
Static and Runtime Verification, Competitors
or Friends? (Track Summary)

Dilian Gurov1, Klaus Havelund2(B), Marieke Huisman3,
and Rosemary Monahan4

1 KTH Royal Institute of Technology, Stockholm, Sweden
dilian@kth.se

2 Jet Propulsion Laboratory, Pasadena, USA
klaus.havelund@jpl.nasa.gov

3 University of Twente, Enschede, The Netherlands
m.huisman@utwente.nl

4 Maynooth University, Maynooth, Ireland
Rosemary.Monahan@nuim.ie

1 Motivation and Goals

Over the last years, significant progress has been made both on static and run-
time program verification techniques, focusing on increasing the quality of soft-
ware. Within this track, we would like to investigate how we can leverage these
techniques by combining them. Questions that will be addressed are for exam-
ple: what can static verification bring to runtime verification to reduce impact
on execution time and memory use, and what can runtime verification bring to
static verification to take over where static verification fails to either scale or
provide precise results? One can to some extent consider these two views (static
verification supporting runtime verification, and runtime verification supporting
static verification) as fundamentally representing the same scenario: prove what
can be proved statically, and dynamically analyze the rest.

The session will consist of several presentations, some on the individual tech-
niques, and some on experiences combining the two techniques. When preparing
this session, we aimed at finding a balance between static and runtime verifica-
tion backgrounds of the presenters. This is also reflected by the papers associated
to this track. There are several papers describing systems that first attempt to
verify as much as possible by static verification, and then use runtime verifica-
tion for the properties that cannot be verified statically. There is another group
of papers that use static program information to generate appropriate runtime
checks. Finally, a last group of papers discuss program specification techniques
for static verification, and how they can be made suitable for runtime verifica-
tion, or the other way round.

K. Havelund—The research performed by this author was carried out at Jet Propul-
sion Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

c© Springer International Publishing AG 2016
T. Margaria and B. Steffen (Eds.): ISoLA 2016, Part I, LNCS 9952, pp. 397–401, 2016.
DOI: 10.1007/978-3-319-47166-2 27



398 D. Gurov et al.

During the conference, three panel discussions on this topic are planned. The
first panel focuses on static verification. What are the challenges, and how can
it benefit from runtime verification? The second panel focuses on the opposite
question: what are the challenges in runtime verification, and how can it benefit
from static verification? The last panel discusses future research directions in this
area, and what are the most promising ideas for combining static and runtime
verification. Concrete topics that will be discussed include the limitations and
benefits of each approach, how we can combine efforts to benefit verification,
what are the overheads/benefits of combining efforts, industrial application in
each area, industrial needs, etc.

2 Contributions

The paper contributions in cbelow. The papers are ordered according to the
three sessions of the track: (1) how can static verification benefit from runtime
verification? (2) how can runtime verification benefit from static verification?
and (3) how can we bridge the gap? (more generally). The papers are ordered
alphabetically according to authors within each session.

2.1 How Can Static Verification Benefit from Runtime Verification?

Ahrendt et al. [1] (StaRVOOrS Episode II, Strengthen and Distribute the Force)
build on StaRVOOrS as presented at ISoLA 2012, which aims at a unify-
ing framework for static and runtime verification of object-oriented software.
Advances on a unified specification language for data and control oriented prop-
erties, a tool for combined static and runtime verification, and experiments are
presented. Future research concern (i) the use of static verification techniques to
further optimize the runtime monitor, and (ii) extending the framework to the
distributed case. A roadmap for addressing these challenges is presented.

Azzopardi et al. [2] (A Model-Based Approach to Combining Static and
Dynamic Verification Techniques) present how static and runtime verification
can be used to ensure safety of systems that are to be used in an unknown con-
text. The system developer has to provide a model of the system. This model
then is used to find the appropriate context for the system to work in, and an
attempt is made to statically verify the desired properties of the composed sys-
tem. Any property (or part of a property) that cannot be verified statically will
be verified dynamically. Moreover, it will also be verified dynamically whether
the concrete implementation of the system respects the model. In some cases,
knowledge about the properties that will be monitored can be used to reduce the
model. The paper discusses a concrete example of this approach for an online
payment ecosystem.

Bodden et al. [3] (Information Flow Analysis for Go) present parts of the
theory and implementation of an information flow analysis of Go programs.
The purpose is to detect the flow of so-called tainted values, from untrusted



Static and Runtime Verification, Competitors or Friends? 399

sources (such as reading from input) to so-called sinks, which represent loca-
tions where such untrusted data should not end up. Go allows for concurrent
programming via channels, requiring special techniques. Discussions include how
dynamic analysis can be applied, to monitor execution paths, that cannot be
determined safe due to the conservative static analysis. An option is to stop
the execution of the program when a tainted datum is about to reach a sink.
A dynamic coverage tool can also provide information as to how many of these
potentially unsafe paths have been executed and verified.

