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Abstract. Attack trees (ATs) are a popular formalism for security anal-
ysis, and numerous variations and tools have been developed around
them. These were mostly developed independently, and offer little inter-
operability or ability to combine various AT features.

We present ATTop, a software bridging tool that enables automated
analysis of ATs using a model-driven engineering approach. ATTop ful-
fills two purposes: 1. It facilitates interoperation between several AT
analysis methodologies and resulting tools (e.g., ATE, ATCalc, ADTool
2.0), 2. it can perform a comprehensive analysis of attack trees by trans-
lating them into timed automata and analyzing them using the popular
model checker Uppaal, and translating the analysis results back to the
original ATs. Technically, our approach uses various metamodels to pro-
vide a unified description of AT variants. Based on these metamodels,
we perform model transformations that allow to apply various analysis
methods to an AT and trace the results back to the AT domain. We illus-
trate our approach on the basis of a case study from the AT literature.

1 Introduction

Formal methods are often employed to support software engineers in particularly
complex tasks: model-based testing, type checking and extended static checking
are typical examples that help in developing better software faster. This paper is
about the reverse direction: showing how software engineering can assist formal
methods in developing complex analysis tools.

More specifically, we reap the benefits of model-driven engineering (MDE)
to design and build a tool for analyzing attack trees (ATs). ATs [25,31] are
a popular formalism for security analysis, allowing convenient modeling and
analysis of complex attack scenarios. ATs have become part of various system
engineering frameworks, such as UMLsec [16] and SysMLsec [27].

Attack trees come in a large number of variations, employing different secu-
rity attributes (e.g., attack time, costs, resources, etc.) as well as modeling con-
structs (e.g., sequential vs. parallel execution of scenarios). Each of these vari-
ations comes with its own tooling; examples include ADTool [12], ATCalc [2],
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and Attack Tree Evaluator [5]. This “jungle of attack trees” seriously hampers
the applicability of ATs, since it is impossible or very difficult to combine dif-
ferent features and tooling. This paper addresses these challenges and presents
ATTop1, a software tool that overarches existing tooling in the AT domain.

In particular, the main features of ATTop are (see Fig. 1):

1. A unified input format that encompasses the known AT features. We have
collected these features in one comprehensive metamodel. Following MDE
best practices, this metamodel is extensible to easily accommodate future
needs.

2. Systematic model transformations. Many AT analysis methods are based on
converting the AT into a mathematical model that can be analyzed with exist-
ing formal techniques, such as timed automata [11,23], Bayesian networks
[13], Petri nets [8], etc. An important contribution of our work is to make
these translations more systematic, and therefore more extensible, maintain-
able, reusable, and less error-prone.
To do so, we again refer to the concepts of MDE and deploy model transfor-
mations. We deploy two categories here: so-called horizontal transformations
achieve interoperability between existing tools. Vertical transformations inter-
pret a model via a set of semantic rules to produce a mathematical model to
be analyzed with formal methods.

3. Bringing the results back to the original domain. When a mathematical model
is analyzed, the analysis result is computed in terms of the mathematical
model, and not in terms of the original AT. For example, if AT analysis is
done via model checking, a trace in the underlying model (i.e., transition
system) can be produced to show that, say, the cheapest attack costs $100.
What security practitioners need, however, is a path or attack vector in the
original AT. This interpretation in terms of the original model is achieved by
a vertical model transformation in the inverse direction, from the results as
obtained in the analysis model back into the AT domain.

These features make ATTop a software bridging tool, acting as a bridge
between existing AT languages, and between ATs and formal languages.

Our Contributions. The contributions of this paper include:

– a full-fledged tool based on MDE, which allows for high maintainability and
extensibility;

– a unified input format, enabling interoperability between different AT
dialects;

– systematic use of model transformations; which increases reusability while
reducing error likelihood;

– a complete cycle from AT to formal model and back, allowing domain experts
to profit from formal methods without requiring specific knowledge.

