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Abstract: With trends indicating increase in 
temperature and decrease in winter precipitation, a 
significant negative trend in snow-covered areas has 
been identified in the last decade in the Himalayas. 
This requires a quantitative analysis of the snow cover 
in the higher Himalayas. In this study, a nonlinear 
autoregressive exogenous model, an artificial neural 
network (ANN), was deployed to predict the snow 
cover in the Kaligandaki river basin for the next 30 
years. Observed climatic data, and snow covered area 
was used to train and test the model that captures the 
gross features of snow under the current climate 
scenario. The range of the likely effects of climate 
change on seasonal snow was assessed in the 
Himalayas using downscaled temperature and 
precipitation change projection from - HadCM3, a 
global circulation model to project future climate 
scenario, under the A1B emission scenario, which 
describes a future world of very rapid economic 
growth with balance use between fossil and non-fossil 
energy sources. The results show that there is a 
reduction of 9% to 46% of snow cover in different 
elevation zones during the considered time period, i.e., 
2011 to 2040. The 4700 m to 5200 m elevation zone is 
the most affected area and the area higher than 5200 
m is the least affected. Overall, however, it is clear 
from the analysis that seasonal snow in the 
Kaligandaki basin is likely to be subject to substantial 

changes due to the impact of climate change. 
 
Keywords: Snow cover; Kaligandai river; Himalayas; 
Artificial neural network; Global warming; Climate 
change 

Introduction  

Global warming will impact the extent, 
amount and duration of snow cover in the 
Himalayas. The results of many studies have shown 
a significant decline in snow cover due to warming 
in the last couple of decades (Kulkarni et al. 2007; 
Li et al. 2012) and this declining trend is likely to 
continue in the future. This prediction is based on 
the forecast of climate variables in several parts of 
the world. However, the predicted change is not 
consistent (as far as the intensity of the change is 
concerned) in all of these studies (Bolch et al. 2012; 
Mallapaty 2014). Many previous studies are likely 
to have over-estimated the resulting impact of 
climate change (Bolch et al. 2012; Cooke 2014; 
Karmacharya et al. 2007; Xu et al. 2009). 

Snowmelt is a complex phenomenon which 
does not depend exclusively on climatic factors 
alone. Several researchers have found that 
environmental and microbiological factors such as 
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dust deposition, primary colonization, degradation 
of dust biomass, deposition of potentially 
pathogenic microbial species and resulting 
increased leaching of minerals can also contribute 
to the process of snowmelt (Chatterjee et al. 2010; 
Decesari et al. 2009; Stres et al. 2010; Stres et al. 
2013). Combining topographic, climatic, 
environmental and microbiological factors towards 
snowmelt may be a complex model. However, the 
autoregressive neural network is envisaged to 
capture this complex phenomenon as the data 
input and output are taken based on remote 
sensing imageries. 

A new way of prediction that uses artificial 
neural network (ANN) has become more popular in 
the last few years compared to the traditional 
prediction techniques like regression analysis, time 
series analysis etc. in several sectors such as flood 
forecasting, water demand forecasting, un-gauged 
stream flow forecasting etc.. (Babel and Shinde 
2010; Besaw et al. 2010; Chen et al. 2010). The 
ANN models are gaining popularity for several 
hydrological phenomena predictions, because these 
models are able to map the nonlinear trend of 
several phenomena simultaneously. One study 
carried out by Jain et al. (2001) shows that ANN 
can perform better than the existing regression and 
time series analysis of water demand forecasting. 
In recent studies carried out by Besaw et al. (2010) 
and Chen et al. (2010), researchers could forecast 
the un-gauged stream flow and flood, and 
concluded that ANN outperformed the existing 
time series modeling techniques and regression 
models. Several other researchers have also 
accepted the usability of ANN in time series 
forecasting (Maier et al. 2010; Besaw et al. 2010, 
among others). 

