Since a sensor node placed on the left would give similar data to one placed on the right, due
to the symmetry, we allocated sensor nodes on one side of the goat’s neck as much as possible. An identical
configuration was used for each animal. The collars were loosely attached to the animals and prone to rotation
around the animal’s neck during the day. When the observer noticed the collar had rotated, it was rotated back to
the orientation shown in Figure 3. Therefore, most of the collected data for each sensor can be roughly coupled
to the locations denoted in Figure 3 although the sensor locations were not fixed.

(a) (b) (c)

Fig. 1. Three smaller Pygmy goats with attached sensors in different orientations. (a) Goat G1. (b) Goat G2. (c) Goat G3.

We used the ProMove-mini [47] sensor nodes from Inertia Technology, which contain a 3-axis accelerometer
and 3-axis gyroscope. Both sensors were sampled at 100Hz such that it is possible to down-sample the data later
on for further investigation. The activities that were observed during the day are listed in Table 1. The animals
were recorded on video from various angles during the day. The videos were later used as ground truth for the
labeling process.

3.2 Data Labeling
We developed a labeling application using a Matlab GUI [27]. A screen capture of the application is shown
in Figure 4. Clock timestamps from the ProMove-mini nodes were used to obtain a coarse synchronization.
The labeling application was used to further synchronize videos with sensor data by adjusting the offset. The
magnitude of the accelerometer vectorM(t), expressed in Equation (1), is displayed to visualize the sensor data.
The data can be labeled by clicking at the point representing a change in behavior on the graph. The activity
that belongs to the data following the selected point in time can then be selected from a drop-down menu and
is added to the graph. A file with activity label and timestamp tuples is instantly updated when an annotation
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(a) (b)

Fig. 2. Two larger goats. The main purpose is to investigate the effect of sensor position and orientation on activity recognition.
(a) Goat G4. (b) Goat G5 with attached sensors at different orientations.

is added. The visualization of the sensor data and the high synchronization achieved with the video allow the
annotator to accurately label the activity associated with the sensor data.
All data for all animals were annotated according to the behaviors listed in Table 1. The stop marker for

one activity is also the start marker for the following activity, if the following activity is of any other type
than unknown. Transitions between activities were not excluded from the data, thus some datapoints include a
transition phase to another activity. When a goat was performing multiple activities simultaneously, the activity
that was mainly exercised was chosen as the label. For example, when a goat was eating while slowly walking,
this activity was labeled as walking. In order to minimize label bias, all labeled data were visually inspected and
corrected by a single person. All efforts were put in to ensure high quality of the labeling process.
The composition and size of the datasets are shown in Table 2. Not all recorded activities were equally often

performed in time by all goats. Therefore, the other activities class is comprised of the activities with the smaller
amounts of data: fighting, shaking, climbing-up, climbing-down, rubbing, and food-fight. It can be seen that goats
G1 to G3 do not often perform trotting and running and spend most of their time eating and being stationary. The
datasets for Goats G4 and G5 are generally more balanced. Segments of data were excluded from the dataset
when the activity of the goat for that segment could not clearly be recognized in the video (e.g. when the goat
has moved behind an obstacle or other animals). All excluded data that could not be labeled is denoted as Null in
Table 2.

3.3 Splitting Data for Training and Testing
All sensor data were segmented according to the labeling file generated by the labeling application. One segment
holds data for each consecutive activity performed by the animal. Each segment has a different length since the
animal performs each activity with a varied time duration. Information leakage may occur when window overlap
is used and overlapping windows are concurrently used as training and test datapoints. Therefore, segments,
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Fig. 3. A 3D sketch of the collar with the attached sensor units seen from two angles. The red arrow denotes the front of the
animal. The blue and green axis denote vertical and horizontal axis, respectively. The blue and red colored faces denote the
bottom and top side of the sensor nodes, respectively. The sensor nodes have been labeled A to F clockwise.

instead of windows, were divided into training, cross-validation, and test sets for all sensor orientations. The
cross-validation sets were used during the feature selection process. The test sets were only used at the end to
assess the performance of the final feature set.

K-fold cross-validation [40], also referred to as rotation estimation, ensures that each datapoint has been used
at least once as training, cross-validation, and test data. In each iteration k we divided the labeled segments into
three respective datasets, rotating over the whole dataset. 10-fold cross-validation was used to obtain 10 respective
training, cross-validation, and test sets. This method divides the data into 80 % training, 10 % cross-validation,
and 10 % test data. Both the feature selection process and performance assessment were repeated 10 times.

Since some activities may have a long duration, the data among the activities may be unbalanced, which results
in a significant bias for the activity learning and testing phase. For example, a stationary activity can last either
20 minutes or 5 seconds; if the longer duration is used as training and the shorter as testing, then the activity
stationary might have a larger ratio of training/testing than other activities. To eliminate this imbalance, each
segment was recursively split into smaller segments until each segment had a maximum length of 10 seconds
before dividing the segments into the three training, cross-validation, and test data sets. The effect of the splitting
is shown in Figure 5. It can be seen in Figure 5a that the ratios between the 3 sets vary for each activity when the
data are not recursively split to segments with a maximum length of 10 seconds. Figure 5b shows the proportions
when the data were split, it can be seen that the ratios are more balanced between the activities.
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Table 1. Observed activities during the day

Activity Description

Stationary The animal is lying on the ground or standing still, occasionally moving its head or stepping very
slowly.