Overview of Our Approach. Figure 1 depicts the general workflow of our
approach. It shows how ATTop acts as a bridge between different languages and
1 Available at https://github.com/utwente-fmt/attop.

https://github.com/utwente-fmt/attop
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formalisms. In particular, thanks to horizontal transformations, ATTop makes it
possible to use ATs described in different formats, both as an input to other tools
and as an input to ATTop itself. In the latter case, vertical transformations are
used in order to deal with Uppaal as a back-end tool without exposing ATTop’s
users to the formal language of timed automata.
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ATTop

UPPAAL tool

Attack 
vector in AT

Property of interest (e
cost optimal attack vector)

ATE Binary AT

ATCalc format

ADTool 2.0 AT specified by 
adtree.xsd
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Fig. 1. Overview of our approach, showing the contributions of the paper in the gray
rectangle. Here ATE, ATCalc, ADTool 2.0 are different attack tree analysis tools, each
with its own input format. ATTop allows these tools to be interoperable (horizontal
model transformations, see Sect. 4.1). ATTop also provides a much more comprehensive
AT analysis by automatic translation of attack trees into timed automata and using
Uppaal as the back-end analysis tool (vertical transformations, see Sect. 4.2).

Related Work. A large number of AT analysis frameworks have been devel-
oped, based on lattice theory [18], timed automata [11,21,23], I/O-IMCs [3,22],
Bayesian networks [13], Petri nets [8], stochastic games [4,15], etc. We refer
to [20] for an overview of AT formalisms. Surprisingly, little effort has been
made to provide a security practitioner with a generic tool that integrates the
benefits of all these analysis tools.

The use of model transformations with Uppaal was explored in [29] for a
range of different formalisms; the Uppaal metamodel that was presented there
is the one we use in ATTop. A related approach for fault trees was proposed in
[28]. In [14], the authors manually translate UML sequence diagrams into timed
automata models to analyze timeliness properties of embedded systems. In [1],
the OpenMADS tool is proposed that takes the input of SysML diagrams and
UML/MARTE annotations and automatically translates these into determin-
istic and stochastic Petri nets (DSPNs); however, no model-driven engineering
technique was applied.

Organization of the Paper. In Sect. 2, we describe the background. Section 3
presents the metamodels we use in ATTop, while the model transformations are
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described in Sect. 4. Section 5 describes the features of ATTop, and in Sect. 6 we
show the results of our case study using ATTop. Finally, we conclude the paper
in Sect. 7.

2 Background

2.1 Attack Trees in the Security Domain

Modern enterprises are ever growing complex socio-technical systems comprised
of multiple actors, physical infrastructures, and IT systems. Adversaries can
take advantage of this complexity, by exploiting multiple security vulnerabilities
simultaneously. Risk managers, therefore, need to predict possible attack vec-
tors, in order to combat them. For this purpose, attack trees are a widely-used
formalism to identify, model, and quantify complex attack scenarios.

Attack trees (ATs) were popularized by Schneier through his seminal paper in
[31] and were later formalized by Mauw in [25]. ATs show how different attack
steps combine into a multi-stage attack scenario leading to a security breach.
Due to the intuitive representation of attack scenarios, this formalism has been
used in both academia and industry to model practical case studies such as
ATMs [10], SCADA communication systems [7], etc. Furthermore, the attack
tree formalism has also been advocated in the Security Quality Requirements
Engineering (SQUARE) [26] methodology for security requirements.

Example 1. Figure 2 shows an example AT (adapted from [36]) modeling the
compromise of an Internet of Things (IoT) device.

