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Abstract— This paper aims to present the main challenges
that emerged during the process of the research design of
a longitudinal study on child-robot interaction for science
education and to discuss relevant suggestions in the context.
The theoretical rationale is based on aspects of the theory
of social constructivism and we use the collaborative inquiry
as a framework to examine children’s learning process who
interact with a robotic learning companion. We identify two
main challenges; (i) the development of robust on-demand
systems for long-term interaction; and (ii) the design of develop-
mentally appropriate scaffolding in embodied, semi-structured
learning tasks. To address these challenges, we suggest (i) the
development of a system for the detection of child’s intention
for interaction in the context of a classroom and (ii) the
design of sensorized learning materials for the support of
developmentally appropriate embodied learning experience.

I. INTRODUCTION

Long-term interactions call for technical approaches that
go beyond typical laboratory setups. When placing such a
system in the wild for extended periods of time, it is required
to function autonomously and respond to user-initiated, on-
demand interactions. It should be robust enough to handle
all interactions that fall within specific scenario contexts.
Finding solutions for those technological challenges will
allow the development of social robotic agents that are able
to take into consideration contextual features as well as cog-
nitive and socio-emotional characteristics of the interacting
child. Consequently, social robots will be able to facilitate
children’s learning process in the complex environment of the
classroom. With this vision, in this paper we present aspects
of the research design of a long-term study on child-robot
interaction in the context of the science lab of a school. More
specifically, we describe the challenge of designing a robust
on-demand system, and the challenge of measuring the state
of the learning materials, and generating content and process
scaffolds accordingly.

Previous research has indicated that the interaction with a
humanoid robot may have an impact on children’s learning.
For example, a long-term empirical study has found that the
interaction with a humanoid robot can have an impact on
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children’s improvement of English language skills [1]. How-
ever, it was observed that children’s learning increased only
after a certain period of time (two weeks) of interaction with
the robot (ibid.). Similarly, an effect of long-term interaction
has been found on children’s pro-social behaviour during
their free play with a non-humanoid robot over the period
of one school year [2]. In addition, research that focuses on
children’s activities with a social robot examines aspects of
the social and emotional interaction between the child and
the robotic companion. Examples include the investigation of
empathetic behaviour of the robot [3] and the examination of
the affective personalization of the robot in long-term child-
robot interaction [4]. The investigation of physical interaction
between a child and a robot in a learning setting has shown
the robot was able to motivate the children to provide help
by adapting its behaviour to the user [5].

In the proposed study, the robot, as a learning companion,
scaffolds the child in order to follow a trajectory of inquiry
learning process in the settings of science education. Chil-
dren are going to work on an inquiry-learning task involving
physical learning materials. The assignments provide the pos-
sibility for different difficulty levels and follow the structure
of the inquiry learning cycle (preparation, hypothesis gen-
eration, experimentation, observation and concluding) [6].
The following sections present an overview of the challenges
related to developing such a robust automated system for
long-term interaction. We then present possible approaches
specific to our physical inquiry learning scenario, and discuss
how these can be used to provide scaffolding in a long-term
educational context.

II. COLLABORATIVE INQUIRY

Learning is a dynamic process that evolves over long
periods of time and allows the enhancement of children’s
cognitive structures by building upon the existing knowledge
possessed by the learner [7]. In our research, we recognize
that learning is a process that happens continuously during
childhood in formal or informal settings; however, in the
context of this paper we consider learning as an explicit
process, which is connected to the child’s cognitive and
socio-emotional development and takes place when the child
interacts with especially designed learning material together
with an agent who has the role of the learning companion
in this case the robot for a long period of time.

According to the proponents of the socio-cultural theory,
this development takes different forms when a learning
companion is present and intervene the process [8]. The



TABLE I
FOUR TYPES OF INQUIRY, RANGING FROM GUIDED/DEPENDENT TO

OPEN/INDEPENDENT. DEPENDING ON THE TYPE, THE CHILD IS

PRESENTED WITH A PREDEFINED QUESTION, A PROCEDURE TO

INVESTIGATE THIS, AND THE CORRECT ANSWER.

learning companion can scaffold the learner to enter his
or her Zone of Proximal Development (ZPD). However,
simultaneously, children need the time and the space for
experimentation and personal inquiry, which has led educa-
tional paradigms towards indirect interventions, one of which
is the collaborative inquiry. The inquiry process [6], which is
based on children’s spontaneous curiosity for exploration and
discovery of the phenomena that occur in the surrounding
world as well as the process of the scientific thinking
through which the explanation and understanding of those
phenomena may emerge, provide a structured framework
upon which children’s cognitive and meta-cognitive skills
can be built.