Eating The animal is pulling fresh grass out of the ground, eating hay from a pile or twigs/grains on the
ground.

Walking The animal is walking. The pace of walking varies from very slowly to nearly trotting.

Trotting This is the phase between walking and running. The animal is not galloping rapidly but walking very
quickly and is therefore in a trot state.

Running The animal gallops.

Fighting The animal is fighting with another animal. This consists of banging its head against another animal’s
head or body. A goat often stands on the back of its legs, drops itself to the ground and drives its
horns into another animal.

Shaking The animal is shaking its entire body in a very rapid motion, often followed by rapidly shaking its
head for a brief moment. On a few occasions, the animal only shakes its head.

Climbing
up

The animal is walking/jumping up onto an object. For example climbing into a shelter, or jumping
onto a wooden bench.

Climbing
down

The animal is walking/jumping down from an object. For example climbing out of a shelter, or jumping
off a wooden bench.

Rubbing The goat is pressing its body against a fence and walking while it keeps pushing itself towards the
fence.

Food fight This occurs when food is dropped in a group of animals. All animals are pushing each other trying to
reach the food.

Table 2. Composition of the datasets per goat. The columns denote the durations and proportions of data from 6 sensors per
activity.

G1 G2 G3 G4 G5

Activity duration (min) fraction duration (min) fraction duration (min) fraction duration (min) fraction duration (min) fraction

Stationary 944 28.8% 314 19.1% 679 35.4% 1053 37.0% 406 42.2%

Walking 441 13.5% 312 19.0% 227 11.8% 433 15.2% 191 19.9%

Trotting 10 0.3% 16 1.0% 12 0.6% 45 1.6% 24 2.4%

Running 9 0.3% 5 0.3% 6 0.3% 46 1.6% 23 2.3%

Eating 1278 39.1% 639 38.9% 771 40.3% 379 13.3% 202 21.0%

Other activities 72 2.2% 36 2.2% 36 1.9% 4 0.1% 9 0.8%

Null 519 15.9% 322 19.6% 187 9.7% 889 31.2% 110 11.4%

Total (min) 3273 1644 1918 2849 965

Total (hrs) 54.6 27.4 32.0 47.5 16.1

After the division of segments into three groups, each segment of data were separated into windows of data.
We used a window size of 2 seconds and a 50 % window overlap. For each window, calculation of the features
described in Section 4.1 was performed.
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Fig. 4. Screenshot of the labeling application

4 FEATURE SELECTION
This section details the proposed approach to find orientation-independent features. During the feature selection
process, the data from goat G4 were used because this dataset contains both the largest quantity of data and the
best balance between the activities. A graphical representation of the approach is shown in Figure 6, wherein
each colored box represents an inner loop in the process. First, we select only 3D-vector features since they are
theoretically robust to sensor orientation [43]. Second, for each fold k of the data with selected 3D-vector features,
a filter method is applied in order to suppress the least interesting features. The core of our feature selection
is an embedded method, which selects features through simultaneous feature selection and classification [15].
The embedded method comprises a wrapper that uses classification performances as criteria to select the most
informative features. The classifier is used within the wrapper as a black box to weight feature subsets based
on their recognition performance. The embedded method was executed with the Forward Selection scheme
for all 10 folds with various maximum feature set sizes denoted by n in the range of {1, . . . , 10} so that a total
of 100 instances of Fk,n were obtained. Finally, the feature selection results of 10 folds were used to select the
most optimal feature set for each size n. The aforementioned steps are described in more detail in the following
subsections.

4.1 Feature Calculation
A selection was made consisting of time and frequency-domain features that are typically used for activity
recognition [4, 10, 13, 16, 19, 24, 25, 36, 37, 42, 54]. Although frequency-domain features are more complex to
calculate than time-domain features [11], no features were excluded because of their higher complexity because
this study aims to perform an exploratory analysis and to find those features that are most robust to sensor
orientation. Thus, Table 3 denotes the features that were calculated for each window of data. The total number of
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Fig. 5. Distribution of data over training, cross-validation, and test sets. (a) No recursive splitting of segments. (b) Recursive
splitting of segments to maximum length of 10 seconds
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126 features is calculated by multiplying the number of derived features with the number of sensors and axes
used in the selection process.