At the top of the tree is the event compromise IoT device, which is refined
using gates until we reach the atomic steps where no further refinement is
desired (the leaves of the tree). The top gate in Fig. 2 is a SAND (sequential
AND)-gate denoting that, in order for the attack to be successful, the chil-
dren of this gate must be executed sequentially from left to right. In the exam-
ple, the attacker first needs to successfully perform access home network, then
exploit software vulnerability in IoT device, and then run malicious
script. The AND-gate at access home network represents that both
gain access to private networks and get credentials must be performed,
but these can be performed in any order, possibly in parallel. Similarly,
the OR gate at gain access to private networks denotes that its children
access LAN and access WLAN can be attempted in parallel, but only one needs
to succeed for a successful attack.

Traditionally, each leaf of an attack tree is decorated with a single attribute,
e.g., the probability of successfully executing the step, or the cost incurred when
taking this step. The attributes are then combined in the analysis to obtain
metrics, such as the probability or required cost of a successful attack [19].

Over the years, the AT formalism has been enriched both structurally (e.g.,
adding more logical gates, countermeasures, ordering relationships; see [20] for
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Fig. 2. Attack tree modeling the compromise of an IoT device. Leaves are equipped
with the cost and time required to execute the corresponding step. The parts of the tree
attacked in the cheapest successful attack are indicated by a darker color, with start
and end times for the steps in this cheapest attack denoted in red (times correspond
to the scenario in Fig. 11). (Color figure online)

an overview) and analytically (e.g., multi-attribute analysis, time- and cost-
optimal analysis). This has resulted in a large number of tools (ADTool 2.0 [12],
ATCalc [5], ATE [2], etc.), each with their own analysis technique.

Such a wide range of tools can be useful for a security practitioner to perform
different kinds of analyses of attack trees. However, this requires preparing the
AT for each tool, as each one has its own input format. To overcome the difficulty
of orchestrating all these different tools, we propose one tool—ATTop—to allow
specification of ATs combining features of multiple formalisms and to support
analysis of such ATs by different tools without duplicating it for each tool.

2.2 Model-Driven Engineering

Model-driven engineering (MDE) is a software engineering methodology that
treats models not only as documentation, but also as first-class citizens, to
be directly used in the engineering processes [32]. In MDE, a metamodel (also
referred to as a domain-specific language, DSL) is specified as a model at a more
abstract level to serve as a language for models [33]. A metamodel captures
the concepts of a particular domain with the permitted structure and behav-
ior, to which models must adhere. Typically, metamodels are specified in class
diagram-like structures.

MDE provides interoperability between domains (and tools and technologies
in these domains) via model transformations. The concept of model transfor-
mation is shown in Fig. 3. Model transformations map the elements of a source
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Fig. 3. The concept of model transformation

metamodel to the elements of a target metamodel. This mapping is described as
a transformation definition, using a language specifically designed for this pur-
pose. The transformation engine executes the transformation definition on the
input model and generates an output model.

Adaptation of MDE provides various benefits [30,34,37], specifically:

1. Empowering domain experts with abstraction: With the introduction of meta-
models and related tooling, domain experts can focus on modeling in the
domain; while the technical problems below the modeling level, such as low-
level implementation details are abstracted away from the domain experts.

2. Higher level of reusability: The models, metamodels and the tools based on
them are high-level artifacts that can be reused by many projects targeting
similar domains. Such reuse increases productivity and quality of the final
product since the reused units are maintained and improved continuously.

3. Interoperability: There can be various tools and technologies used in a domain,
each having its own I/O formats. Model transformations provide interoper-
ability between these tools and technologies.

There are a number of tools available for realizing MDE. In this paper, we
have used the Eclipse Modeling Framework (EMF) [35], which is a state-of-the-
art tool developed to this aim. EMF provides the Ecore format for defining the
metamodels and has many plug-ins to support the various functionalities related
to MDE. The model transformations we present in this paper were implemented
using the Epsilon Transformation Language (ETL) [17], which is one of the
domain-specific languages provided by the Epsilon framework. We have chosen
ETL since it is an easy-to-use language and allows users to inherit, import and
reuse other Epsilon modules, which increases reusability. We use Java to select
and execute the ETL transformations.

