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Abstract— Reduction of the number of sensors needed to
evaluate arm movements, makes a system for the assessment
of human body movements more suitable for clinical practice
and daily life assessments. In this study, we propose an
algorithm to reconstruct lower arm orientation, velocity and
position, based on a sensing system which consists of only
one inertial measurement unit (IMU) to the forearm. Lower
arm movements were reconstructed using a single IMU and
assuming that within a measurement there are moments without
arm movements. The proposed algorithm, together with a single
IMU attached to the forearm, may be used to evaluate lower
arm movements during clinical assessments or functional tasks.
In this pilot study, reconstructed quantities were compared with
an optical reference system. The limits of agreement in the
magnitude of the orientation vector and the norm of the velocity
vectors are respectively 4.2 deg (normalized, 5.2 percent) and
7.1 cm/s (normalized, 5.8 percent). The limit of agreement
of the difference between the reconstructed positions of both
sensing systems were relatively greater 7.7 cm (normalized,
16.8 percent).

I. INTRODUCTION

Proper arm function is essential for many activities of daily
living. When arm function is reduced, performance of these
activities will be limited. In particular, stroke survivors may
have a reduced ability to coordinate their arm movements and
experience difficulties while performing daily life activities.
Intensive rehabilitation therapy is usually given to restore
arm function or to compensate a lack of arm function.
For the optimal guidance of this rehabilitation process, arm
movements should be objectively assessed during clinical
assessments and functional tasks [1], [2]. A patient-specific,
objective, and qualitative assessment of arm movements
during functional tasks provides information on impairment
level during the functional task and/or assessment, and may
demonstrate recovery of arm functioning by restoration or
compensation [3].

The use of an inertial measurement unit (IMU) is a
feasible method for the assessment of body movements in a
daily life setting [1], [4]–[6]. IMUs combine accelerometers,
gyroscopes, and often also magnetometers. This type of
sensor can be used to evaluate quantities such as orientation,
change of orientation or change of position. In contrast to the
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use of an optical reference systems for the evaluation of body
movements, IMUs do not require an external physical refe-
rence system to estimate these quantities. This in particular
makes the use of IMUs suitable for measurements in a daily
life setting. For example, multiple IMUs can be used for the
assessment of daily life reaching performance [7]. Methods
described in this example resulted in qualitative metrics to
evaluate arm movements during daily life. However, the total
number of IMUs needed to estimate the described metrics
(at least eight sensors) makes the system less suitable for
clinical assessments and daily life practice [8]. Reducing the
number of IMUs to one can make these sensing systems more
suitable for the evaluation of daily life movements. Although
this would make the system no longer able to evaluate inte-
ractions between body parts or movements of multiple body
parts, it can still be used to evaluate movements of a body
part the IMU is attached to. Systems using only one IMU,
attached to the lower arm or somewher else on the body, are
already commonly used in rehabilitation practice. Examples
include: step counters, activity monitors, the evaluation of the
smoothness of movements, the assessment of overall activity,
sleep cycles, amd the evaluation of body posture [5], [9]–
[12]. However, using a single IMU and additional algorithms,
other clinically valuable information may be derived for
instance, the quality of arm movements. Quantities such as
arm velocity, arm orientation and change of arm position
could be useful to estimate metrics (e.g. reaching distance
and working area) for the assessment of arm movements
during functional tasks and clinical assessments [1], [7].

