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Abstract

Subject is the free boundary problem of a liquid layer that is dried by evaporation.
Using a Stefan type problem, we model the diffusion driven drying of a layer of liquid
paint consisting of resin and solvent. For the one-dimensional case, the movement
of the free boundary is found in a short time asymptotic analysis. When including
fluid flow and the levelling of the surface in a two-dimensional model, two small
parameter cases are discussed. The first concerns the levelling by surface tension
under the assumption of a small aspect ratio, where the thin film equation appears
in the free boundary condition. Secondly the effect of a small perturbation of the flat
free boundary shows different decay for long and short wavelength surface elevations.

Key words: free boundary, liquid coating, evaporation, Stefan problem

1 Introduction

A model is presented for the drying of a layer of liquid paint, consisting of a
non-volatile resin and a volatile solvent. The drying process is assumed to be
through diffusion and evaporation of the solvent, for which the model results in
a Stefan type problem, so a free boundary problem similar to models for phase
transitions. One part of this study is aimed to reduce the system of equations
in a lubrication approximation, which will result in a diffusion problem for the
solvent, volume fraction, coupled to the thin film equation at the free boundary.

In Howison et al. [15] a mathematical model is derived for the drying of a
paint layer using classical lubrication theory, including the effects of variable
surface tension, viscosity, solvent diffusivity and solvent evaporation rate. A
careful balance of the different parameters in the model allows the authors to
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derive a thin film model for the drying paint, also including evaporation of the
volatile solvent. However, as is remarked by Howison et al., when the diffusion
process is slow, say, at a later stage in the drying process or for a thicker film,
the leading order distribution of the solvent across the layer is not uniform
and their scaling arguments fail. It is this stage that we try to model here.

The motivation for including the flow of the solvent, is the intention to ex-
tend the study of the thin film equation in some way to viscoelastic materials.
With a direct use of the constitutive equations corresponding to viscoelastic
behaviour, the lubrication approximation does not supply a significant simplifi-
cation. In the polymeric industry one adopts a model for so-called stress-driven
diffusion in order to get a better understanding of the role of the viscoelasticity
of the material. In such a model the stress build-up is related to changes in
the composition of the material due to species diffusion {3,6,8]. Van de Fliert
and Van der Hout [11] have included the stress-driven diffusion in a model
for the drying of a layer of paint. This leads to a Stefan type model with a
kinetic condition [12,13]. This model is presented in section 2 in higher space
dimensions, however, still without the complicating effects of non-Newtonian
flow. The aim of the present work is to show the stability properties of the
Newtonian model with the free evaporation boundary. When starting from
the viewpoint of the evaporation models, there is also a need to include fluid
flow effects, in particular surface tension effects, which have not been taken
into account in [11]. The need for surface tension in the Stefan type model
is expected from the analogy of phase transitions in the supercooled Stefan
problem. The Gibbs Thomson law or a kinetic law is needed to regularize
the boundary condition [4,16-18,10,5]. It is not clear what is the equivalent
of the Gibbs Thomson law for the model for species diffusion used for the
drying paint. From an analogy of electrodynamic problems, the curvature is
used in a flux condition for the model of drying liquid drops, used to explain
the formation of coffee stains {7]. This means that in this coffee case, not the
surface tension effects but the evaporation dependent on the curvature of the
drop, supply the boundary conditions. We observe in the asymptotic analysis
in section 4 that the effect of surface tension appears as a fourth order term.