3 Metamodels for Attack Tree Analysis

ATTop uses three different metamodels to represent the attack tree domain con-
cepts, all defined in the Ecore format. These are shown in Figs. 4, 5 and 6, in a nota-
tion similar to that ofUMLclass diagrams.They show thedomain classes and edges
representing associations between classes. Edges denote references (→), contain-
ment ( ), or supertype ( ) relations.Multiplicities are denoted between square
brackets (e.g., [0..*] for unrestricted multiplicity).
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1. The AT metamodel (ATMM), unifies several extensions of the attack tree
formalism including traditional attack trees [25,31], attack-defense trees [18],
defense trees [6], etc. It consists of two parts: the Structure metamodel and
the Values metamodel. Below we describe the most important design choices
that led to the ATMM:

– The ATMM represents the core, generic concepts of ATs, resulting in a
minimal (and thus clean) metamodel that a domain expert can easily
read, understand and use to create models.

– The ATMM provides a lot of flexibility in specifying the relevant concepts
by using string names and generic values. Concepts such as the Connector
and the Edge are specified as abstract entities with a set of concrete
instances. Therefore, new connectors and edges can easily be added to the
metamodel without breaking existing model instances. The metamodel is
designed to have good support for model operations, such as traversal of
the AT models. From a node, any other node can be reached directly or
indirectly following references.

– The ATMM node and tree attributes offer convenient and generic meth-
ods for supporting the results of analysis tools. This allows us to translate
results from a formal tool back into the AT domain and associate them
to the original AT model (see Sect. 4.4).

2. The query metamodel formalizes the security queries to be analyzed over
attack trees. We support both qualitative queries (i.e., properties such as
feasibility of attack) and quantitative queries (i.e., security metrics such as
probability of successful attack, cheapest attack, etc.).

3. The scenario metamodel represents attack scenarios (a.k.a. attack vectors)
consisting of the steps leading to, e.g., the cheapest, fastest, or most damaging
security breaches.

Below we discuss these metamodels in more detail.

1. AT Metamodel (ATMM). The ATMM metamodel is a combination of
two separate metamodels, one representing the attack tree structure (Structure
metamodel, Fig. 4 left) and the other representing the attack tree attributes
(Values metamodel, Fig. 4 right). This separation allows us to consider different
attack scenarios modeled via the same attack tree, but decorated with different
attributes. For example, it is easy to define attribute values based on the attacker
type: script kiddie, malicious insider, etc. may be all be interested in the same
asset, but each of them possesses different access privileges and is equipped with
different resources.

Structure Metamodel. The structure model, depicted in Fig. 4 on the left, repre-
sents the structure of the attack tree. Its main class AttackTree contains a set of
one or more Nodes, as indicated by the containment arrow between AttackTree
and Node. One of these nodes is designated as the root of the tree, denoted by
the root reference. Each Node is equipped with an id, used as a reference during
transformation processes. Furthermore, each node has a (possibly empty) list of
its parents and children, which allows to easily traverse the AT. A node may
have a connector, i.e., a gate such as AND, OR, SAND (sequential-AND), etc.
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Fig. 4. The ATMM metamodel separated into the structure and values metamodels.
Some connectors, types, and purposes are omitted for clarity and denoted by ellipses.

In addition to the structure specified by the metamodel, some constraints
can be used to ensure that a model is a valid attack tree. For example, the
tree cannot contain cycles, the nodes must form a connected graph, etc. These
constraints are separately formulated in the Epsilon Validation Language (EVL
[17]). An example of such a constraint is shown in Listing 1.

