
  

  

Abstract— Obstructive sleep apnea (OSA), characterized by 
cessations of breathing during sleep due to upper airway 
collapse, can affect the healthy growth and development of 
children. The gold standard for OSA diagnosis, 
polysomnography (PSG), is expensive and resource intensive, 
resulting in long waiting lists to perform a PSG.  

Previously, we investigated the time-frequency analysis of 
blood oxygen saturation (SpO2) to screen for OSA. We used 
overnight pulse oximetry from 146 children, collected using a 
smartphone-based pulse oximeter (Phone Oximeter), 
simultaneously with standard PSG. Sleep technicians manually 
scored PSG and provided the average of apnea/hypoapnea 
events per hour (AHI).  
In this study, we proposed an alternative method for analyzing 
SpO2, in which a set of contracting transformations form a self-
affine set with a 2D attractor, previously developed for 
qualitative visualization of the photoplethysmogram and 
electroencephalogram. We applied this technique to the 
overnight SpO2 signal from individual patients and extracted 
features based on the distribution of points (radius and angle) 
in the visualization. The cloud of points in children without 
OSA (NonOSA) was more confined than in children with OSA, 
which was reflected by more empty pixels (radius and angles). 
The maximum value, skewness and standard deviation of the 
distribution of points located at different radius and angles 
were significantly (Bonferroni corrected) higher in NonOSA 
compared to OSA children. To detect OSA defined at different 
levels (AHI≥5, AHI≥10 and AHI≥15), three multivariate 
logistic regression models were implemented using a stepwise 
feature selection and internally validated through 
bootstrapping. The models (AHI≥5, AHI≥10, AHI≥15), 
consisting of 3, 4 and 1 features respectively, provided a 
bootstrap-corrected AUC of 73%, 81%, 73%. Thus, applying 
this visualization to nocturnal SpO2 could yield both visual and 
quantitative information that might be useful for screening 
children for OSA. 

I. INTRODUCTION 
The diagnosis of obstructive sleep apnea (OSA) in 

children presents a challenging problem. OSA is 
characterized by frequent complete (apnea) or partial 
(hypopnea) cessations of breathing during sleep due to 
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periodic collapse of the upper airway. OSA affects up to 6% 
of children [1], [2] and poses a serious threat to their healthy 
growth and development. The frequent sleep fragmentations 
and oxygen desaturations experienced during sleep have been 
associated with daytime sleepiness, growth failure, 
behavioural problems and developmental delays. The 
primary cause of pediatric OSA is enlarged tonsils and 
adenoids [3] and the highest OSA prevalence is in children 
aged 2-5 years, when adenoids and tonsils are largest relative 
to the airway [4].  

To diagnose and determine OSA severity children must 
undergo overnight sleep test or polysomnography (PSG), the 
gold standard for OSA diagnosis. PSG is a resource intensive 
study involving overnight stay in a well-equipped sleep 
laboratory and measurement of electrocardiography, chest 
movement, brain activity, oxygen saturation, nasal airflow, 
and video/audio data. Thus, a very limited number of 
children can have access to PSGs each year. In British 
Columbia, Canada, all children referred for PSG must be 
tested overnight at BC Children’s Hospital in Vancouver, 
which has the capacity to perform only 250 PSGs annually. 
As a result, the waitlist is approximately eight months long, 
delaying diagnosis and treatment for children in need. 
Examination of PSG data allows identification of 
apnea/hypopnea events (defined as interruption/reduction of 
airflow), arousals and associated oxyhemoglobin 
desaturations. The average number of apnea and hypopnea 
events per hour (the apnea/ hypopnea index [AHI]), is used to 
determine OSA severity. 

Pulse oximetry, a part of the standard of care for PSG, is a 
simple, non-invasive method of measuring blood oxygen 
saturation (SpO2) using a probe attached to the finger or toe. 
Overnight oximetry or SpO2 analysis, has been previously 
explored as a potential standalone method to screen for 
subjects with OSA. Nixon et al. developed and validated a 
severity scoring system, refer to as the McGill Oximetry 
Score (MOS), using overnight oximetry, as a tool to prioritize 
the adenotonsillectomy surgical list [5]; Álvarez et al. 
demonstrated that the characterization of overnight oximetry 
provided relevant information to identify adults with 
significant OSA [6]. 