Table 3. Features that were calculated for each window of data from all sensors and all their axes

Feature Description Number of features

Maximum Maximum value 6

Minimum Minimum value 6

Mean Average value 6

Standard deviation Measure of dispersion 6

Median Median value 6

25th percentile The value below which 25 % of the observations are found 6

75th percentile The value below which 75 % of the observations are found 6

Mean low pass filtered signal Mean value of DC components 6

Mean rectified high pass filtered signal Mean value of rectified AC components 6

Skewness of the signal The degree of asymmetry of the signal distribution 6

Kurtosis The degree of ’peakedness’ of the signal distribution 6

Zero crossing rate Number of zero crossings per second 6

Principal frequency Frequency component that has the greatest magnitude 6

Spectral energy The sum of the squared discrete FFT component magnitudes 6

Frequency entropy Measure of the distribution of frequency components 6

Frequency magnitudes Magnitude of first six components of FFT analysis 36

Total 126

Our goal is to find orientation-independent features, therefore, a 3D vector was calculated from the sensors’
individual axes. The orientation-independent magnitude of the 3D vector is defined as:

M(t) =
√
sx (t)2 + sy (t)2 + sz (t)2 , (1)

where, sx , sy , and sz are the three respective axes of the sensor.M(t) was calculated from both the gyroscope and
accelerometer data. All data were standardized by means of a Z-transformation, obtaining a standard score of
each feature value. Standardization does not affect the performance of Decision Tree (DT) and Naive Bayes (NB)
classifiers.

4.2 Filter: Chi-Squared Test
Since filters are faster than wrapper methods they can be used as a pre-processing step to reduce space dimension-
ality and overcome over-fitting. Moreover, filters can provide a more generic feature set that is not specifically
tuned for a given classifier [15]. In order to determine the relevance of each feature with respect to the activity
label, the Chi-Squared test [35] was applied to the feature set. The Chi-Squared test is a statistical technique
that is used to determine the independence between features. The test determines if a distribution of observed
frequencies differs from the theoretically expected frequencies [35]. The Chi-Squared statistic is expressed as

χ 2 =
n∑
i=1

(Oi − Ei )
2

Ei
, (2)
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whereOi is the observed frequency and Ei is the expected frequency. The irrelevant features were excluded prior
to searching for the optimal set with an embedded approach; a weight was calculated for each feature and the
30 % lowest scoring features were excluded.

4.3 Embedded Forward Selection
After applying the Chi-Squared filter, the remaining features were used as the input for the Embedded Forward
Selection method. Forward selection starts with an empty set of features F and tests the performance of the
classifier with each isolated feature of the given dataset. Only the feature that gives the highest increase in
performance is added to the subsequent feature set F . This set is then used as the basis for the next round of
adding features until one of the stopping criteria, detailed in the following paragraph, was met. The Decision
Tree (DT) and Naive Bayes (NB) classifiers are both known to have good performance and low complexity [20],
therefore, we consider them as the two most promising classifiers for real-time activity recognition and used
them within the Forward Selection. Forward Selection was performed separately twice, first a DT was used
within the embedded method and second a NB classifier, resulting in two feature sets.

In order to investigate the effect of the number of features used, denoted as n, on the recognition performance,
we used a maximum number of features as the first stopping criterion. By incrementing the maximum number
of features from 1 to 10, 10 feature sets with incremental sizes were obtained for both the DT and NB classifier.
The second stopping criterion was defined as a minimum increase in performance. The iteration was terminated
when the absolute performance did not increase at all, so that the first criterion was enforced as much as possible.
Three speculative rounds were implemented in order to avoid getting stuck in local optima.

During the forward selection process, the classifier was trained using merged training data from all 6 sensors
with various orientations. Simultaneously, the classifier was tested with merged cross-validation data from all
6 sensors. The datapoints were always shuffled after merging to prevent bias of the classifier towards a single
orientation. Due to the fact that the classifier was trained with mixed data from all orientations, orientation-
dependent features would not perform well. Therefore, the result of the feature selection process is a feature set
that is robust against sensor-orientation.

The process described above was repeated ten times by using a 10-fold cross-validation of our sensor datasets,
leaving out a test set for each fold. This approach resulted in 10 feature sets F for both the DT and NB classifiers
and for each size n of F in a range of {1 . . . 10}. Ultimately, the test sets were only used in order to assess the
performance of the final feature set.

Most research related to activity recognition is focused on the accuracy performance of a technique. However,
there are other criteria to be considered when selecting a technique [20], including: i. CPU and memory com-
plexity, ii. sensitivity to irrelevant features, iii. sensitivity to continuous versus discrete features, iv. sensitivity
to noise, v. bias and variance of classifiers, vi. storage space required during training and classification stages,
vii. possibilities for use as an incremental learner (online Machine Learning (ML)), viii. ease of use, related to the
number of classifier or runtime parameters to be tuned by the user, and ix. comprehensibility of a classifier.

Because our study focuses on real-time activity recognition for animals, low complexity, memory footprint, and
accuracy are equally important. Ease-of-use and comprehensibility of the classifier greatly ameliorate effective
implementation in a low-cost and energy-efficient embedded system. To show the applicability of the selected
features on different classifiers, the performance of both feature sets was assessed and compared for the following
classifiers: i. Decision Tree (DT), ii. Neural Network (NN), iii. Support Vector Machine (SVM), iv. Naive Bayes (NB),
v. Linear Discriminant Analysis (LDA), and vi. k-Nearest Neighbors (k-NN). A description of the functionality and
properties of these classifiers is presented in [20]. The performance results are shown and discussed in Section 5.
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4.4 Optimal Feature Set Selection
Finally, the optimal feature set was selected from the results of the 10 folds. In order to study the effect of the
number of features (size of n) on the classification performance we selected 10 optimal feature sets incremental
in sizes n = {1 . . . 10} for both the DT and NB classifier. The optimal feature set selection algorithm is shown
in Algorithm 1. The embedded selection process resulted in a 3-dimensional binary feature weight map. The 3
dimensions are all featuresH , feature-set-sizes n, and folds k . For every set-size n in the binary map F , Algorithm 1
selected the features that were most often selected over 10 folds and included them in the final optimal feature
setUopt1...n .