Values Metamodel. The Values metamodel (Fig. 4, right side) describes how
values are attributed to nodes (arrow from Attribute on the right to Node on the
left). Each Attribute contains exactly one Value, which can be of various (basic
or complex) types: For example, RealValue is a type of Value that contains real
(Double) numbers. A Domain groups all those attributes that have the same
Purpose. By separating the purpose of attributes from their data type, we can
use basic data types (integer, boolean, real number) for different purposes: For
example, a real number (RealType) can be used in a Domain named “Maximum
Duration”, where the purpose is a TimePurpose with timeType = MAXIMAL.
A RealType number could also be used in a different Domain, say “Likelihood
of attack” with the purpose to represent a probability (ProbabilityPurpose, not
shown in the diagram). Thanks to the flexibility of this construct, the set of
available domains is easily extensible.

1 context ATMM!AttackTree {
2 constraint OneAndOnlyOneChildWithoutParents {
3 check : ATMM!Node.allInstances.select(n|n.parents.size() == 0).size() = 1

4 and self.root = ATMM!Node.allInstances.select(n|n.parents.size() == 0).first()

5 }
6 }
Listing 1. Constraint specifying that the root node is the only node in an ATMM AT
with no parents.
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2. Query Metamodel. Existing attack tree analysis tools such as ATE,
ATCalc, ADTool 2.0, etc. support only a limited set of queries, lacking the
flexibility to customize one’s own security queries. Using the MDE approach,
we have developed the Query metamodel shown in Fig. 5. This allows a security
practitioner to ask a wide range of qualitative and quantitative metrics over a
wide range of attributes such as cost, time, damage, etc.

Using this metamodel in ATTop, a security practitioner can ask all the secu-
rity queries available in the aforementioned tools. Furthermore, the metamodel
offers a more comprehensive set of security queries where users can tailor their
own security queries. For example, it is possible to ask whether a successful
attack can be carried out within 10 days and without spending more than $900.

Constraint
operator : RelationalOperator
domain : Domain
value : Value

ExpectedValueQuery
domain : Domain

OptimizationGoal
MAXIMUM
MINIMUM

ReachabilityQuery

Query

constraints

ProbabilityQuery
OptimalQuery

domain : Domain
goal : OptimizationGoal

RelationalOperator

GREATER
SMALLER
EQUAL

Fig. 5. The query metamodel. The types ‘Domain’ and ‘Value’ refer to the classes of
the ATMM metamodel (Fig. 4).

The main component of the query metamodel is the element named Query.
A query can be one of the following:

– Reachability, i.e., Is it feasible to reach the top node of an attack tree? Sup-
ported by every tool.

– Probability, i.e., What is the probability that a successful attack occurs? Sup-
ported by every tool.

– ExpectedValue, i.e., What is the expected (average) value of a given quantity
over all possible attacks? Supported by ATTop.

– Optimality, i.e., Which is the attack that is optimal w.r.t. a given attribute
(e.g., time or cost)? Supported by ATE, ADTool 2.0, ATTop.

Furthermore, a query can be framed by combining one of the above query types
with a set of Constraints over the AT attributes. A Constraint is made of a
RelationalOperator, a Value and its Domain. For example, the constraint “within
10 days” is expressed with the SMALLER RelationalOperator, a Value of 10, and
the Domain of “Maximum Duration”.
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3. Scenario Metamodel. ATTop is geared to provide different results: some
of which are numeric, like the probability to execute attack, the maximum cost
to execute an attack, etc. Other results contain qualitative information such as
an attack vector, which is a partially ordered set of basic attack steps resulting
in the compromise of an asset under a given set of constraints (for example,
incurring minimum cost). In order to properly trace back the qualitative output
to the original attack tree, we use the Scenario metamodel (see Fig. 6).