Smartphones have been adopted widely, offering an ideal 
platform for vital signs assessment and automatic diagnosis. 
The Phone Oximeter (a mobile device that integrates a pulse 
oximeter with a smartphone [7], [8]), provides a very useful 
platform to record overnight pulse oximetry. SpO2 
fluctuations caused by episodes of apnea modulate the SpO2 
signal. Thus, in previous studies, we have characterized 
nocturnal SpO2, recorded by the Phone Oximeter, in time and 
frequency domain, to identify subjects with OSA [9], [10]. 
However, SpO2 exhibits complex non-linear information as 
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well. This complexity is often ignored in conventional 
analysis, where time or frequency domain filtering is used to 
extract simple numeric trends. Thus, in this study we propose 
an alternative method of analysis, in which a set of 
contracting transformations form a self-affine set with a 2D 
attractor [11]. We investigate the effect of OSA on SpO2 
attractor patterns, and implement a smartphone application 
for visualization of the SpO2 attractor. 

II. DATASET 

We recruited 160 children (59 female and 87 male), 9.1± 4.3 
years old with signs of OSA, who were referred to the 
British Columbia Children's Hospital for a PSG sleep study.  
All children were recruited per a protocol approved by the 
University of British Columbia and Children's and Women's 
Health Centre of British Columbia Research Ethics Board 
(H11-01769). Parental/guardian written informed consent 
was obtained for all subjects. 
Data acquisition was carried out in the sleep laboratory. 
Overnight measurement of electrocardiography (ECG), 
electroencephalography (EEG), pulse oximetry, chest 
movement, and nasal airflow, as well as video recording, 
were recorded, using the Embla Sandman S4500.  
A second pulse oximeter sensor was applied to the finger 
adjacent to the one used during the standard PSG. This 
sensor was attached to the smartphone-based pulse oximeter, 
and SpO2 was recorded at 1 Hz alongside PSG. 

TABLE I.  DATASET BASELINE 

Subjects (female, male) 146* (59, 87)  
Age (years old) 9.11 ± 4.23 
Body Mass Index [BMI] (kg/m2) 20.95 ± 7.97 
AHI (apnea/hypoapnea /hour) 8.42 ± 14.97 

   *Fourteen children were excluded from analysis based on having a total 
sleep duration, or signal data duration (from PSG or the smartphone-
based pulse oximeter) shorter than 3 hours. 

III. METHODS 

A. SpO2 signal pre-processing 
Displacement of the sensor, motion artifacts, ambient light, 
and low blood perfusion can corrupt oximetry recordings. 
Thus, we implemented a signal quality index (SQI), defined 

by:  SQI n =
0, SpO2  unreliable
1, SpO2  reliable

, to indicate whether the 

quality of the SpO2 signal was appropriate for further 
analysis. The SpO2 samples below 70% or above 100% were 
considered as artifacts and consequently the SQI of these 
samples was set to zero. The SQI of SpO2 segments shorter 
than 30s located between unreliable SpO2 (SQI=0) samples 
were set to zero. The SQI was be used to identify oximetry 
segments of sufficient quality to warrant appropriate further 
signal processing analysis.  

B. Self-affine visualization 
We considered a unit disk to map the current SpO2 signal 
sample SpO2 (n) to a point P n  on the periphery through, 
P n =[ cos SpO2 (n) ; sin SpO2 (n) ] and plot a point 
p n  midway between the previous point p n-1  (initially 
the center of the disk) and the periphery location P n : 

p n =p(n-1)+
1
2
(P(n)-p(n-1)) 

The resulting cloud of points encodes the history of the 
signal and lies on the attractor of its self-affine set. The 
fractal pattern appearance is determined by the unfiltered 
self-similar structure (see Figure 1). In this study, six hours 
of reliable SpO2 (SQI=1) 1 Hz data at 0.1% and 1% 
resolution were mapped, using this method, for each patient. 
 

 
Figure 1. Illustration of the process of calculating the cloud 
of points using the SpO2 signal at 1% resolution.  

C. Feature extraction 
Several features were computed to characterize the 
dispersion of points in the self-affine visualization. The 
visualization was divided in a grid of 200x200 pixels, and a 
matrix with the number of points located at each pixel was 
computed.  In addition, the radius and angle (polar 
coordinates) of every point was calculated.  A vector 
(Radius_vec) with the percentage of points (number of 
points/total points) located at different ratios (ranging from 0 
to 1 in steps of 0.01) was calculated. A second vector 
(Angle_vec) with the percentage of points located at 
different angles (ranging from 0° to 360° in steps of 2°) was 
computed. 