A nonlinear autoregressive exogenous model 
(NARX) was evaluated and verified with several 
chaotic time series data with differing- different 
configurations. The NARX model is recommended 
for dynamic system application (Diaconescu, 
2008). Several long term snow cover trends have 
been published, with a focus on Central Europe 
and New Zealand (Hantel and Hirtlewielke 2007; 
Hendrikx and Hreinsoon 2012). The main focus of 
such studies was snow cover variability in the 
context of global warming, and the variability’s 
influence on ski tourism in New Zeland and Central 
Europe. Another study in Central Europe was 

attempted to predict the snow cover in the Black 
Forest mountain range using NARX with remote 
sensing and Geographical Information Systems 
(GIS). The researchers of this study used the 
Levenberg-Marquad algorithm to optimize the 
network (Sauter et al. 2010). The study conducted 
by Shen and Chang (2013) used NARX to forecast 
multistep-ahead inundation depth in an 
inundation area and gave the better result than 
feedforward time-delay and an online feedback 
configuration of NARX networks. Similarly, NARX 
gave a superior result on downscaling of 
meteorological fields meso-scale water balance 
modeling in comparison to the coupling between 
recurrent neural network and a distributed water 
shed model (Kronenberg et al. 2013).  

Another work (Quiroga et al. 2013) used ANN 
and multiple linear regression models (MLR) to 
estimate the melting of snow and glaciers and 
found that ANN models outperformed the MLR 
models at the Condoriri Glacier in Bolivia. Chen 
and Chang (2009) used the revolutionary ANN for 
hydrological system forecasting. The genetic 
algorithm and scaled conjugate gradient algorithm 
were used to optimize the feed forward algorithm. 
The results were compared with AR and ARMAX 
methods. 

Several models and techniques for climate 
change modeling and future prediction are 
available. The ANN is one of them. Forecasting of 
water resource variables using ANN has developed 
as a reliable tool in the last few decades (Nourani et 
al. 2012). However, even the finest network 
architecture and characteristics of neural networks 
are absolutely problem dependent and there is no 
established methodology available to deal with 
water resources and the modeling problems of 
climate change impact. Some sort of preliminary 
forecast analysis can be performed for a particular 
location based on the time series analysis using 
different architectures and properties of the 
network (Babel and Shinde 2010). Some of the 
commonly used networks in this field are the feed 
forward neural network, the multilayer feed 
forward neural network, the partially recurrent 
neural network, and the time delay neural network 
etc. (Besaw et al. 2010; Babel and Shinde 2010; 
Chen et al. 2010). In these networks, several kinds 
of transfer functions, like log sigmoid, hard limit 
etc. can be implemented (Maier et al. 2010; Jain et 
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al. 2001). 
A large amount of research activities using 

ANN has led to a number of publications that 
conform the potential of ANN for the prediction 
and forecasting of water resource variables. 
However, several challenges are still to be 
overcome before it becomes a reliable modeling 
approach. The difficulties include the unavailability 
of optimal network architecture because the 
properties of neural networks are highly problem-
dependent. In his review, Welsh (2008) suggested 
that attention to the development of a good model 
is vital. 

The prediction accuracy of ANN relies greatly 
on the input variables, which are influential 
parameters. It is widely accepted that snow covered 
area is governed by various climatic and 
topographic parameters (Dery et al. 2005). These 
parameters may vary from place to place; thus, it is 
necessary to develop site or region specific models 
for snow cover area forecasting. 

The use of ANN for snow cover area 
forecasting is relatively new but it has already 
proven its ability in several other hydrological 
phenomena’s predictions.  

The main aim of this study is to explore the 
uses of ANN for long term snow cover forecasting 
using the given climate variables. A selected ANN 
model was trained 
using selected 
observed, and 
remote sensing 
climatic variables 
and the 
corresponding 
snow covered area 
was used as output. 
In addition, the 
climatic variables 
obtained from the 
selected scenario 
of the General 
Circulation Model 
(GCM) were used 
as input variables 
and the 
corresponding 
snow cover area 
was predicted. 