III. AIMS OF THE STUDY

Although these fundamental theoretical aspects have in-
spired previous research on child-robot interaction in learn-
ing settings [9], existing work provides limited information
on the ways that learning process unfolds in long-term child-
robot interaction. Long-term interaction provides the setting
for a gradual transfer of the responsibility from the robot to
the child, in which the child masters his or her independency
through the four types of inquiry (confirmation, structured,
guided and open inquiry, as described in table I). Ultimately,
it is expected that the child will be able to transfer the
knowledge of the inquiry process to a different setting.
Consequently, this study will examine:

• The impact of a social robot on children’s learning
process in reference to the inquiry stages in a long-term
interaction;

• The degree of children’s achieved independency of
inquiry process; and

• The transfer of knowledge of the inquiry process to a
different learning setting.

IV. CHALLENGES

In our context of educational child-robot interaction, we
identify two main challenges: 1) designing a robust on-
demand system; and 2) providing adequate scaffolding in
embodied, semi-structured learning tasks.

Both challenges are related to different aspects of sensing
the world. We argue that a system must provide mechanisms
for dealing with both aspects, if it aims to support an effective
long-term interaction.

A. Robust on-demand systems

A key feature for supporting robust, on-demand interac-
tions is the support of user-initiated interactions. The robot
should be ready, at any time, to start a new interaction if
any user wishes to do so. In the case of long-term sessions,
this might be a repeated interaction with the same user, or it
might be a new user interacting with the robot for the first
time. This requires the system to store profiling details about
individual users, as well as offer a user-friendly mechanism
for initiating or ending an interaction.

A second important aspect is related to detecting and
dealing with uncontrollable outside influences. Unlike in our
typical lab setups, a long-term experiment will often take
place in a public setting. Especially when involving children,
it will often be the case that outside distractions influence
the attention of the child and their focus on the interaction.
An example could be other children, parents or teachers
interrupting the session. In order to deal with such situations,
the robot must have a way to estimate the state of the world
outside the context of the scenario.

B. Scaffolding in embodied learning tasks

In our educational scenario children use inquiry techniques
and embodied learning materials to investigate a topic of
interest. A challenge is to keep the children engaged in this
topic over longer periods of time. The learning system should
be capable of offering a variety of tasks, ranging from a
guided to an open inquiry style, while adapting the difficulty
to an individual’s personal level of cognitive development.

Using embodied learning materials presents an additional
challenge over digital alternatives. To accurately follow a
child’s learning process through interactions with the mate-
rials, a robot must use external, dedicated sensors to detect
the state of the learning materials. These sensors must be
unobtrusive, but offer reliable readings in all real-world
conditions. Once sensor output has been filtered, interpreted,
and a high-level estimation of task progress has been made,
the robot must be able to make an informed decision about
suitable scaffolding.

V. APPROACH

The challenges stated above can be approached in several
ways. In the following sections we present an approach
adopted in the EASEL project, specifically aimed at facil-
itating one-on-one, long-term child-robot interactions with
embodied inquiry-learning materials. For an overview of the
EASEL integrated system architecture, please refer to [10].
This section focuses on the core modules related to sensing
and tracking during a single session and over long-term
repeated sessions.



A. Detecting intent to interact

Similar to the approach of Kanda et al. [1], we propose
the use of personal RFID badges to identify an individual
child. When initiating the on-on-one interaction, the child
will scan their personal ID badge as soon as he or she
approaches the robot. This supports very simple but robust,
user-initiated interactions. Alternative technologies such as
facial identification offer a more natural interaction, but
often require more controlled (lighting) conditions and a pre-
trained database of facial features.

While a child is engaged in the interaction, the system
constantly stores and updates information about the child’s
progress through the learning task. For example, it stores
correct and incorrect answers, which can be used to adapt
the difficulty of the learning task. This persistent information
is coupled to the child’s unique RFID identifier, so that it can
be loaded on a subsequent session, allowing the system to
continue with the personalized interaction.

In addition to RFID tags, we use advanced Scene Analyser
software [11] to detect nearby faces and sounds, and record
features such as gaze direction and facial expressions. For
future setups we are looking at possibilities for multi-party
interactions, using this additional tracking information.

B. Sensorized learning materials

There is currently no generic, recommended solution for
measuring the state of physical learning materials. Specific
learning tasks will require unique, custom-built solutions.