TABLE II.  DESCRIPTION OF THE FEATURES EXTRACTED FROM 
ANALYZING THE SELF-AFFINE VISUALIZATION 

Features Description 

Empty_pixel Percentage of empty pixels (number of empty 
pixels/total pixels) 

Empty_radius Percentage of empty radius (number of empty 
radius/total radius) 

Empty_angle Percentage of empty angles (number of empty 
angles/total angles) 

KR Kurtosis of the Radius_vec 
SR Skewness of the Radius_vec 
StdR Standard deviation of the Radius_vec 
IqrR Interquartile range of the Radius_vec 
maxR Maximum value of Radius_vec 
KA Kurtosis of the Angle_vec 
SA Skewness of the Angle_vec 
StdA Standard deviation of the Angle_vec 
IqrA Interquartile range of the Angle_vec 
maxA Maximum value of Angle_vec 
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D. Data analysis 
First, a Mann-Whitney U test was applied to evaluate the 
differences of each feature in NonOSA and OSA patients 
with different severities (AHI≥5, AHI≥10 and AHI≥15). 
Bonferroni correction was used to adjust for multiple (n=13) 

comparisons. A probability of p-value ≤ 0.05/n was 
considered significant. Then, a stepwise selection method 
was applied to identify the most relevant features and to 
develop three multivariate logistic regression models to 
detect patients with an AHI≥5, AHI≥10 and AHI≥15.

 

 
Figure 2. The self-affine visualization applied to SpO2 readings (at 1% resolution in top figures and 0.1% resolution in bottom 
figures) for patients with different AHI. The dispersion of points is seen to increase with OSA severity.  
 
The stepwise selection method added/dropped one feature 
at a time and stopped when further inclusion/exclusion no 
longer improved the model, as determined by the Akaike 
information criterion[12]. All features were included as 
candidate predictors and a minimum value of 40 events per 
variable was maintained to avoid overfitting [13]. 
We used the bootstrap method to validate our models, since 
it is recommended as the optimal technique for estimation 
of internal validity of a predictive logistic regression 
models. Using the original data set, 100 bootstrap samples 
were generated using sampling with replacement. The 
stepwise selection procedure was applied to each bootstrap 
sample to develop a multivariate model. This model was 
applied to predict the outcome in the bootstrap sample and 
in the original data set. The difference in the prediction 
performance, quantified by the area under the receiver 
operating characteristic curve (AUC), was computed to 
estimate the optimism of the models. 

IV. RESULTS 

A. Univariate analysis 
As it is shown in figure 2, the cloud of points in 
children without OSA, is confined to some radius 
whereas in children with OSA (at different AHI 
thresholds), these points are more dispersed. This was 
reflected by greater values of empty spaces in the 
visualization (empty_pixel, empty_angle). 
 

TABLE III.  FEATURE DISTRIBUTION (MEAN STANDARD ±DEVIATION) 
FOR PATIENTS WITH AND WITHOUT  OSA. 