A major drawback of using only a single IMU is the pre-
sence of signal drift when estimating velocity or the change
of position of the IMU. This is inherent to using IMUs for
velocity and position estimation, in which errors increase
rapidly after a few seconds of measuring [13]. This study
aimed to develop and evaluate a data processing method
for estimation of lower arm velocity and position using a
single IMU. This method could potentially be used for the
assessment of arm movements during a functional task or to
perform instrumented versions of already existing clinical
assessments of arm function. The new method presented
in this paper was developed by analogy to methods used
for the reconstruction of feet movements using IMUs [2],
[14], [15]. Within the methods used to reconstruct foot
movements, episodes without foot movement were detected
and acceleration and velocity signals of these episodes were
updated. In this paper it is assumed that during a measure-
ment of arm movements, stroke survivors are seated and there
are detectable episodes without movements. The potential
limitations of these assumptions are discussed.
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II. MATERIALS AND METHODS

A. System setup

In this study, one Xsens MTw Awinda IMU sensor was
used (Xsens Technologies B.V., Enschede, The Netherlands).
The sensor is attached using an elastic strap to the posterior
side of the right forearm, just proximal of the wrist joint.
The sensor is positioned along the forearm, the x-axis of
the sensor frame (φs) parallel to the forearm and pointing
towards the elbow, the y-axis pointing towards the medial
side of the forearm and the z-axis perpendicular to the x- and
y-axis in a right-handed fashion (Fig. 1). Sensor acceleration,
sensor angular velocity and magnetic field are internally
measured at 1000 Hz. Xsens’ sensor fusion algorithms
estimate the sensor orientation of the sensor frame relative
to the global frame (Rgs) [16]. All sensor data (including
accelerations, angular velocity and sensor orientation) is
transmitted wirelessly to a computer and collected with a
sample frequency of 100 Hz.

B. Sensor orientation, velocity and position estimation

The position, velocity and orientation data of the IMU in
a global frame (φg , explained in more detail in Fig. 4), were
estimated offline. All data were processed and analyzed using
MATLAB R© (MathWorks Inc., Natick, MA). To reduce noise,
measured sensor accelerations and angular velocities were
filtered using an eighth order Butterworth low-pass filter with
a cut-off frequency of 20 Hz. Sensor velocity and sensor
position were estimated using sensor acceleration and sensor
orientation signals (Fig. 2). Noise reduction and integration
methods are based on Schepers et al. [14].

x

y

z
ϕs

Fig. 1. Overview of system setup. Xsens MTw Awinda attached to the
posterior side of the right forearm, close to the wrist. φs is the sensor
coordinate frame.
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Fig. 2. Schematic overview of data processing method to estimate sensor
acceleration (ag), sensor velocity (vg) and sensor position (xg) in the global
frame. Signals measured by the IMU (inside grey frame) are: mag (mag-
netometer), gyr (gyroscope) and acc (accelerometer). SF = Sensor Fusion
algorithms. Rgs = sensor orientation in global frame. g = gravitational
acceleration. as = sensor acceleration in sensor frame.

First, measured accelerations were converted from accele-
rations in a sensor frame (as), towards sensor accelerations
in a global frame (ag), by rotating the measured accelerations
using the orientation of the sensor and subtracting the
gravitational acceleration (g) from the z-component of the
acceleration signal:agx(t)agy(t)

agz(t)

 = Rgs(t) ∗

asx(t)asy(t)
asz(t)

−

00
g

 (1)

By integrating the sensor acceleration in a global frame,
the sensor velocity in the global frame (vg) could be estima-
ted using:

vg(t) = vg(t− 1) + ag(t) ∗ Ts (2)

The estimated sensor velocity is equal to the velocity of the
previous sample plus the instantaneous acceleration multip-
lied by the sample time (Ts, the inverse sample frequency).
It was assumed that the sensor velocity was zero at the first
sample, v(0) = 0.

By integrating the sensor velocity, the sensor position in
the global frame (xg) could be estimated using:

xg(t) = xg(t− 1) + vg(t) ∗ Ts (3)

This sensor position, relative to the initial position, is equal
to the position of the previous sample plus the instantaneous
velocity multiplied by the sample time.