1     Study Area  

The study area is located in the central part of 
northern Nepal. It covers the area between 
27°56'40"N to 29°19'22"N and 82°54'57"E to 
85°06'30"E. The area includes the Kaligandaki 
basin, one of the major tributaries of the Gandaki 
River (Figure 1). The minimum temperature in the 
higher mountainous region drops to -25ºC or even 
less in winter, and the maximum temperature in 
the lower part of the study area reaches up to 35ºC 
or above in summer (Mishra et al. 2014). 
Precipitation distribution also varies greatly with 
respect to spatial location and time of the year. 
Though precipitation is dominant during the 
monsoons in summer, maximum snowfall occurs 
due to the westerly winds in winter. During the 
summer season (June - August), the monsoons 
produce heavy precipitation that contributes 
approximately 80% of the annual precipitation. 
Precipitation intensity goes down from east to west 
and south to north. In the western Himalayas, 
westerly winds cause winter (December - February) 
precipitation, mostly in the form of snow (Rees and 
Collins 2006). Other seasons, namely autumn 
(September - November) and spring (March - May), 
witness occasional rainfall that contributes about 

Figure 1 Study area, Kaligandaki river basin, Nepal. 
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15% to the annual rainfall. In spring, precipitation 
is in the form of rainstorms and snowstorms. In 
summer, the maximum snowmelt runoff occurs 
and hence the snow covered area becomes minimal 
(Mishra et al. 2014). 

Land use greatly depends on altitude. As per 
the map developed from the MODIS image, 
approximately 24% of the Kaligandaki basin area is 
under perennial snow cover, 20% is under seasonal 
snow cover, 27% is covered by forests and shrubs, 
11% is used for village settlements and agricultural 
lands, and 18% for rivers and grazing fields. 

The altitude of the basin varies from 590 to 
8148 m a.s.l.. The upper parts, in general, have 
higher slopes compared to the lower parts of the 
basin. The hypsometric analysis of the basin 
depicts that about 1638 km2 (24.43% of the total 
basin area) is located on altitudes higher than 5200 
m a.s.l.. It also shows that the Kaligandaki basin is 
uniformly distributed with respect to elevation, 
with a nearly linear line except at higher elevations 
with a very steep slope, as shown in Figure 2.  

In our previous work (Mishra et al. 2014), the 
Kaligandaki river basin was divided into four zones 
for the study’s purpose. As this is a continuation of 
the same line of work, we have used the same 
division here as well. Zone I covers the area 
between 590 and 2000 m a.s.l. with no snow cover. 
Since Zone I is almost snow free all through the 
year, we did not consider this zone for the task of 
forecasting. Zone II covers the area from 2000 to 
4700 m a.s.l., and is influenced by a seasonal snow 

cover. The lower part of this zone is covered by 
snow only in the winter season whereas the upper 
part is covered by snow during three seasons —
winter, early spring and autumn — and is covered 
by green vegetation in late spring and summer. The 
basin area from 4700 to 5200 m a.s.l. is included in 
Zone III, which is completely snow covered except 
for one or two months in summer and very rarely 
can vegetation be seen even during this period 
because of extreme cold conditions. The area above 
the elevation of 5200 m a.s.l. is considered to be 
under Zone IV, and this zone is permanently 
covered by snow. 

2     Data Used 

Remote sensing was the main source of data in 
this study. Various products from several sensors 
such as a precipitation derived from Tropical 
Rainfall Measuring Mission (TRMM): 3B43 
(Huffman et al. 2007), a Moderate Resolution 
Imaging Spectro-Radiometer (MODIS) snow 
propduct MOD10A2, MODIS temperature 
MOD11C3 (Riggs et al. 2006), etc. were employed. 
The images were re-projected into the UTM 45 
North with World Geodetic System 1984 (WGS84) 
datum as per requirement. This data was obtained 
from several online data sources for the period of 
2000 to 2010. These are described below. 