The Scenario metamodel is used to represent attack vectors. In our context,
we consider an attack vector to be a Schedule where there is only one Executor,
which we name “Attacker”. The sequence of Tasks appearing in a Scenario are
then interpreted as the sequence of the attack steps the Attacker needs to carry
out in order to reach their objective. Each attack step is actually a node of the
original AT, and is represented as an Executable whose name corresponds to the
id of the original Node. Timing information contained in each Task describes the
start (startTime) and end (endTime) time points for each attack step. Note that
an attack can start but not end before the objective is reached (multiplicity “1”
for startTime and “0..1” for endTime).

executables

Time

Schedule

Task
name : String

Executor
name : String

Executable
name : String

tasks

executors

executableexecutor

endTime
value : Float

[0..1]

startTime [1]

Fig. 6. The Scenario metamodel from [29]. In the context of ATs, all instances of this
metamodel will have only one Executor, the Attacker; Executables represent attack steps
(i.e. Nodes from the AT), while a Scenario is known as an attack vector.

4 Model Transformations

ATTop supports horizontal and vertical model transformations. Figure 7 illus-
trates the difference between these. Horizontal transformations convert one
model into another that conforms to the same metamodel, e.g., a transformation
from one AT analysis tool to another (where the models of both tools are repre-
sented in the ATMM metamodel). Vertical transformations transform a model
into another that conforms to a different metamodel, e.g., the transformation
from an AT into a timed automaton. A key feature of ATTop is that it also
provides vertical transformations in the reverse direction: analysis results (e.g.,
traces produced by Uppaal) are interpreted in terms of the original attack tree
model.
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4.1 Horizontal Transformations: Unifying Dialects of Attack Trees

One of the goals of applying the model-driven approach is to facilitate interop-
eration between different tools. To this end, we provide transformations to and
from the file formats of ADTool 2.0 [12], Attack Tree Evaluator (ATE) [5], and
ATCalc [2].

Due to the different features supported by the various tools, not all input
formalisms can be converted to any other format preserving all semantics. For
example, ATCalc performs only timing analysis, while ADTool can also perform
cost analysis of untimed attack trees. In such cases, the transformations convert
whatever information is supported by their output format, omitting unsupported
features. As the ATMM metamodel unifies the features of all the listed tools,
transformations into this metamodel are lossless.

Example 2. ATE Transformation. The Attack Tree Evaluator [5] tool can only
process binary trees. Using a simple transformation, we can transform any
instance of the ATMM into a binary tree. A simplified version of this trans-
formation, written in ETL, is given in Listing 2. This transformation is based
on a recursive method that traverses the tree. For every node with more than
two children, it nests all but the first child under a new node until no more than
two children remain.

4.2 Vertical Transformations: Analyzing ATs via Timed Automata

Thus far we have described the transformations to and from dedicated tools for
attack trees. In this section we introduce a vertical transformation which we use
in ATTop to translate attack trees into the more general-purpose formalism of
timed automata (TA). Specifically, we provide model transformations to TAs
that can be analyzed by the Uppaal tool to obtain the wide range of qualitative
and quantitative properties supported by the query metamodel.

Our transformation targets the Uppaal metamodel described in [29]. It
transforms each element of the attack tree (i.e., each gate and basic attack step)

M
et
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od

el

Attack tree metamodel (ATMM)

conforms toconforms to

M
od

el AT specified in 
ADTool 2.0 
XML format

Model 
Transformation

Timed automata 
models of AT 

elements

Uppaal timed 
automata metamodel

AT specified in 
Galileo format 
(input to the 
ATCalc tool)

Model 
Transformation

Horizontal transformation Vertical transformation

conforms to

Fig. 7. Examples of horizontal and vertical model transformations.
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1 var structure := AttackTree.all . first ();
2 structure .Root.NodeToBinary();
3

4 operation Node NodeToBinary(){
5 if (self .Children.size()>2){
6 var newNode = new Node();
7 newNode.Parents.add(self);
8 structure .Nodes.add(newNode);
9

10 var replaceNodes := self.Children.excluding(self .Children. first ());
11 newNode.Children := replaceNodes;
12 self .Children.removeAll(replaceNodes);
13 self .Children.add(newNode);
14 }
15 for(child in self .Children)
16 child .NodeToBinary();
17 }

Listing 2. Transformation of an ATMM attack tree to a binary AT

into a timed automaton. These automata communicate via signals and together
describe the behavior of the entire tree. For example, Fig. 8 shows the timed
automaton obtained by transforming an attack step with a deterministic time
to execute of 5 units.