ALGORITHM 1: Optimal feature set selection
Data: F1 . . .H , 1 . . .n, 1 . . .k , F is a binary feature weight map for all features H , set-sizes n, and folds k
Result:Uopt1...n , the optimal feature sets for all sizes n
for n = 1 to 10 do /* where n is the feature set size */

for k = 1 to 10 do /* where k is the fold */
for i = 1 to H do /* where H is the total number of features */

if Fi,n,k then
Si,n = Si,n + 1; /* count selections for feature i in feature-set-size n over folds k */

end
end

end
end
for n = 1 to 10 do

sort(S1...H,n , descending); /* sort the feature scores */

Uoptn = S1...n,n ; /* pick the n best scoring features */

end

5 EVALUATION
In this section, the results of the feature selection are presented, and subsequently the orientation-independent
activity recognition performance of the DT and NB optimal feature sets.

All classifiers were implemented in RapidMiner [29], and no performance fine-tuning was performed for any
of the classifiers. We used information gain as the splitting criterion for the DT, with a maximal tree depth of
10, and application of both pruning and pre-pruning. The NB classifier used Laplace smoothing to prevent high
influence of zero probabilities. For the remaining classifiers we used generic parameter settings.

5.1 Evaluation Criteria
During feature selection, the performance of the classifiers was evaluated by the accuracy measure, denoted as

accuracy = tp + tn

tp + tn + f p + f n
, (3)

where tp denotes true positives, tn denotes true negatives, f p denotes false positives, and f n denotes false
negatives. In the context of activity recognition tp denotes the number of true datapoints from activity α that
were also classified as activity α ; tn denotes the number of datapoints from all other activities (¬α ) that were not
classified as activity α ; f p denotes the number of datapoints from all other activities (¬α ) that were classified
as activity α ; f n denotes the number of true datapoints from activity α that were classified as any of the other
activities. These values were obtained from the confusion matrix of each evaluation. For a given activity α , an
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ideal classifier correctly identifies all true datapoints (i.e. 100 % tp) and also guarantees that when a datapoint is
classified as activity α it is in fact not another activity than α (i.e. 100 % tn). Therefore, the accuracy, expressed
in Equation (3), which takes both tp and tn into account, was used during the feature selection. Often the F1
measure is used for evaluation purposes and is expressed as

F1 = 2 · tp
2 · tp + f p + f n

. (4)

We used the accuracy measure for feature selection because the F1 score does not take tn into account and we
consider tn to be important for activity recognition. Additionally, the overall performance of the classifiers is also
evaluated with the recall, precision, and F1 measures in Section 5.3.4. Recall and precision are expressed as

recall = tp

tp + f n
, (5)

precision = tp

tp + f p
. (6)

For a given activity α , precision only takes into account the quantity of classified datapoints (the tp+ f p). Recall
takes all the datapoints of activity α into account (the tp + f n). Recall is also referred to as sensitivity or true
positive rate. When activity α has a high recall, this means that the classifier classified most of the datapoints of
activity α . Precision is also referred to as Positive Predictive Value (PPV). High precision means that substantially
more classified datapoints were correct than incorrect. The F1 score is also referred to as F-score or F-measure
and can be interpreted as a weighted average of the precision and recall. An F1 score of 1 is optimal and 0 is
worst.

5.2 Feature Selection
Figure 7a shows the selected features when the DT classifier is used within the wrapper. Each color represents a
feature and the size of the box represents the number of times that the feature is selected over 10 folds. When a
feature is selected less than 10 times over all 10 folds and feature set sizes n, it is considered to be insignificant
and is not shown in Figure 7.

Table 4. Optimal feature sets for DT and NB classifiers. acc and gyro are abbreviations for accel_3dvector_norm and
gyro_3dvector_norm, respectively

Size(n) 1 2 3 4 5

DT

accel_mag_6 accel_mag_6 accel_mag_6 accel_mag_6 accel_mag_6

accel_std accel_freqEntropy accel_freqEntropy accel_freqEntropy

accel_std accel_std accel_std

accel_twenty_fith_p accel_mag_1

accel_twenty_fith_p

NB

accel_std accel_std accel_std accel_std accel_std

accel_freqEntropy accel_freqEntropy accel_freqEntropy accel_freqEntropy

gyro_twenty_fith_p gyro_twenty_fith_p gyro_twenty_fith_p

accel_median accel_twenty_fith_p

accel_median
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Selected Features with Naive Bayes Classifier
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Fig. 7. Optimal feature sets for each number of features that are included. The size of each box denotes the number of
times that feature is included in the feature set over 10 folds. (a) Selected features using Decision Tree classifier. (b) Selected
features using Naive Bayes classifier