2.1 MODIS snow cover mapping 

The MODIS has provided a large number of 
snow products. MOD10A2, MODIS/Terra snow 
cover 8-day L3 Global 500 m spatial resolution 
product, has been used in this study (Hall et al. 
2006). The key for snow detection characteristics is 
to have a high reflectance in the visible bands (0.40 
to 0.70 µm) and very low reflectance in near-
infrared bands (1.628 to 1.652 µm) (Riggs et al. 
2006). Band 4 (green 0.545 to 0.565 µm) and Band 
6 (near-infrared 1.628 to 1.652 µm) were used to 
derive snow cover products from MODIS images. 
By using these two bands, the Normalized 
Difference Snow Index (NDSI) was obtained using 
the following relation (Riggs et al. 2006): 

              
64
64

bandband
bandbandNDSI

+
−=                              (1) 

 
Figure 2 Study area – hypsometric elevation and 
zoning, the zoning was done based on snow cover 
timing, zone I – snow free area, zone II – occasional 
snow cover or snow cover in winter, zone III – snow 
cover all over the year except in summer, and zone IV 
– perennial snow cover area. 
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In non-forested areas, a pixel with an NDSI ≥ 
0.4 was identified as snow covered if the 
reflectance in Band 2 (0.841 - 0.876 µm) is ≥11% 
and the reflectance in Band 4 (0.545 -0.565 µm) is 
≥ 10% (Hall et al. 1995). In a forested area, an 
alternative algorithm is used that includes the 
Normalized Difference Vegetation Index (NDVI). 
For a forested area, the threshold value of NDVI 
can be used to classify the pixel as snow even if the 
NDSI is lower than 0.4 (Klein et al. 1998). This 
product was validated in several places in the 
Himalayas, including the Kaligandaki basin 
(Mishra et al. 2014). The snow product generated 
from high resolution Advanced Spaceborne 
Thermal Emission Reflection Radiometer (ASTER) 
image was used to validate the MOD10A2 product 
in the Kaligandaki basin. MODIS snow product can 
be downloaded freely from the National Snow and 
Ice Data Center (http://nsidc.org/data/mod10a2). 

2.2 MODIS temperature 

MODIS land surface product, MOD11C3, is the 
monthly product of MODIS/TERRA with 0.05° of 
spatial resolution and provides per pixel 
temperature. This land surface temperature 
product has already been validated for ground air 
temperature in several parts of the world, including 
in the Himalayas (Maskey et al. 2011; Wang et al. 
2007; Wang et al. 2008). MOD11C3 was used for 
the model training and testing. This product is 
available in Land Processes Distributed Active 
Archive Center (LP DAAC).  

2.3 TRMM precipitation 

A 3B43 product was selected for this study. 
This monthly product covers the area of 50° N to 
50oS with a spatial resolution of 0.25°. This 
product was developed in three steps: first, several 
passive microwave sensors on the board of the 
TRMM and other satellites were converted to a 
precipitation estimate. In the next step, an infrared 
(IR) estimate using the calibrated microwave 
estimate was made. As a third step, the microwave 
and the IR estimates were combined to provide the 
best estimation of precipitation. The final step 
while generating 3B43 was the inclusion of rain 
gauge data. The three hourly estimates obtained by 
combining microwaves and IR estimates were then 

summed up over a calendar month to create a 
monthly multi-satellite product (Huffman et al. 
2007). This product is freely available at 
http://disc.sci.gsfc.nasa.gov/precipitation/docume
ntation/TRMM_README/TRMM_3B43_readme.
shtml. 

2.4 GCM selection 

A general circulation model (GCM) is a 
mathematical model used to simulate the earth 
atmosphere. It may work differently for the oceans 
and the atmosphere or in a tightly coupled manner. 
GCMs are widely used for forecasting climate 
variability as well as for projecting climate changes. 
Several GCMs are available based on different 
mathematical modeling techniques and they 
forecast differently. These differences regarding 
forecasting are called the element of uncertainty. It 
is important to consider topography, environment, 
etc. in order to select an appropriate GCM having a 
small amount of uncertainty.  