A popular inquiry learning task uses a balance scale to
investigate the physical properties related to torque [12], [13].
By placing weighted objects at various positions on a balance
beam, children discover that both the weight of the object
and it’s distance to the pivot point influence the tilt of the
balance. For this task, we explored several available sensor
technologies to find an optimum combination of unobtrusive
sensors that provide sufficient detection speed and reliability.
We focused specifically on detecting the tilt of the scale, and
detecting which uniquely colored objects were placed where
on the balance.

By using embedded photoresistors we were able to ac-
curately determine the location of objects on the balance.
By using an external overhead camera we were then able
to identify the unique color of the objects on those specific
locations. The tilt of the balance beam was measured by
a potentiometer in the central pivot. These cheap, simple
and reliable sensors require almost no calibration and can
function accurately in a wide range of environments.

A prototype (see fig. 1) of this setup was tested with 45
children (5-10 years old) during a period of 5 days, resulting
in a total of 1700 instances in which the state of the learning
materials was measured. This prototype test consisted of a
series of controlled short-term interactions. The primary goal
of this experiment was to determine sensor requirements and
test sensor accuracy across varying conditions. Over all days,
the combined sensor values were able to predict the complete
state of the learning materials with an average reliability of
95%.

Fig. 1. Our prototype of a sensorized balance beam, showing the physical
learning materials with embedded sensors and a basic feedback system.

Sensing and storing a child’s progress through a task
allows us to offer personalized difficulty levels and person-
alized scaffolding for subsequent tasks. For example, the
system might detect several errors in assignments in which
the weight of pots is manipulated. A following interaction
with this child could focus specifically on investigating this
aspect, while offering content scaffolding in the form of an
intuitive example: “Imagine an elephant and a mouse sitting
on either end of a seesaw. Which side would go down?”.

VI. DESIGNING A LONG-TERM INTERACTION MODEL

Given that the robot is now able to detect and identify
individual users, and is able to reliably estimate the state of
the learning materials, we propose a solution for generating
appropriate content and process scaffolding.

Our interaction system is built around modular dialogue
models. A dialogue model consists of rule-based templates,
responsible for defining reactions to specific combinations of
events and triggers [14]. Using a hierarchical dialogue model
approach, we define various layers of interaction.

The most abstract dialogue model keeps track of the
overall flow through an interaction. This typically starts at
a greeting phase when a child scans their RFID badge,
and ends with a goodbye phase when the child leaves, or
when the assignment is completed. It contains references
to a collection of subdialogues that can cope with more
detailed interaction patterns, ranging from off-topic smalltalk
to specific learning-tasks. As the interaction progresses, this
approach allows for high-level termination, switching and
jumping between subdialogues.

An example of a possible abstract, top-level dialogue
model is shown in figure 2. This model contains references
to more specific subdialogues, each of which consists of
dialogue rules that are appropriate for that phase of the
interaction. Together, these subdialogues describe a cohesive
interaction pattern.

On lower levels of abstraction, we define these subdia-
logues to cope with specific inquiry learning situations. For
example, the “Do task” subdialogue could contain the inquiry
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Fig. 2. An abstract, high-level dialogue model shows how various
subdialogues work together to form a cohesive interaction.

process of preparation. This process requires the child to
prepare the balance in a certain target state (i.e. place specific
weights on the balance in predefined positions). By compar-
ing the current sensed state of the learning materials to this
target state, the robot is able to accurately measure correct
and incorrect placements and provide appropriate scaffolding
to the child. A more detailed in-depth description of these
context-specific, low-level dialogue models is outside the
scope of this paper.

Using this approach, we have defined a total of 22 relevant
content and process scaffolds for each balance beam task.
Based on the sensor data, all such scaffolds are triggered
automatically with high reliability, while the child naturally
progresses through the inquiry process.

VII. CONCLUSION

This study aims to contribute to the research agenda of the
long-term child-robot interaction in learning settings from
a process-oriented perspective, by examining the ways that
social robots can help the children “learn how to learn”. To
design a long-term study that will allow learning processes
to unfold, we need to overcome certain challenges. Firstly,
we suggest the development of systems suitable to detect
the intention for interaction in order to achieve robust on-
demand systems for long-term interaction in the context
of a classroom. Secondly, we propose the design and the
development of sensorized learning materials. This approach
allows the system (learning material) to communicate with
the robot and at the same time to support children’s embodied
learning experience. Finally, we discuss our approach for
designing hierarchical dialogue models, which are suitable
for supporting automatic scaffolding for inquiry learning in
the context of an ongoing multi-session interaction.
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