Forward Selection with the DT classifier selects various features over 10 folds when the size of the feature set
is n > 1; this means that the DT classifier is less sensitive to the variety of features. Figure 7a shows that the
6th magnitude in the norm of the accelerometer’s 3D vector is the best-performing feature to use with the DT
classifier if a single feature is used. The optimal feature set comprises the features that are most often selected
over 10 folds and is shown in Table 4, in which each column denotes the feature set with size n. When a box in
Figure 7 is similar in size to the largest box, this means that interchanging some of the features in our optimal set
(Table 4) with these other high-scoring features in Figure 7 will not significantly degrade the performance. For
example, the standard deviation of the accelerometer’s 3D vector performs equally well as the frequency entropy
feature. The optimal feature sets were used to assess the performance on both the mixed data of all sensors and
each individual sensor. These performance results are presented in Section 5.3.
The same feature selection is performed when the NB classifier is used within the embedded method. The

selection results are shown in Figure 7b. The results show that NB is more sensitive to the selected features
than DT because the same features are selected more consistently over the 10 folds. It is well known that NB is
sensitive to irrelevant features [17]. Therefore, the embedded approach selects features more consistently for NB
than for DT. The optimal feature set with the NB classifier is shown in Table 4. The gyroscope’s 25th percentile
outperforms the accelerometer features with a minor difference. Thus, the performance will degrade minimally, if
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any, when the gyroscope is not used for activity recognition. Figure 7b shows that the gyro_twenty_fith_p feature
can be exchanged with either the accel_twenty_fith_p or accel_median.

5.3 Optimal Feature Set Performance
This section presents the classification performances when the data were characterized with the feature sets
shown in Table 4.

5.3.1 Evaluation of Individual Orientations and Positions. The aim of the experiment presented here is to
investigate the difference in classification performance when a single accelerometer is used on a collar at different
positions and in diverse orientations. Moreover, the results presented here not only show the impact of different
feature subset sizes, they also give an insight on the effect of individual features in these optimal subsets.

In this experiment we used the data from goat G4 because this dataset contains both the largest quantity of data
as well as the most even balance between activities. The performance evaluation on the other goats is discussed
in Section 5.3.4. In order to show that the selected features are truly orientation-independent, the performance of
the classifier is assessed with data from each sensor node individually. All sensor nodes simultaneously recorded
the same number of activities but did so from diverse orientations and locations, as shown in Figure 3. Both DT
and NB feature sets were used to characterize the training and test sets of each individual sensor’s data. Both
the DT and NB classifiers were trained and tested with data from each individual sensor. The performances
of both classifiers, shown in Figure 8, are very high and the variance among the sensors is low. The minor
difference between the sensors’ performances can be explained by the different locations of the sensors. Figure 8a
shows that position E and C benefited from the accel_median feature that was included in the subset with 6
features. This feature is not included in the smaller subset sizes because the feature selection was optimized
for all orientations simultaneously and not for individual location performance. Figure 8b shows that the NB
classifier selected features that perform more consistently throughout all positions. Because NB classifiers are
known to be very sensitive to the presence of redundant and/or irrelevant attributes [5], they typically select
more consistent features that perform well on average over all positions. For both classifiers, the sensors C and F
are the best overall performing sensors. These sensors were mostly positioned at the bottom and top of the goat’s
neck, respectively. This indicates that the best location on the neck for animal activity recognition is either at the
top or bottom of the neck. The difference in performance among various orientations and locations is small (±
2 % with 3 features), and activity recognition will be robust against rotation of the animal tag around the animal’s
neck.

5.3.2 Evaluation of DT and NB Classifiers with data from Diverse Sensor Orientations. The goal of this experi-
ment is to asses and compare the performance of DT and NB classifiers which were tested with data from diverse
orientations. A single DT and NB classifier were trained with mixed data from all six sensor orientations (A-F)
with diverse orientations. The optimal feature sets were used to characterize the mixed data’s training and test
sets. The results are presented in Figure 9, which shows that both classifiers are able to classify activities with
high accuracy using just a single feature. The results in Figure 9 show that the optimal subset size is 3 features
and adding more than 3 features does not increase the performance of the classifiers. NB performs slightly better
than DT for all feature set sizes.
In order to evaluate the validity of our feature sets, they were compared with randomly-drawn feature sets,

excluding the optimal set. The results are shown in Figure 10. The performances of the random feature set are
always lower than the optimal feature set which shows that our feature sets are indeed optimal. The difference
in performance between the optimal and random feature set is larger for the NB classifier. This is as expected
because NB is more sensitive to irrelevant features than DT.
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Fig. 8. Performance for each sensor orientation. Error bars denote standard deviation over 10 folds. (a) Performance using
DT classifier and DT feature set. (b) Performance using NB classifier and NB feature set.
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Fig. 9. Performance for mixed data set with DT algorithm using DT feature set and NB algorithm using NB feature set. Error
bars denote standard deviation over 10 folds

5.3.3 Assessing the Performance of the Features with Various Types of Classifiers. The aim of this experiment is
to evaluate the performance of various types of classifiers other than DT and NB. We used our optimal feature
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Fig. 10. Performances of optimal feature set and randomly selected feature sets. The mixed data set was used. Error bars
denote standard deviation over 10 folds

sets to characterize the mixed-orientation activity data and assessed the performance of the features and the
effect of the subset size with 6 types of classifiers.