Init Active

x <= 5

Completed

activate[id]?
x >= 5
complete[id]!

Fig. 8. Example of a timed automaton
modeling a basic attack step with a fixed
time to execute of 5 units.

Depending on the features of the
model and the desired property to be
analyzed, the output of the transfor-
mation can be analyzed by different
extensions of Uppaal. For example,
Uppaal CORA supports the analysis
of cost-optimal queries, such as “What
is the lowest cost an attacker needs to incur in order to complete an attack”,
while Uppaal-SMC supports statistical model checking, allowing the analysis of
models with stochastic times and probabilistic attack steps with queries such as
“What is the probability that an attacker successfully completes an attack within
one hour”. The advantages of Uppaal CORA’s exact results come at the cost
of state space explosion, which limits the applicability of this approach for larger
problems. On the other hand, the speed and scalability of the simulation-based
Uppaal-SMC are countered by approximated results and the unavailability of
(counter-)example traces.

4.3 Query Transformation: From Domain-Specific to Tool-Specific

ATTop aims to enable the analysis of ATs also by users that are less familiar
with the underlying tools. One challenge for such a user is that every tool has
its own method to specify what property of the AT should be computed.

Section 3 describes our metamodel for expressing a wide range of possible
queries, and we now transform such queries to a tool-specific format. Many tools
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support only a single query (e.g., ATE [5] only supports Pareto curves of cost
vs. probability), in which case no transformation is performed but ATTop only
allows that single query as input.

The Uppaal tool is an example of a tool supporting many different queries.
After transforming the AT to a timed automaton (cf. Sect. 4.2), we transform
the query into the textual formula supported by Uppaal. The basic form of
this formula is determined by the query type (e.g., a ReachabilityQuery will be
translated as “E<> toplevel.completed”, which asks for the existence of a trace
that reaches the top level event), while constraints add additional terms limiting
the permitted behavior of the model. By using an Uppaal-specific metamodel
for its query language linked to the TA metamodel, our transformation can easily
refer to the TA elements that correspond to converted AT elements.

4.4 Result Transformation: From Tool-Specific to Domain-Specific

Analyses done with a back-end tool produce results that may only be immedi-
ately understandable to an expert in that tool. An important feature of ATTop
to ease its use by non-experts, is that it provides interpretations of these results
in terms of the original AT.

For example, given an attack tree whose leaves are annotated with (time-
dependent) costs, Uppaal can produce a trace showing the cheapest way to
reach a security breach (optionally within a specified time bound). This trace
is given in a textual format, with many details that are irrelevant to a security
analyst. It is much easier to understand this scenario when shown in terms of
the attack tree (for example, Fig. 11 is a scenario described by several pages
of Uppaal output). This is exactly the purpose of having reverse transforma-
tions: Uppaal’s textual traces are automatically parsed by ATTop, generating
instances of the Trace metamodel described in [29]. To do so, the transformation
from ATMM to Uppaal retains enough information to trace identifiers in the
Uppaal model back to the elements of the AT. When parsing the trace, ATTop
extracts only the relevant events (e.g., the starts and ends of attack steps) and
related information (e.g., time). This information is then stored as an instance
of the Scenario metamodel described in Sect. 3.

In the generated Schedule, attack steps are represented as Executables, while
Tasks indicate the start and finish time of each attack step, thus describing the
attack vector. Only one Executor is present in any attack vector produced by
this transformation, and that is the Attacker. An example of such a generated
schedule can be seen in Fig. 11.