Many GCMs project global climatic variables 
under different scenarios, but their resolution, 
representativeness of the study domain and 
availability of data to the public makes it difficult to 
select the most appropriate GCM. In this study, all 
future climatic changes are based on the HadCM3 
model, a coupled atmosphere-ocean general 
circulation model developed at the Hadley Centre 
in the United Kingdom (Pope et al. 2000). It is the 
successor to HadCM2 used in IPCC third 
assessment report and has the resolution of 2.5 × 
3.75 (Khadka et al. 2014). The A1B emission 
scenario, is a group under A1 family which 
describes a future world of very rapid economic 
growth, global population that peaks in mid-
century and declines thereafter, and the rapid 
introduction of new and more efficient 
technologies. A1B signifies balance use between 
fossil and white energy sources (Khadka et al. 
2014). Under this scenario, the average linear air 
temperature trend is of about 0.26°-0.28°C per 
decade. This is very close to the increasing 
temperature trend obtained since 1980 in the 
Kaligandaki basin in our previous study (Mishra et 
al. 2014). Thus, based on this accuracy, the 
HadCM3 model with the A1B scenario was chosen 
in the analysis. Additionally, A1B is a moderate 
global warming scenario, and lies between two 
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extreme scenarios i.e. little warming and strong 
warming (IPCC 2007). Thus, A1B is more likely to 
represent the real situation for the future than an 
extreme scenario.  

3    Methodology 

3.1 Selection of input variables 

The accuracy of the prediction depends greatly 
upon the explanatory variables employed as 
influential parameters (Babel and Shinde 2010). It 
is widely accepted that the snow cover area is 
determined by various climatic and topographic 
factors which differ from place to place, thus 
necessitating the need to find a site/region specific 
input parameters. In addition, to reduce the 
complexity of the model, only very precise input 
variables must be used (Noori et al. 2010). The 
most commonly used measure of statistical 
dependency for input selection is correlation 
coefficient (Maier et al. 2010), therefore, it has 
been used to find the dependency and discard the 
dependent climatic variable while selecting the 
input set in this study and calculated using 
Equation 2. 

           

( ) ( )∑ ∑∑ ∑
∑ ∑∑

−−

−
=

2222 yynxxn

yxxyn
r                   (2) 

where x, y are two variables subjected to calculate 
the correlation coefficient and n is the number of 
population. 

The value of r can be in between -1 and +1, 
with -1 perfect negative relationship, +1 is perfect 
positive relationship and 0 is no relationship 
between x and y. Thus, the closer r is to -1 the 
stronger the negative linear relationship and the 
closer r is to 1, the stronger the positive linear 
relationship.  

3.2 Non-linear autoregressive networks 
with an exogenous network 

ANN attempts to simulate the workings of the 
neurons in the brain by using a network of artificial 
neurons organized in layers, which receive a 
stimulus and, via a transfer function, 
mathematically convert the said stimulus into an 
output signal. If the selected process is 

deterministic and linear, the implementation will 
be straightforward. However, the accumulation 
and melting processes of snow are highly non-
linear and vary both spatially and temporally. 
There is usually a strong dependence on initial 
conditions and small fluctuations in the 
independent variables, which can cause great 
variations in the response system. The system can 
be heavily influenced by external input climate 
variables that are dynamic in nature. Besides, it is 
common that datasets are not noise-free because of 
several reasons like measurement error, processing 
errors etc. Such complex time-series data require a 
stable model that can cope with a non-linear 
environment and can produce long term dynamics 
in a statistical sense rather than focus on short 
term predictions. To guarantee a considerably 
accurate forecasting, the model must yield the time 
series snow cover area with the same statistical 
properties as the original data. In order to ensure 
these requirements, NARX was chosen to forecast 
the snow cover area in this study. NARX belongs to 
the class of recurrent dynamic networks with feed 
back connections. It is based on the linear 
autoregressive exogenous (ARX) model which is 
commonly used in the time series modelling 
(Connor and Martin 1994). Equation 3 represents 
the NARX model. 

                ),()........2(),1(()( qtytytyfty −−−=                    
                 ))()........2(),1( qttt −−− ϕϕϕ                          (3) 

where y(t) is the model output regressed on 
previous values y(t-1) with a delay of q time steps 
as well as further exogenous parameters φ. The 
function f is an unknown non-linear mapping 
function adopted by the network (Siegelmann et al. 
1997). 

In NARX, each neuron in one layer was linked 
to each of the neurons in the next layer by means of 
a link along with connected weights. These weights 
were updated during the training cycles until the 
expected output was obtained. Neural network 
architecture includes three aspects: the 
information flow direction between neurons, the 
method to update the connection weight, and the 
transfer function which yields the output from the 
set of inputs made to the architecture (ASCE 2005). 