C. Reduction of signal drift

By the integration of an acceleration signal to estimate
sensor velocity or by double integration of the sensor
acceleration signal to estimate sensor position, offset errors
and errors caused by signal noise increase during every
integration step. These errors ensure that the velocity and
position signals start drifting. To make an accurate estimation
of sensor velocity and sensor position during the assessment
of lower arm movements, the following conditions were
assumed to be true:

1) Over time, there are episodes in which the lower arm
is not moving.

2) Over time, in particular during long episodes without
movements, the lower arm returns to the initial position
and heading.

Given the first condition, a distinction between episodes
with or without movements was made. Similar to methods
used for the reconstruction of feet movements assessed using
IMUs [2], [14], [15], a zero-velocity detector was used to
detect moments without arm movements. Based on a method
of Skog et al. [15] the zero-velocity detector test whether
an episode is with or without velocity (respecively with
or without arm movements). The detector is a generalized
likelihood ratio detector that uses the measured sensor acce-
leration and sensor angular velocity data and a fixed detection
threshold [17]. The minimal duration of an episode with or
without detected arm velocity was set to 0.1 s (10 samples).
Shorter episodes were appended to the previous episode.
Next, zero-velocity updates were performed to avoid offset
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Fig. 3. Artificial result of movement detector, the evaluation signal (T )
based on the sensor acceleration and angular velocity signals [15]. As long
as the signal is below the threshold (dashed line) the moment is marked as
part of an episode without movements (white area), when the signal is above
the threshold the moment is marked as part of an episode with movements
(grey area). LE = Long episode without movements ( > 50 samples). Dashed
lines between two dots indicate the selected episode(s) between two long
episodes without movements.

errors in the sensor acceleration and sensor velocity signals.
Sensor acceleration and sensor velocity signals of episodes
without detected movements, were set to zero. Differences
in sensor acceleration and sensor velocity before and after
an episode with movements, were used to compensate any
linear drift over time of respectively the sensor acceleration
and sensor velocity signals within these episodes.

Episodes without movements with a duration of more than
0.5 s (50 samples) were marked as long episodes without
movements (see ‘LE’ in Fig. 3). It was assumed that the
arm returns to the initial position and heading before the
beginning of each long episode without movements. Previous
research on hand movements of stroke survivors, showed a
preferred position of the hand along the body during daily
life activities [1]. In the current study, the initial position was
selected such that it corresponds to the preferred position of
the hand while a person is seated (Fig. 4). Given the second
condition, the sensor heading (orientation around the z-axis)
between two long episodes without movements was linearly
compensated such that overall change in reconstructed hea-
ding became zero. Furthermore, the average velocity of all
movement episodes between the two long episodes without
movements (see the dashed lines between the dots in Fig. 3)
is subtracted from the reconstructed velocity data of the
episodes with movements. As a result, the average velocity
between the two long episodes without movements becomes
zero as well as the net position change.

D. Validation protocol

To demonstrate the accuracy of the proposed methods, a
first validation experiment was performed. One healthy par-
ticipant performed multiple arm movements while wearing
the IMU (Fig. 1). Reconstructed sensor orientation, sensor
velocity and sensor position were compared with data of an
optical reference system (Visualeyez, Phoenix Technologies
Inc., Vancouver, BC, Canada). Four active markers of the
optical reference system were attached directly to the IMU.
These marker positions were traced at a sample frequency
of 100 Hz and sensor orientations were reconstructed based
on the different marker positions.

Five prescribed movement sequences were performed du-
ring the experiment (Fig. 4). These movements vary from
simple back and forth movements, towards multiple conse-

cutive movements that are comparable with daily life mo-
vements. Each movement sequence was repeated three times
within a single measurement, at a participant selected pace.
Within measurements that include movement sequence #5,
the participant was asked to simulate daily life movements
using both hands for a period of three minutes. The par-
ticipant was instructed to repeat the previous movement
sequences and to simulate other activities of daily living,
such as preparing meals, opening a jar or washing hands. The
participant was free to decide which activities he performed.
Each measurement was performed three times, except for
the measurements in which movement sequence #5 was
performed, which were only repeated twice.