We first present the model equations and then continue in three separate sec-
tions that can be read independently. In section 3 the actual analysis of the
movement of the free boundary is reduced to the one-dimensional case, where
surface tension effects play no role. The movement of the boundary is entirely
determined by the evaporation and asymptotic techniques can be applied to
find the time behaviour. A short time analysis is made using a Taylor expan-
sion from the fundamental source solution. In section 4 a lubrication scaling
is applied to reduce the model for small aspect ratio. In section 5 a stability
analysis is done when small elevations appear on the paint-air interface, which
shows a different decay behaviour for short and long wavelength perturbations.
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2 Derivation of the model equations

Let ¢(x,t) denote the solvent volume fraction, 0 < ¢ < 1, for which the solvent
flux consists of a convective term and a diffusive term, q4 = q¢p — DV,

¢ +q-Vé=V-DV. (1)

The paint domain Q(t) may have a fixed boundary Ty, at a substrate, where
there will be no flux both of solvent and the total fluid,

DV¢-ny=0, q-ng=0. (2)

The kinematic conditions at free surface I'(¢), with evaporating solvent, are

¢q-n—D(¢)Vé-n= ¢V, + E(¢), (4)

where V4, is the speed of the free surface in the direction of the outward normal
n. We can rewrite (4), using (3), as DV¢-n = —(1 — ¢)E(¢).

Initially, the solvent concentration is $(x,0) = ¢o(x), x € Q(0), and we need
to specify the initial domain Q(0) with boundaries T'y and I'(0). Finally, we
need a functional relation for the diffusion coefficient D(¢) and the evaporation
E(¢). In this paper we take the simple case of constant diffusion coefficient
and rescale so that D = 1. Since F should satisfy F(0) = 0, E(¢) > 0 for
0 < ¢ <1 and it is likely that E is non-decreasing in ¢, we will assume that,
with evaporation constant K,

E(¢) = K¢. ()

Assuming that the configuration is a thin layer of liquid paint, with on one side
an impermeable substrate and with the upper surface free and moving due to
the evaporation of solvent into air, we simply write y — h(z,¢) =0 at I'(¢), so
that V,, = —h:/-/1 + k2, while y = 0 at the substrate I';. Then without the
convection (q = 0), the problem given by (1)-(5) is recognized as a generalized
one-phase Stefan problem for ¢ and h. We first investigate the movement of
the free boundary for this one-dimensional, non-convective model, then we
include the velocity q from a Stokes flow, to derive a lubrication model and
perform a stability analysis.
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Fig. 1. Sketch of the two-dimensional paint domain

3 The one-dimensional model

When reduced to one dimension and without convection, the model for an
evaporating layer is given by the following one-dimensional, one-phase gener-
alized Stefan problem for volume fraction ¢(y,¢) and layer thickness A(t).

bt = Pyy, 0<y<hlt), t>0,

¢y =0, y=0,t>0,

¢y =—-Ko(1—9), tor y = h(t), t >0, ©)
hy = —Ko, y=h(t), t >0,

h=hy >0, t=0,

¢ = ¢o{y) 2 0, 0<y<hg, t=0.

We note that the boundary conditions in (6) do not only generalize the Stefan
problem with kinetic undercooling, but also with a Stefan condition that does
not conserve energy in the classical sense. The formal limit of this model in
the case of fast evaporation, i.e. in the limit K — oo, is given by the Stefan
problem with supercooling, with free boundary conditions ¢ = 0 and ¢, = h;.
In [12] it is shown that it is the proper limiting model for fast evaporation.
Using that

h(t) ho

hy = 0/ 1— ¢(y,t) dy=0/1—¢o<y> dy (7)

which means that the volume of the non-evaporating material in the drying
layer is conserved (and denoted by ki), it is not difficult to show that ¢ — 0
and h — hy as t — 00, given some conditions for ¢y [12].

3.1 Small time behaviour of the boundary

The small time behaviour of the free boundary will be obtained here from a
formal asymptotic analysis, based on a Taylor expansion and an embedding as
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in {14]. An embedding result for the classical Stefan problem and more general
melting problems was given by Boley [2,1]. We will not show the validity of
the analysis, but only give a comparison with some numerical calculations, as
shown in figures 3.1 and 3.1 below. We will find that for a solution pair (¢, k)
of (6), for small time the free boundary h(t¢) behaves as

h(t) = ho — K¢o(ho)t + 32 [K¢O(h0) {1 — do(ho)} + & (ho)] t/2 .
+O(K%)2.