2.2 How Can Runtime Verification Benefit from Static Verification?

Goodloe [5] (Challenges in High-Assurance Runtime Verification) first presents
an overview of the Copilot RV framework, followed by several challenges that are
barriers to realizing high-assurance runtime verification. More specifically, these
challenges relate specification, observability of data, traceability from require-
ments, fault tolerance, composition of runtime verification and the system under
observation, monitor specification and monitor correctness. While the challenges
are formulated generally, Goodloe addresses them concretely in the context of
the Copilot RV framework. Additional challenges to be addressed in future work,
as well as challenges regarding the use of automated verification tools for high-
assurance runtime verification, are also discussed.

Kosmatov et al. [6] (Static versus Dynamic Verification in Why3, Frama-C
and SPARK2014) describe the Why3 system, and two tools that use the Why3
system as a backend, namely Frama-C and SPARK. As these systems focus
on different kinds of verification techniques (SPARK concentrates on runtime
verification, while Frama-C and Why3 favor static verification) and properties
of interest, there are differences in the specification languages, in the treatment
of ghost code, and in the treatment of proof failures. The paper provides an
in-depth discussion of these differences.

Reger [9] (Considering Typestate Verification for Quantified Event Automata)
sketches how static verification techniques for type states can be used on a
commonly used specification framework for runtime verification, namely quan-
tified event automata. He gives an overview of type states and quantified event
automata, and then sketches how type state techniques can be used, using some
example properties specified as quantified event automata.

2.3 How Can We Bridge the Gap?

Leofante et al. [7] (Combining Static and Runtime Methods to Achieve Safe
Standing-Up for Humanoid Robots) address how to improve a scripted stand
up strategy for robots, making it safe and stable, using a combination of run-
time verification and static verification. This paper describes a novel approach
to achieve safe standing-up for humanoid robots. It proposes a combination of
three methods. The first is reinforcement learning that uses Q-learning based
on a robot simulator to construct a standing-up strategy. The second method is
greedy model repair that uses efficient probabilistic model checkers to repair the



400 D. Gurov et al.

strategy to avoid given unsafe states with a given probabilistic threshold. These
two methods result in an initial strategy that is deployed on the robot. As the
strategy has been obtained on an idealized model of the real robot and envi-
ronment, it may still not be adequate. Therefore, the third method is runtime
verification with a feedback loop to observe the real-time behavior of the robot
and adapt the strategy on the go. The implementation of the presented theory
is ongoing, but already some experimental results for (model free) reinforcement
learning strategies are presented.

Leucker [8] (On Combinations of Static and Dynamic Analysis) elaborates in
his presentation on the similarities and differences of model checking and runtime
verification, and how they can benefit from each other. In particular, if model
checking an abstract version of the system fails, how can runtime verification be
used to investigate the unsuccessful run? The presentation also discusses ideas
for how to use information obtained by static verification to improve runtime
verification results.

Eilertsen et al. [4] (Safer Refactorings) present a method to avoid refactorings
changing the behavior of a program. Refactorings are a way to restructure a
program’s code. If a refactoring is wrongly applied, this might actually change
the behavior of the program, which should be avoided. Eilertsen et al. propose a
technique to identify when the program’s behavior is actually changed. For two
concrete refactorings (extract local variable, and extract and move method) they
describe how this is done. Essentially, together with the refactoring they generate
an assertion which will fail if the refactoring changed the program behavior. To
validate their approach, they automatically apply these refactorings on a large
code base, and use unit tests to identify how many assertions actually fail.

References

1. Ahrendt, W., Pace, G.J., Schneider, G.: StaRVOOrS episode II, strengthen and
distribute the force. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS,
vol. 9952, pp. 402–415. Springer, Heidelberg (2016)

2. Azzopardi, S., Colombo, C., Pace, G.: A model-based approach to combining static
and dynamic verification techniques. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I, LNCS, vol. 995, pp. 416–430. Springer, Heidelberg (2016)

3. Bodden, E., Pun, K.I., Steffen, M., Stolz, V., Wickert, A.-K.: Information flow
analysis for go. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol.
9952, pp. 431–445. Springer, Heidelberg (2016)

4. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 517–531. Springer, Heidelberg
(2016)

5. Goodloe, A.: Challenges in high-assurance runtime verification. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 446–460. Springer,
Heidelberg (2016)

6. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verification
in Why3, Frama-C and SPARK. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016,
Part I, LNCS, vol. 9952, pp. 461–478. Springer, Heidelberg (2014)



Static and Runtime Verification, Competitors or Friends? 401

7. Leofante, F., Vuotto, S., Ábrahám, E., Tacchella, A., Jansen, N.: Combining static
and runtime methods to achieve safe standing-up for humanoid robots. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 496–514. Springer,
Heidelberg (2016)

8. Leucker, M.: On combinations of static and dynamic analysis. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 515–516. Springer,
Heidelberg (2016)

9. Reger, G.: Considering typestate verification for quantified event automata. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2016, Part I, LNCS, vol. 9952, pp. 479–495.
Springer, Heidelberg (2016)


	Static and Runtime Verification, Competitors or Friends? (Track Summary)
	1 Motivation and Goals
	2 Contributions
	2.1 How Can Static Verification Benefit from Runtime Verification?
	2.2 How Can Runtime Verification Benefit from Static Verification?
	2.3 How Can We Bridge the Gap?

	References