5 Tool Support

We have developed the tool ATTop to enable users to easily use the transfor-
mations described in this paper, without requiring knowledge of the underly-
ing techniques or formalisms. ATTop automatically selects which transforma-
tions to apply based on the available inputs and desired outputs. For exam-
ple, if the user provides an ADTool input and requests an Uppaal output,
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Fig. 9. Screenshot of ATTop’s main screen, allowing
input file selection, query specification, and output
selection.

ATTop will automatically
first execute the transforma-
tion from ADTool to the
ATMM, and then the trans-
formation from ATMM to
Uppaal.

Users operate the tool
by specifying input files and
their corresponding languages,
and the desired output files
and languages. ATTop then
performs a search for the
shortest sequence of transfor-
mations achieving the desired
outputs from the inputs. For
example, Fig. 9 shown the
tool’s main screen, where the
user has provided an input
AT in Galileo format. The
user can now choose between different queries and analysis engines.

6 Case Study

Fig. 10. ATCalc plot showing proba-
bility of successful attack over time

As a case study we use the example anno-
tated attack tree given in Fig. 2. We apply
ATTop to automatically compute several
qualitative and quantitative security met-
rics. Specifically, we apply a horizontal
transformation to convert the model from
the ATCalc format to that accepted by
ADTool 2.0, and a vertical transformation
to analyze the model using Uppaal.

We specify the AT in the Galileo for-
mat as accepted by ATCalc. Analysis with
ATCalc yields a graph of the probability of
a successful attack over time, as shown in Fig. 10. Next, we would like to deter-
mine the minimal cost of a successful attack, which ATCalc cannot provide.
Therefore, we use ATTop to transform the AT to the ADTool 2.0 format, and
use ADTool 2.0 to compute the minimal cost (yielding $270).

Next, we perform a more comprehensive timing analysis using the vertical
transformation described in Sect. 4.2. We use ATTop to transform the AT to a
timed automaton that can be analyzed using the Uppaal tool. We also transform
a query (OptimalityQuery asking for minimal time) to the corresponding Uppaal
query. Combining these, we obtain a trace for the fastest successful attack, which
ATTop transforms into a scenario in terms of the AT as described in Sect. 4.3.
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find_WLAN

break_WPA_keys

get_credentials

exploit_sw_vulnerability

run_malicious_script

0 120 300 600 660 690 Time (min)

Fig. 11. Scenario of fastest attack as computed by Uppaal . The executed steps and
their start–end times are also shown in Fig. 2.

The resulting scenario is shown in Fig. 11. Running the whole process, including
the transformations and the analysis with Uppaal, took 6.5 s on an Intel R©
CoreTM i7 CPU 860 at 2.80 GHz running Ubuntu 16.04 LTS.

7 Conclusions

We have presented a model-driven approach to the analysis of attack trees and a
software bridging tool—ATTop—implementing this approach. We support inter-
operability between different existing analysis tools, as well as our own analysis
using the popular tool Uppaal as a back-end engine.

Formal methods have the advantage of being precise, unambiguous and sys-
tematic. A lot of effort is spent on their correctness proofs. However, these ben-
efits are only reaped if the tools supporting formal analysis are also correct. To
the best of our knowledge, this work is among the first to apply the systematic
approach of MDE to the development of formal analysis tools.

Through model-driven engineering, we have developed the attack tree meta-
model (ATMM) with support for the many extended formalisms of attack trees,
integrating most of the features of such extensions. This unified metamodel pro-
vides a common representation of attack trees, allowing easy transformations
from and to the specific representations of individual tools such as ATCalc [2]
and ADTool [12]. The metamodels for queries and schedules facilitate a user-
friendly interface, obtaining relevant questions and presenting results without
needing expert knowledge of the underlying analysis tool.

We have presented our approach specifically for attack trees, but we believe it
can be equally fruitful for different formalisms and tools as well (e.g. PRISM [24],
STORM [9]) by using different metamodels and model transformations. We thus
expect our approach to be useful in the development of other tools that bridge
specialized domains and formal methods.
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