Trials were conducted with different 
configuration parameters and these parameters 
were tested for their level of accuracy in forecasting 
snow covered area for different elevation zones. 
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The LogSig transfer function, Equation 4, was used 
in this study. The LogSig function scales the data 
between 0 and +1.  

                       
)1(

1)(log pe
psig −+

=                       (4) 

In general, NN models are able to approximate 
arbitrary complex linear and non-linear dynamical 
systems without making any assumptions about 
the underlying data and process. This simplifies the 
modeling (Sauter et al. 2009). In this study, we 
were interested in the pattern of snow covered 
rather than in the physical process itself. Therefore, 
the analysis of neural network (NN) was not so 
complex. 

NARX is used to predict the snow cover 
percentage for the next month. The model 
estimated outcome from the network is used as 
feedback to input layer of the network and is 
subsequently used for the next calculation. As the 
recurrent networks are highly sensitive to small 
change (Cao and Wang 2004), there is a huge risk 
of over-fitting or under-fitting while training the 
network if the number of inputs or epochs is not 
appropriate. The training set is accepted as 
adequate if there is no big error in the accuracy 
indicators. 

The selection of suitable input variables and 
their delays is a very critical factor while 
developing the model. For this study, the input 
variables were selected using the methodology 
indicated in section 3.1. 

The gradient descent learning algorithm was 
selected for the calibration of the network. This 
algorithm attempts to find a point W in some 
parameter space such as the neural network weight 
space, which minimizes an error ei (m) and defined 
using the Equation 5: 

                  )()()( mymdme iii −=                           (5) 

where di(m) is from the system response at node i 
at iteration m, and the desired response yi(m) for a 
given input pattern.  

The gradient descent algorithm starts at a 
random point in the weight space and moves 
downhill until a minimum in the error surface is 
found, moving in the direction of the steepest 
descent at each point. Each weight in the network 
can be adapted by error back propagation; i.e., the 
weight from node i to node j (wij) can be calculated 

by Equation 6: 

           )()()()1( mxmmwmw iiijij ηδ+=+              (6) 

where, xi is a transform function at node i, and i 
and j indicate different layers. 

The local error δi(m) can be directly computed 
from ei(m) at the output node or can be computed 
as a weighted sum of errors at the internal nodes. 
The constant η is learning rate.  

3.3 Performance indicator  

The accuracy of the simulated results was 
confirmed using two indicators: the Symmetric 
Mean Absolute Percentage Error (SMAPE) (Flores, 
1986) and the Root Mean Square Error (RMSE). 
They are defined in Equations 7 and 8 (Jain et al. 
2001; Babel and Shinde 2010). 

                  1001
1

×
+
−

= ∑ =
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SMAPE                    (7) 

                     ∑ =
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n
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1
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where Oi = observed snow cover; Fi = forecasted 
snow cover; and n = the total number of the testing 
datasets. 

4    Results and Discussion 

4.1 Input variables 

Ten potential explanatory variables were 
identified, which were categorized under snow 
cover area, average temperature, minimum 
temperature, maximum temperature, precipitation, 
elevation, cloud cover days, frosty days, the wind 
speed and day of the year. But due to the 
unavailability of data, frosty days, wind speed and 
cloud cover days had to be discarded from 
consideration. For the remaining six parameters, 
the monthly data was collected from remote 
sensing sources such as MODIS, TRMM from 
January 2000 to December 2010. For these six 
parameters, the inter-correlation coefficient was 
obtained to each other. The summary of the 
correlation coefficients is given in Table 1. 
Elevation, minimum temperature and maximum 
temperature show a very good correlation 
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coefficient with average temperature. Therefore, 
only average temperature was considered. 
Similarly, the precipitation and snow cover area in 
the previous months are not seeminlgy correlated 
to average temperature; thus, both of them were 
kept in consideration.  

4.2 Training and testing 

We used the meteorological time series data 
obtained from the input selection procedure 
mentioned in the section 3.1, as input variables to 
the NARX model in order to generate snow time 
series for snow cover. 

A suitable training dataset was identified to 
train the model so that the model is not open to the 
risk of being overfit or underfit. The datasets 
between 2000 and 2007 were found to be optimum 
in order to train the model and the remaining 
dataset from January 2007 to December 2010 was 
used for testing. The testing set was also used as a 
reference period for changes in future scenarios. 