Using both sensing systems, the following time dependent
quantities were estimated for describing movement quality:
magnitude of the orientation vector (rotation angle of the
quaternion), norm of the sensor velocity vector, and the
distance between the reconstructed sensor position and the
initial position (position ‘P’ in Fig. 4), expressed in the global
coordinate frame (φg). The norms of the velocity vector
reconstructed with both sensing systems were correlated to
each other, to synchronize both sensing systems. Of each
quantity reconstructed with both systems, the average of the
first second (100 samples) was used for the alignment of both
quantities. After synchronization and alignment, estimated
quantities were compared with each other. Samples in which
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MSeq: Prescribed Movements:

#1 (P) → (1) → (P)

#2 (P) → (2) → (P)

#3 (P) → (1) → (2) → (P)

#4 (P) → (1) → (2) → (P) →  (3) → (4) → (P)

#5 (P) → (daily life tasks) → (P)

ϕg

Fig. 4. Movements performed during the validation experiment. Schematic
top-down view of a participant seated on a stool. The participant is instructed
to reach with his right hand towards the positions 1 to 4 and P as described
in the table with the prescribed movement sequences (MSeq). Positions are:
(P) initial position of a measurement, on the lap of the right upper leg, (1) on
the right knee, (2) on the left knee, (3) lateral of the right shoulder, with
a complete extension of the elbow and a shoulder abduction of 90 degrees
and (4) on the left shoulder. The positions were not physically marked. The
grey circle represents the stool. The center of the stool is the origin of the
global coordinate frame (φg), with the x-axis pointing forwards, the z-axis
pointing upwards and the y-axis sideways, perpendicular to the x and z-axis
in a right-handed fashion.
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not all active markers of the optical reference system were
recorded were excluded from comparison.

To compare the differences between a quantity measured
with both sensing systems (d), the mean difference (d̄) as
well as the limits of agreement (i.e., d̄ ± 1.96 × std(d))
were calculated [18]. Next, the limits of agreement were
normalized by dividing the limits of agreement of an quantity
by the range of the quantity as it was reconstructed with
the reference system. This makes the limits of agreement a
percentage of the total range and the parameter comparable
for the different quantities.

III. RESULTS

A total of 14 measurements were performed including five
different movement sequences. Fig. 5 shows an example mo-
vement reconstruction of one measurement while performing
movement sequence #3, moving the hand from the initial
position to the right knee, the left knee and back again
(repeated three times). Fig. 6 shows the different quantities
of this measurement, estimated using both sensing systems.
The blue line in Figs. 5 and 6 show the IMU movement
reconstruction when applying the zero velocity updates, as
frequently used in other studies, but without considering the
conditions as suggested in the current study.

Differences between the optical reference system and the
IMU sensing system of all quantities are included in Table I.
Moments of incomplete marker reconstruction of the optical
reference system (indicated with blue dots in the upper
graph of Fig. 6) were excluded from analysis. The limits
of agreement in the magnitude of orientation vector and
the norm of the velocity vectors are respectively 4.2 deg
(normalized, 5.2 percent) and 7.1 cm/s (normalized, 5.8 per-
cent). The limit of agreement of the difference between
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Fig. 5. An example reconstruction of sensor positions in the global
frame (φg), while performing movement sequence #3. Black = Reference,
Red = IMU, Blue = IMU, reconstruction without considering the conditions
as suggested in the current study. Ellipsoids represents pelvis as well as left
and right upper leg. The circle represents the stool. Movements were from:
(P) → (1) → (2) → (P) (MSeq: #3 in Fig. 4). Note: the participant did
not return to the exact same positions between movement repetitions, as the
positions were not physically marked.
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Fig. 6. Quantities reconstructed of one measurement in which movement
sequence #3 was performed three times. Black = Reference, Red = IMU,
Blue = IMU, reconstruction without considering the conditions as suggested
in the current study. From top to bottom: 1) Magnitude of sensor orientation
vector (deg), 2) reconstruction of the norm of the sensor velocity vector
(m/s), 3), 4), 5) reconstruction of sensor position relative to the initial
position, on respectively the x- y- and z-axis of the global frame (m) and
6) Euclidean distance to the initial position (m). Movements were from (P)
→ (1) → (2) → (P). Blue dots in the upper graph indicate moments of
incomplete marker reconstruction of the optical reference system. Note, in
1) and 2) the red and blue lines overlap each other.