We first write the solution ¢ as if it were defined on the whole real axis instead
of only for 0 < y < h(t), with the use of the fundamental solution

. _ 1 (y—&)?
}C(y’t’é’T)_Qﬁ(t——'r)lﬂ GXP—4(t__T) fOI'TSt,
0 ho o0
sy,t) = T Kofi(©)de+ | Kofale) de + T Kofs(e) de. 9)
—00 0 ko

with Ko = K(y,t;£€,0). Here fo = ¢ is the initial condition of the original
problem, but the functions f; and f3 are unknown and need to be determined
from the boundary conditions at y = 0 and y = h(t). We are interested in the
behaviour for small ¢ and expect a similarity-like behaviour, so we define new
variables

1/:2\/7?, p:y;g.

This choice can be motivated by the fact that we want to use a Taylor expan-
sion in v and by using the new variable v ~ t* it is observed that a = 1/2
provides integer powers in v, with equal powers for h; and ¢,. If we write
O(y,v) = é(y, 1), H(v) = h(t), then at y = H(v):

O(H(v),v) = —J fl(H(y —vp)e P dp +
VT VN
H(v)/v \ (H(v)—ho)/v , l
BHEO) —wePdp+ | fHO) -we? @
(H(v)—ho)/v —oo

By differentiating (9) with respect to y we get a similar expression for ®,(y, t).
A Taylor expansion in v is now used to match the two conditions at y = H(v).
If we write H(v) = hy — Ajv — Asv? + O(v3), then due to the free boundary
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Fig. 2. The thickness s(t) as a function of time for the Stefan problem; A. initial
data ¢o =3, ho=1and B. ¢o(y) =1—y, ho=1.
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Fig. 3. A. The thickness h(t) as a function of time for problem (6), with the first
two terms in the approximation. B. The volume fraction ¢(y,t) as a function of y
for y € [0, h(t)] at the values ¢t = 0.5m, m = 1..10. Initial data ¢g = %, h(0) =1,
K = 1. The shorter lines at larger times indicate the retracting boundary.

condition h; = —K ¢, the powers of v can only be matched if A; = 0. Then
from the condition ¢, = —K¢(1 — ¢) we find f3(ho) = fa(ho) = ¢o(ho). The
Taylor expansion for @ thus reduces to

(H(v),v) = dollo) + 5= {filho) = fy(ho)} + O,

The condition ®, = —K®(1 — @) at y = H(v) then yields, with fi(ho) =
#6(ho), that f3(ho) = —2K¢o(ho) {1 — do(ho)} — #6(ho), and we conclude that

A =0, A=~ ou(h), As = = [Keu(ho) {1 = do(lo)} + (ko).

This gives the behaviour in (8).

Completely similarly, for the solution of the supercooled Stefan problem, being
the limiting problem for K — oo, we find the expected short-time behaviour

h(t) = hg — 2AVE + O(t) (10)

where A is a constant depending on ¢o{hp) only.
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4 A thin film approximation

In Howison et.al. [15] where the thin film equation is derived including evap-
oration, it is argued that the validity of the model depends on the scales of
diffusion and convection. When the lateral diffusion of solvent as measured
by the dimensionless diffusion coefficient is very small, the leading order dis-
tribution of solvent across the layer is not uniform and as a consequence the
variables will depend on y - as well as z and t. It is exactly this parameter
regime where D ~ ¢ (with ¢ the aspect ratio of the thin film) that will be
used below. We deal here with the simplest case of constant viscosity u and
surface tension 7. Naturally, since the composition of the paint changes dur-
ing the drying process, the physical coefficients are likely to vary with the
volume fraction of the solvent. One may expect it to be a simple extension
of the model by taking the coefficients as functions of the volume fraction ¢
only. However, in order to be able to make a reduction in the equations by
a lubrication scaling, it is required that p = p(z,t) only at leading order (so
independent of y, the scaled coordinate). During the drying process, this is
not to be expected, unless the volatile and non-volatile fluids have the same
viscosities. If the assumption is not made, however, the reduction of equations
is ended and one has to concentrate on solving the full system numerically.
The assumption u(z,t) is a large restriction on the validity of the model, and
in fact we might as well assume that the viscosity is constant. It is explicitly
not a restriction for the model in [15] because of the uniform volume fraction
over the thin layer in their scalings. We will also neglect gravity and external
effects. As is argued in [15], gravity and surface tension gradients are impor-
tant in the practical situation of a drying paint, with the Bond and Marangoni
number of size comparable to other non-dimensional numbers included in this
model. The model is quite easily extended to include these and other effects.