Feat. NonOSA OSA NonOSA OSA NonOSA OSA

Empty_
pixel

97.5±2 95.1±3 96.6±1.9 93.9±3.2 96.4±1.9 93.2±3.6

Empty_
radius 10.5±2.9 10.3±3.1 10.8±3.1 9.3±1.7 10.6±3.1 9.3±1.9

Empty_
angle 7.1±7.8 4.1±6.8 7.24±8.0 1.37±2.5 6.7±7.9 1.4±2.7

KR 93.1±5.73 89.6±6.31 93.1±5.33 87±6.7 92.6±5.51 86.5±7.32

SR 9.48±0.43 9.22±0.47 9.48±0.4 9.03±0.5 9.45±0.41 8.98±0.55

StdR 5.9±1.22 5.04±1.28 5.89±1.19 4.45±1.08 5.77±1.22 4.37±1.18

IqrR 0.53±0.18 0.64±0.19 0.53±0.18 0.72±0.15 0.55±0.18 0.73±0.16

maxR 58.8±12.5 50±13.2 58.7± 12.2 43.9±11.1 57.5±12.5 43.1±12.1

KA 98.4±37 92.8±35.1 100±36.6 83.1±32.1 99.1±35.6 79.6±36.1

SA 9.32±1.97 8.97±1.89 9.41±1.93 8.4±1.79 9.35±1.88 8.19±2.03

StdA 3.15±0.92 2.69±0.92 3.17±0.92 2.3±0.69 3.1±0.91 2.26±0.81

IqrA 0.14±0.09 0.19±0.1 0.14±0.08 0.23±0.09 0.15±0.09 0.24±0.10

maxA 35.8±14.3 30.3±14 36.2±14.4 24.8±10.5 35.3±14.1 24.1±12.3

AHI threshold=5 AHI threshold=15AHI threshold=10

*Colored background indicates features with p-value <0.05/n  
 

Regarding the distribution of the points (percentage) 
located at different radius or angles, children without 
OSA presented higher maximum values, and higher 
skewness and standard deviation, than children with 
OSA (table III). 
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B. Multivariate modeling 
Both, the final logistic regression model to identify an 
AHI≥5 and the final model to identify an AHI≥10 selected 
4 features (Table IV and Table V, respectively), while the 
model to identify an AHI≥15 (see Table VI) selected only 
one feature (empty_pixel). All the selected features had p-
values < 0.05. The three models were well calibrated 
(Hosmer-Lemeshow goodness of fit test p=0.2, p = 0.4, p = 
0.1, respectively) and presented an area under the ROC 
curve (AUC) of at least 0.8 (see Table VII). 

TABLE IV.  PARAMETER ESTIMATES FROM THE FINAL MODEL TO 
IDENTIFY CHILDREN WITH AHI≥5 

Features Parameter 
Estimate 

Standard 
Error 

p-value 

Intercept 3.40 2.59 0.19 
maxA 0.13 0.04 0.00174 

Empty_radius 3.66e-05 1.05e-05 0.00049 
SA 1.08 4.12e-01 0.00898 

TABLE V.  PARAMETER ESTIMATES FROM THE FINAL MODEL TO 
IDENTIFY CHILDREN WITH AHI≥10 

Features Parameter 
Estimate 

Standard 
Error 

p-value 

Intercept 2.53e+01 1.56e+01 0.11 
SA 2.42 0.6 6.3e-05 

maxA 4.06e-01 1.07e-01 0.00016 
Empty_radius 3.06e-05 1.40e-05 0.02857 
Empty_pixel 4.09e+01 1.78e+01 0.02187 

TABLE VI.  PARAMETER ESTIMATES FROM THE FINAL MODEL TO 
IDENTIFY CHILDREN WITH AHI≥15 

Features Parameter 
Estimate 

Standard 
Error 

p-value 

Intercept 38.8 10.0 0.00011 
Empty_pixel -42.6 10.6 5.4e-05 

C. Classification 

Assuming that the cost of sending a child without OSA 
for a PSG is not overwhelmingly high, it would be 
reasonable to allow an unnecessary PSG of three NonOSA 
children (i.e. three false positives) in order to avoid missing 
one OSA case (i.e. one false negative). The optimal risk 
thresholds in this context (3:1) were 0.125, 0.28 and 0.12 
for the model identifying an AHI≥5, AHI≥10, and AHI≥15, 
respectively. The best classification performance was 
obtained identifying children with AHI≥10 (table VII). 

TABLE VII.  CLASSIFICATION RESULTS REPRESENTED BY THE MEAN 
AND 95% CI OF THE ACCURACY (ACC), SENSITIVITY (SN), SPECIFICITY(SP), 

AREA UNDER THE ROC CURVE (AUC) AND OPTIMISM OF THE AUC  

Model 
to 

identify 

Mean and 95% confidence intervals 
Acc 
(%) Sn (%) Sp (%) AUC 

(%) 
Optimism 

(%) 
AHI≥5 74 

[67,82] 
74 

[54,93] 
75 

[67,83] 
80 

[72,88] 
6.6 

[-0.4,13.1] 
AHI≥10 77 

[70,84] 
79 

[61,97] 
77 

[69,84] 
87 

[79,94] 
6.1 

[-0.9,12.3] 
AHI≥15 75 

[67,82] 
79 

[60, 97] 
74 

[65,82] 
81 

[71,91] 
7.6 

[-1.0,14.4] 
An optimal risk threshold was calculated for each model [14] (0.125, 0.28, 
and 0.12, respectively). 

V. CONCLUSION 

We have performed quantitative analysis of a novel non-
linear method for OSA visualization that is based on a 
simple self-affine transformation. The results suggest that 
when applied to nocturnal SpO2, this innovative 
visualization can provide useful information to improve 
OSA screening, using pulse oximetry as a standalone tool. 
The visualization permits the extraction of features that 
could help identifying children with OSA, and applying 
simple pattern-based classifiers to the visualizations yields 
promising quantitative results. For further research, we plan 
to extend this analysis to provide information about OSA 
severity as well. 

Furthermore, when integrated with a mobile phone 
oximeter system, the proposed visualization approach could 
open for a new regime of visual OSA interpretations that 
may be more accessible to patients when used in a home 
setting, allowing people everywhere to better access their 
own quality of sleep. 
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