Figures 11a and 11b show the performance of 5 classifiers for different sizes of the feature sets. The results in
Figure 11a are obtained with the DT feature sets and Figure 11b shows results that are obtained with the NB
feature sets. The fact that performance increases with the use of more features signifies that the feature set is
not optimal for these classifiers. An optimal feature set can only be found when feature selection is tuned for
that specific classifier. The NN classifier is expected to be among the best performing algorithms and Figure 11
shows that the optimal sets perform at least as good on a NN than on the classifiers they were selected with in
the embedded method. Figure 12 shows that the genericity of both feature sets is very similar except when n = 1.
The NB feature set includes more generic features than the DT feature set (both LDA and SVM perform better
with 2 features because the accel_freqEntropy is included).

The general performance does not significantly increase when more than 3 features are included. For all the
classifiers, except LDA and SVM, the performance is already 93 % with just 1 feature.

5.3.4 Evaluation of Feature Sets on Unseen Goats. The aim of the experiment described in this section is to
evaluate the performance of the optimal feature sets on the goats that were not used in the feature selection
process. The optimal feature sets were tested on 4 other goats that wore the collar. The optimal feature sets were
also tested with unseen data of the goat that were used for our feature selection. The activities of each goat
were recorded concurrently from 6 positions in various orientations, as shown in Figure 3. For each animal, the
classifiers were trained and tested with data from that animal, using the optimal feature sets. Training and testing
a classifier with data from various individuals would be possible through methods such as leave-one-subject-out,
which are generally used to assess the generalization of classifiers over multiple individuals; however, such an
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Fig. 11. Performances of multiple algorithms using the mixed data set. Error bars denote standard deviation over 10 folds (a)
using DT feature set. (b) using NB feature set
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Fig. 12. Average performances of multiple algorithms with DT and NB feature feature sets. Error bars denote standard
deviation over 6 algorithms

assessment brings up a range of issues regarding generic activity recognition, which is beyond the scope of this
paper. In what follows, we discuss the evaluation of the optimal features on unseen goats with both the DT and
NB classifiers.
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The performance of the DT and NB classifiers can be seen in Figures 13a and 13b, respectively. Because the
data from G4 were used for the feature selection process, the features are most optimal for this animal. G5 is
physically most similar to G4 and Figure 13a shows that the performance of G5 is even a little higher than G4.
Table 2 shows that the eating activity is better balanced for G5 and has a 6 % higher accuracy (shown in Table 8).
The difference in accuracy for the eating activity of G5 explains the overall, although minor, higher performance
for G5. G1, G2, and G3 are all three goats from a different family. They are smaller, have shorter legs, and do
not trot and run as much as the more wild goats. We believe these physical differences to be the main reason
of the drop in performance for goats G1, G2, and G3. However, the accuracy of activity recognition of these
goats is still above 89 % while the classifiers’ parameters and data were not tuned or optimized for multiple
subjects. The results in Figures 13a and 13b show that the NB subset was able to find an optimal set for all animals
with 3 features as the performance does not significantly increase with more features. With the DT subset the
gyro_3dvector_norm_median feature was included at n = 8 and improved the performance of goat G1 and G2
with 3 %. Using a gyroscope consumes more energy, therefore this is a trade-off between accuracy and power
consumption. However, the results of the other goats’ performances show that using a gyroscope is not necessary
if the classifier is properly tuned for a given or multiple individuals. Power consumption and other considerations
for real-time implementation are further discussed in Section 5.3.5.
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Fig. 13. Performances of DT and NB classifiers using the mixed data set of 5 different goats. Data from goat G4 was used
exclusively during the feature selection process. (a) using DT feature set. (b) using NB feature set

We evaluated the performance of 6 types of classifiers with test-data from all 5 goats. The classifiers were
evaluated with both the DT and NB optimal feature subsets with 3 features. The results in Figure 14 show that
the relative differences in performance is similar for all goats. The best overall performance was obtained with
data from G4 because the feature sets were selected with cross-validation data from this animal. For all the goats
other than G4 the classifier that was used during feature selection performed the best, closely followed by the
NN classifier. The results show that the NN classifier generalizes well over multiple animals. The highest overall
accuracy for all classifiers and animals was obtained with the NB feature set.
The confusion matrices of the DT and NB classifiers for goat G4 are shown in Tables 5a and 5b, respectively.

The classification performances in terms of accuracy, recall, precision, and F1 scoring are presented in Table 6.
The confusion matrices and performances for goat G5 are shown in Tables 7 and 8, respectively. The optimal
feature sets with n = 3 were used to characterize the data. The values in the confusion matrices are summed up
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Fig. 14. Performances of multiple algorithms using the mixed data set of 5 different goats using 3 features. (a) using DT
feature set. (b) using NB feature set

over 10 folds. The numbers in Tables 5 and 7 express the number of test datapoints that have been classified as
that activity. Each datapoint represents a 2-second window of raw sensor input data. The sum of each column
denotes the total number of true datapoints for that activity over 10 folds.