the reconstructed positions of both sensing systems were
relatively greater 7.7 cm (normalized, 16.8 percent).

The limits of agreement for the reconstructed sensor velo-
city and sensor position are large for the measurements in
which movement sequence #4 was performed. Within these
measurements, the large differences between both sensing sy-
stems specifically arise when reconstructing the movements
towards positions 3 and 4 (Fig. 4). The participant was
keeping his arm still for longer periods at these positions,
compared to the other positions. Therefore, these episodes
were marked as long episodes without movement. As a
consequence, the methods used to reconstruct movements
of the IMU wrongly assumed that the arm was back at the
initial position. When excluding measurements of movement
sequence #4, the overall limits of agreement for the recon-
structed velocity are 4.7 cm/s (normalized, 4.8 percent) and
for the reconstructed position they are 3.9 cm (normalized,
10.4 percent).
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TABLE I
DIFFERENCES BETWEEN THE QUANTITIES ESTIMATED WITH THE

OPTICAL REFERENCE SYSTEM AND IMU SENSING SYSTEM.

Mag. of orientation vector (deg)

MSeq: Mean(d) LoA† nLoA‡

#1 0.4 1.7 4.8 %
#2 0.4 1.3 8.0 %
#3 -0.1 1.7 4.0 %
#4 2.8 8.4 4.1 %
#5 0.7 11.0 5.3 %
A* 0.8 4.2 5.2 %

Norm of velocity vector (cm/s)

MSeq: Mean(d) LoA† nLoA‡

#1 -0.8 4.1 4.8 %
#2 -0.7 3.6 3.7 %
#3 0.0 4.0 4.7 %
#4 0.4 16.9 9.6 %
#5 0.2 8.5 6.5 %
A* -0.3 7.1 5.8 %

Distance to initial position (cm)

MSeq: Mean(d) LoA† nLoA‡

#1 0.8 4.7 16.1 %
#2 0.3 2.0 5.1 %
#3 0.1 2.3 6.1 %
#4 -0.7 23.1 42.4 %
#5 1.0 7.5 13.4 %
A* 0.2 7.7 16.8 %

Presented values are for each quantity the average of all measurements
per movement sequence (MSeq). * average over all measurements. † Limits
of agreement (i.e., 1.96 × std(d)). ‡ Normalized limits of agreement, as a
percentage of the quantity range as reconstructed with the reference system.

IV. DISCUSSION

In this paper, a method is presented to reconstruct lower
arm orientation, arm velocity and arm position, by using a
single IMU. The presented method is evaluated in a first
validation experiment in which one participant performed
multiple structured and unstructured movement sequences,
while wearing a single IMU on the forearm. Quantities
reconstructed with the presented algorithm were compared
with those estimated with an optical reference system. Re-
constructed arm orientation shows a normalized difference
of 5 percent, arm velocity shows a normalized difference of
6 percent and arm position a normalized difference of 17 per-
cent. These differences in position estimates were compara-
ble with errors of a multiple IMU sensing system that was
used in a different study [7]. While performing circular arm
movements the multiple IMU sensing system of the other
study had an average error of 3.5 cm (SD ± 3.4 cm), versus
the 7.7 cm limits of agreement in distance estimation of the
current study. In this other study, these errors were acceptable
for the evaluation of hand positions of stroke survivors who
are ambulating in a daily life setting and these errors were
acceptable to assess metrics such as hand reaching distances
and hand working area. The algorithm presented in the
current paper, may be used to estimate quantities describing
lower arm movements using a single IMU. These include
clinically relevant quantities such as reaching distance, hand
speed and forearm orientation [1]. Finally, the short set-up
time for this single sensor system, lower monetary costs, and