While the network was being trained, the 
effect of each input on the network was also being 
studied. This provided feedback for the number of 
hidden layers and which transfer function was 
most suitable. Based on this feedback, it was 
decided to prune the input space by changing the 
number of hidden layers. That reduces the 
network’s complexity and the time’s complexity.  

The input set included temperature (oC), 
monthly accumulated precipitation and snow cover 
area in the previous month, which was 
incorporated into the NARX model with 4 hidden 

layers with the gradient descent learning function 
and the LogSig transfer function. As per the nature 
of the network, we could not exclude the previous 
month’s snow cover area, and so we selected the 
input variables in section 4.1. Statistical tests and 
measurements tend to indicate that the NARX is 
able to produce snow cover area. In addition to that, 
we tested the effects of changing in temperature 
only and precipitation only in this study. All the 
tested models were presented in Table 2. 

Table 3 depicts the performance of a 
developed model with different combinations of 
input sets in all three elevation zones. These were 
evaluated using SMAPE and RMSE. The model was 
tested with three sets of input combination with 
the selected input variables, namely temperature 
with the snow cover area of the previous month as 
the feedback loop, precipitation with the snow 
cover area of the previous month as the feedback 
loop and temperature and precipitation along with 
the snow cover area of the previous month as the 
feedback loop. The RMSE is 2.16, 5.62 and 5.59 in 
zone II, zone III and zone IV, respectively. 
Similarly, the SMAP is 4.92, 4.72 and 2.56 in zone 

 
Table 3 Performance indicators of tested NARX models for three elevation zones 

Model 
Zone II Zone III Zone IV 

RMSE SMAPE RMSE SMAPE RMSE SMAPE
A 7.67 19.6 11.67 12.9 12.35 8.85
B 7.38 29.02 13.09 20.62 9.58 5.49 
C 2.16 4.92 5.62 4.72 5.59 2.56 

Notes: RMSE =Root Mean Square Error; SMAPE= Symmetric Mean Absolute Percentage Error. 

Table 1 Summary of the inter-correlation coefficient of selected input parameters 

 Min temp  Max temp Avg. temp Precipitation Elevation Snow cover 
Min temp 1.000 0.903 0.975 0.589 -0.897 -0.875
Max temp 0.903 1.000 0.976 0.549 -0.847 -0.840
Avg. temp 0.975 0.976 1.000 0.583 -0.894 -0.879
Precipitation 0.589 0.549 0.583 1.000 -0.342 -0.512
Elevation -0.897 -0.847 -0.894 -0.342 1.000 0.787 
Snow cover -0.875 -0.840 -0.879 -0.512 0.787 1.000 

 

Table 2 Selected neural network models with 
different input combinations for selected 
climatic variability 

Model Input variables 

A Temperature, snow cover – previous 
month  

B Precipitation, snow cover – previous 
month 

C Temperature, precipitation and snow 
cover – previous month 
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snow cover area in the study area under 
consideration. This is possibly the first study in this 
region to forecast snow cover with this resolution. 
The results are somewhat expected and are 
generally consistent, even without an 
understanding of the snow process. The magnitude 
of the reduction in snow cover is higher in the 
transition area i.e. the maximum effect can be seen 
in Zone III.  

While the results presented are consistent and 
reasonable in our understanding, we must still 
exercise some caution in their use. Foremost is the 
warning that this forecasting is based on GCM data, 
in which uncertainty is inherent. Additionally, the 
developed model could have some bias and may 
give rise to some anomalies. Furthermore, we have 
used remote sensing data that also inherits several 
uncertainties. In addition, we did not have data 
regarding snow depth in our study. Snow depth is a 

vital factor, so we recommend considering snow 
depth as well in order to forecast the consistency of 
the snow cover area. Therefore, future work may 
consider these and other related issues through the 
coupling of a regional climate model by exploring 
an optional advanced ANN to better simulate 
future climate scenarios and can study the 
potential impacts of these scenarios on water 
availability in the Kaligandaki basin. 
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