The results in Table 6 show that both classifiers perform similar with average accuracies of 93.90 % and 94.78 %,
respectively. For both goats there is no overall significant difference in performance between the two classifiers
other than NB performing slightly better (0.8 % higher F1 score). The DT outperforms NB for the activities
walking, eating, and trotting, as is reflected in the higher F1 score. For the activity eating DT has a higher recall
and lower precision than NB; this means that more datapoints of this activity were recognized by the DT, but the
ratio of correctly classified datapoints was higher with NB.

Because the classifiers’ performances are very similar for both goats, in the following we combine the evaluation
of individual activities. Overall, all activities are well detected, except for the other activities activity. The activities
stationary and walking have the best F1 scores and are well detected and distinguished from other activities. The
activity trotting has the single lowest F1 score and Table 5 shows that this activity is mostly confused with running
and vice versa. This is as expected because the activities are similar and it is often very difficult to distinguish
between the two activities during labeling; the animal is often rapidly changing from trotting to running and vice
versa. The activities stationary, walking, and eating are mostly confused with each other. This can be explained
because the goat often combines these activities; e.g. during eating the goat can be stationary while chewing,
and often is walking while eating. The activities in the other activities activity are mostly classified as either
trotting (G4) or walking (G5). Tables 6 and 8 both show that the NB classifier discriminates other activities activity
datapoints better than DT. Improved discrimination between the activities can be achieved with more tuning of
the classifiers and is outside the scope of this paper.

5.3.5 Considerations for Real-Time Activity Recognition on a Collar Tag. Executing activity recognition in
real-time (during the activities) and locally (on the collar tag) supports numerous applications in areas such
as wildlife conservation, livestock management, and ecology research. Local processing faces the challenge of
limited energy supply, processing power, and transmission bandwidth on collar tags. However, local activity
recognition will significantly prolong the battery life because large amounts of data do not have to be transmitted,
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Table 5. Confusion matrices of DT and NB classifiers using 3 features for goat G4. The values are summed up over 10 folds.

(a) DT classifier

Predict \ True True Stationary True Walking True Eating True Running True Trotting True Other Activities

Predict Stationary 93807 22 5471 0 0 0

Predict Walking 372 50773 914 22 187 654

Predict Eating 32028 876 39000 0 0 7

Predict Running 0 0 0 4622 463 292

Predict Trotting 0 158 0 794 4684 891

Predict Other Activities 0 5 0 0 8 6

(b) NB classifier

Predict \ True True Stationary True Walking True Eating True Running True Trotting True Other Activities

Predict Stationary 113204 24 17792 0 0 0

Predict Walking 401 50038 1143 18 101 564

Predict Eating 12581 630 26404 0 0 0

Predict Running 0 0 0 4814 599 132

Predict Trotting 0 899 0 447 4500 1039

Predict Other Activities 21 243 46 159 143 115

Table 6. Performance of both DT and NB classifiers for goat G4

Classifier Stationary Walking Eating Running Trotting Other Activities Average Performance

Accuracy
DT 83.95% 98.64% 83.35% 99.33% 98.94% 99.21% 93.90%

NB 86.94% 98.30% 86.36% 99.43% 98.63% 99.01% 94.78%

Recall
DT 74.33% 97.95% 85.93% 84.99% 87.68% 0.32% 71.87%

NB 89.70% 96.54% 58.18% 88.53% 84.22% 6.22% 70.56%

Precision
DT 94.47% 95.94% 54.23% 85.96% 71.76% 31.58% 72.32%

NB 86.40% 95.74% 66.65% 86.82% 65.36% 15.82% 69.46%

F1
DT 83.20% 96.94% 66.50% 85.47% 78.93% 0.64% 68.61%

NB 88.02% 96.14% 62.13% 87.66% 73.60% 8.93% 69.41%

Table 7. Confusion matrices of DT and NB classifiers using 3 features for goat G5. The values are summed up over 10 folds.

(a) DT classifier

Predict \ True True Stationary True Walking True Eating True Running True Trotting True Other Activities

Predict Stationary 41528 1 2733 0 0 0

Predict Walking 149 21920 898 12 72 3571

Predict Eating 6870 693 20445 0 0 341

Predict Running 0 3 0 1923 595 401

Predict Trotting 0 181 0 723 2113 410

Predict Other Activities 1 26 5 0 21 17

(b) NB classifier

Predict \ True True Stationary True Walking True Eating True Running True Trotting True Other Activities

Predict Stationary 42490 28 3329 0 0 40

Predict Walking 143 21596 915 10 28 3462

Predict Eating 5909 770 19780 0 0 236

Predict Running 0 0 0 1852 424 217

Predict Trotting 0 332 0 572 2133 656

Predict Other Activities 6 98 57 224 216 129

which typically consumes more energy than local data processing. Moreover, online activity recognition enables
the collar tag to efficiently adapt its resource usage to a situation (e.g. the device can sleep when an animal is
sedentary). A long lifetime and smaller size of a monitoring collar require an activity recognition system with
minimal complexity. Three components that contribute to the energy consumption of an activity recognition
system are: i. the quantity and type of sensors that are utilized, ii. the complexity of the classifier’s inference phase,
and iii. the complexity and quantity of the features. In the following we will discuss these three components.