no need for the use of an external camera system make this
sensing system suitable for instrumented clinical assessments
of arm movements as part of rehabilitation practice (e.g.,
Fugl-Meyer Test, Action Research Arm Test or Box and
Block Test [19]) and performance evaluation during activities
of daily living.

In the presented algorithm two specific conditions are
assumed to be true: 1) there are detectable episodes without
sensor movements and 2) over time, the sensor returns to the
initial position and heading. Although these conditions allow
an estimation of the different quantities, the applicability of
these conditions is limited. Considering the first condition,
sensor drift might still be present when movement duration
is longer than a few seconds. Therefore, movement recon-
structions of continuous arm movements still starts drifting.
Further research should be performed to define the maximum
duration of a movement episode in which movements can
be reconstructed accurately enough. Furthermore, a fixed
threshold is used in the zero-velocity detection algorithm and
a fixed threshold is used to discriminate between longer and
shorter periods without movements (i.e., to discriminate bet-
ween periods without or with movements in which the arm is
returned to the initial position or not). These thresholds may
cause falsely detected ‘long episodes without movements’, as
was the case in the measurements of movement sequence #4.
This could be prevented by making more dynamic thresholds,
based on information of the reconstructed movements. In
addition to the evaluation of gyroscope and accelerometer
data, sensor orientation (i.e., lower arm posture) may also be
used to distinguish between long and short episodes without
movements.

The second condition is applicable only in those situations
in which the participants initial arm position is not changing.
This is true in cases where the participant is lying down or is
seated and performing, for instance, a clinical test. However,
when, during a measurement, the participant rises up from a
chair, starts turning or walking around, the second assump-
tion is no longer true and therefore reliable reconstructions of
arm movements can no longer be made. To prevent unreliable
evaluation of arm movements, an activity classifier could be
used to detect and analyze only those episodes in which a
participant is seated or is lying down. An activity classifier
based on data of a single IMU is, for instance, proposed by
Weenk et al. [20]. Another solution might be the use of an
additional IMU positioned on the sternum or pelvis. This
allows the evaluation of trunk movements (i.e., walking or
turning) and might allow the evaluation of arm movements
relative to the sternum or pelvis by evaluating the differential
accelerations between both sensors.

It should be noted that the proposed algorithm is tested
under controlled conditions that may not be comparable with
daily life. Furthermore, the algorithm is tested in only one
healthy participant. Results may change for different partici-
pants with different levels of arm function, in particular of
those who survived a stroke. Stroke survivors may experience
reduced motor performance and muscle spasticity that may
result in the inability to hold their arm. More research is
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needed in order to check how often the assumed conditions
are met during daily life, while evaluating arm movements of
stroke survivors. Another limitation of this study is the way
in which the reference system was used to validate sensor
orientations. The active markers were directly attached to the
IMU, therefore all markers were assumed to be positioned
in a single plane. This may result in reconstruction errors in
the reconstructed orientation by the optical reference system,
by misalignment, or small measurement errors. Although
orientation differences between both measurement systems
were relatively smaller than the differences in reconstructed
velocity and position, the differences were larger than ex-
pected as IMUs are primarily used for the estimation of
sensor orientations [21].

Nowadays, IMUs are small and are already frequently
integrated in many electronic devices, such as smartphones
and smartwatches. Future research could focus on the use
of this data to qualitatively assess arm movements using the
proposed algorithm. Furthermore, the addition of a second
IMU, in any form, on the other forearm may result in
additional clinical relevant information on arm usage [22].
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