4.1 Lubrication scalings

We denote by Ey a typical initial evaporation value, L and U are typical
length and velocity scales and we define the aspect ratio by € = hg/L. See
[15] for a discussion on the different choices for U. We are interested in the
situation where the effects of surface tension and diffusion are comparable,
and we choose U = D/e?L, which will scale the diffusion coefficient to 1.
The evaporation coefficient is non-dimensionalised as E = Epe(@)/eU and the
inverse capillary number is C = &37/uU.

For a Newtonian, viscous and incompressible fluid in a two-dimensional layer
where 0 < z < 1 and 0 < y < h(z,t), we have for the leading order velocities

1791



1792 Third World Congress of Nonlinear Analysts 47 (2001) 1785-1796

q = (u,v) and pressure p, the equations of classical lubrication theory:

ux+vy=0> Pz = Uyy, py =0,

with boundary conditions at y = 0 u =0, v =0 and at y = h(z,1)
phy + Uy = —Chgghy, —p=Chg, he+uhy=v—FE,

This is now coupled to the diffusion equation for the volume fraction of solvent
¢, in leading order (with D of order &%)

¢ + ¢mu + ¢yv = ¢yy7

with at y = h(z,t) ¢y = —(1 - ¢)E, and at y =0 ¢, = 0.

As usual in a lubrication analysis, one solves for u,v and p to obtain an
equation for h, the well known thin film equation with evaporation term
E(¢) = K¢. In the convection-diffusion equation we need explicitly the ex-
pressions for the velocities; writing v = ¥, v = —,, we can summerize the
leading order lubrication model for ¢(z,y,t) and h(z,t)

Bt + Guty — Gys = Py, 0 <y < hz,1),
% = —Chasa(59° — 3hy7), 0 <y < h(,1),
¢, =0, for ¢ =0, (11)
¢y = —K(1—-4)¢, y = h(z,1),
| B+ S(WPhgs)e = ~ K8, y = h(z,1),

for t > 0 and appropriate . These equations are to be supplemented by initial
conditions and boundary conditions in z.

5 Stability of the unsteady flow

We consider a linear perturbation analysis of the one-dimensional solution for
the full free boundary problem in section 2, coupled to Stokes flow (so not for
the reduced problem in section 4, but we will comment on the small aspect
ratio situation later). We start with assuming that the boundary is of the form

h(z,t) = HO(t) + 6 H*(t) cos kz + O(6?)
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for some small initial amplitude §. We would now like to define ¢ = @®° +
§®! cos kx + O(6?), and similarly for ¢, but since naturally ¢ is defined on
Qr(h) = R x (0, h(z,t)) x (0,7), while ® is defined on Qr(H®) (defined
similarly), we write symbolically
¢(x,y,t) ~ @°(y, t) + 6@ (y, t) cos kz + O(6?),
W(z,y,t) ~ 8V (y, t) sinkz + O(6%).

Of course the same dilemma is encountered when prescribing the initial data
¢o and we need to assume that a proper ¢, can be formulated on Qr(H®) with
the same total solvent mass. We now use a Taylor expansion around H°(¢),
which causes additional higher order terms in the free boundary conditions.
Since q, like 9, is of the order O(§), the convection does not appear in the
leading order equations for the volume fraction. The equations for ®°, H® are
given by the one-dimensional Stefan problem (6) of section 3.