Gyroscopes typically consume more energy than other sensors because they continuously vibrate at a certain
frequency in order to measure the angular velocity [49]; thus, it is better to not use this sensor. The results in
Tables 4a and 4b show that the optimal DT subset does not include any gyroscope features and the NB subset
only one, which can be swapped out for an accelerometer feature with a minor drop in performance. Therefore,
simple and orientation-independent activity recognition can be done without using a power-hungry gyroscope
sensor.

During runtime, a classifier infers each new window of data. With a window size of 2 seconds and 50 % overlap
there will be a new datapoint every second. For each datapoint, the CPU and memory are engaged in order
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Table 8. Performance of both DT and NB classifiers for goat G5

Classifier Stationary Walking Eating Running Trotting Other Activities Average Performance

Accuracy
DT 90.77% 94.69% 89.08% 98.36% 98.11% 95.48% 94.41%

NB 91.05% 94.52% 89.38% 98.63% 97.89% 95.07% 94.42%

Recall
DT 85.54% 96.04% 84.90% 72.35% 75.44% 0.36% 69.10%

NB 87.52% 94.62% 82.14% 69.68% 76.15% 2.72% 68.81%

Precision
DT 93.82% 82.34% 72.12% 65.81% 61.66% 24.29% 66.67%

NB 92.60% 82.57% 74.10% 74.29% 57.76% 17.67% 66.50%

F1
DT 89.49% 88.66% 77.99% 68.92% 67.85% 0.71% 65.60%

NB 89.99% 88.19% 77.91% 71.91% 65.69% 4.72% 66.40%

to calculate the features and classify the datapoint; thus, minimizing the complexity of these steps will save
large amounts of energy over longer runtime periods. The results in this section have shown that lightweight
classifiers, such as Decision Tree and Naive Bayes [20], can obtain good performance when tested with data from
diverse orientations. The monitoring system is more energy efficient with a lower quantity and complexity of
features. Previous works [12, 32] have tried to obtain orientation independence through transformations of the
input data. However, this requires a significant amount of additional computation for every window of data [42].
Therefore, we propose the use of only a few orientation-independent features that have low complexity.

There are two main types of features: time and frequency-domain features. Figo et al. [11] performed an exten-
sive complexity analysis of features that are commonly used. Time domain features require less computational
resources than frequency domain features. The results in Figure 14 show that most classifiers considered here
have good performance with only a single feature. Figure 12 shows that using more than 3 features does generally
not improve the performance of the classifiers. The optimal sets with 3 features do contain frequency domain
features (frequency entropy and 6th magnitude of FFT). When energy efficiency is more important than
accuracy, time domain features should be preferred, which results in a small drop in accuracy. Figure14b shows
that classifiers with a lightweight inference phase (NB, DT, and NN) obtain high accuracy (>92 %) using only the
accelerometer 3D vector standard deviation, which is a time domain feature with low complexity [11].

Because we use 2-second observation windows with 50% overlap, the delay of an actual implementation would
therefore be 1 second plus the time for classification. The classification time varies with classifiers and can, in
theory, be done in milliseconds. Therefore, the total delay for the activity to be recognized in real time is more
or less 1 second. However, transmitting an update to a central location would be really expensive in terms of
energy. We propose to aggregate a log file with change points and transmit the information each time period T ,
or use conditional rules regarding the local context (e.g. transmit log file when τ > K , where τ denotes the total
duration of activity α within a time periodU , and K denotes a maximum duration).

6 CONCLUSIONS
We have shown that it is possible to obtain optimal orientation-independent features by training a classifier
with mixed data from various orientations. Accurate activity recognition is achieved using just one feature and
can be slightly improved by using up to 3 features for the Decision Tree (DT) and Naive Bayes (NB) classifier;
using a larger feature set does not improve the performance. The best scoring features are: accel_3dvector_std,
accel_3dvector_norm_mag_6, accel_3dvector_freqEntropy, and gyro_3dvector_twenty_fith_p. This is a promising list
because most of these features are accelerometer features. With a small drop in accuracy, the frequency-domain
features can be swapped out for time-domain features. Our results have shown that the accelerometer is the
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best sensor to use for activity recognition. A gyroscope will not significantly contribute to performance and
consumes more energy than accelerometers. NB slightly outperforms DT and the NB feature set generalizes a
little better over other classifiers. We prefer the NB classifier because of its superior accuracy, low complexity,
and its ability to generalize over other goats. Our results indicate that the best location on the neck of a goat for
activity recognition is at the top or bottom of the neck.

We have shown that the distribution of data over training, cross-validation, and test sets is more balanced when
long segments of activities are recursively broken up into shorter segments. This method allows for improved,
more balanced datasets without information leakage between training and test sets.

We argue that the activity of an animal is accurately recognized by placing only an accelerometer and a simple
processing unit around its neck – in any orientation or position – with a NB classifier that only requires one
feature, the standard deviation ofM(t) (1), over a 2 sec window of data. When using a classifier other than DT or
NB, our approach can be repeated to select an optimal feature set for that classifier.
The optimal feature sets that have been revealed in this work are orientation-independent, consist of mostly

time-domain features, and are used with simple classifiers; these properties support real-time, energy-efficient,
and robust activity recognition for animals.
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