Since we have now a flow defined on a fixed domain, the U! in these equations,

which is directly related to the vertical velocity, can be found independent of
H' and ®!. After elimination of the pressure p from the Stokes equations,

Dz = wxmy + ¢yyy7 Py = ~WYyew — wacyw

we solve the bi-laplacian A?¥!sin kz = 0 on the domain Qr(H?), giving

Ul = (P +Qy)e* + (R + Sy)e™™.

Then we can solve for the pressure (up to a constant):

p! = —2kcos kz(Qe* + Se™™).

Satisfying the boundary conditions, at y = 0 ¥! = ¥} = 0, and at y = H(t)

., — VU, =0, —p'—20] coskz =—Ck/§=—CHK’coskz,

gives the four conditions
P+R=0, 2Pk+Q+5=0,
(2Pk + 2Q + 2QkH®)e*° + (—2Pk — 25 + 2SkHO)e™*H° = 0,

(2Pk + 2QkH®)e*° + (2Pk — 2SkH®)e ™ #° = CH'k.
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Solving these equations for the coefficients P to S, we find that the velocity
at y = HO(t) satisfies
kH® — sinh kH° cosh kH°

1
H® t) = ~C6H! :
v(z, H°, t) 205}[ k FTE & coshZ R coskx (12)

See figure 5 for a plot of this velocity. We observe that for H° > 5/k, the value
of v is nearly independent of H°(¢),

v(z, Ht) =~ —%C%Hl coskz. (13)

Using this in the equation for H!, we find for H' the following exponential
decay

1
H} = —skCH' - K(@' + H'®),

evaluated at y = H°(¢) and with initial value H'(0) = 1. At first inspection
we conclude that for short time, the disturbance may grow, since CI)g < 0 at
y = HO°. This depends on the values of the wavenumber k (assumed large here)
and C. Even when the disturbance grows initially, it depends on the definition
whether we call this unsteady basic flow stable or unstable [9]. When assuming
that all quantities are uniformly bounded, we observe that for large time the
disturbance will always die out. This can be seen from the fact that ®° — 0
in time, since ®° satisfies (6) independent of H' and ®!. This implies that the
forcing terms in the equations for ®' vanish. With the given function HO(t)
from (6) we argue similarly that ®* — 0 for large time, while H® — h;. This
implies an exponential decay of H! ~ exp(—Ckt/2) for short wavelengths
(short relative to the inverse layer thickness).

For small values of H?, i.e. H® < 1/k we can approximate v by

1
v(z, H,t) = —50k46H1H03 coskz.

It can be checked that this is also the approximation that is found from the
thin film equation, when substituting h(z,t) = H°(t) + §H(¢) cos kz. Now H*
satisfies

1
H! = —§k4C’H°3H1 - K(®! + H'3Y),

and for small £ the disturbance will indeed grow initially, but again with
®° — 0 and ®* — 0 for large time, we find H' ~ exp(—Ck*h3t/3) for these
long wavelengths or thin layers.
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Although we cannot directly conclude stability of the unsteady flow from this
analysis, we observe that both long and short wavelength perturbations will
die out in the long run, assuming that the linearization remains applicable.
Since a separation of variables is not suitable due to the non-autonomous
boundary conditions, global estimates are needed to define a proper criterion
for stability [9].

. ME

Bt

Fig. 4. Velocity v/(C6H'k cos kx) as a function of kHO.

6 Conclusion

We have restricted ourselves here to the derivation of a model for the drying
of a paint film in a specific parameter regime. One motivation was to get an
idea of the role of surface tension in regularizing the Stefan problem which is
found from diffusion of species rather than phase transitions, for which the
Gibbs Thomson law is used. Three small parameter cases were discussed: first
the small time asymptotics for the movement of the interface, secondly the
derivaton of a model for a small aspect ratio situation (a thin layer lubrication
model) and finally a small amplitude perturbation of the flat paint-air inter-
face. Visco-elastic effects have not been included and these will be addressed
in future work.
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