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Abstract—In this paper we propose a new dual radio IoT
network architecture for wildlife monitoring system (WMS).
WMS leverages bluetooth low energy (BLE) in low power
wide area networks (LPWANs) by dynamically changing the
operating radio based on the proximity among herd of wild
animals. This approach will facilitate ultra-low power IoT devices
to be deployed for sustainable wildlife monitoring application.
In addition we present an analytical model to investigate the
performance of the proposed IoT network in terms of energy
consumption under a wildlife monitoring use-case. The simulation
results show that the dual radio network leads to a higher energy
efficiency when compared to the network utilizing only LPWAN.
Moreover, our network readily doubles the network life time for
various data traffic rates.

Keywords—LPWAN, LoRa, internet of things (IoT), Bluetooth
low energy (BLE), energy consumption modeling, wild life moni-
toring.

I. INTRODUCTION

During the last few years, the advances in low power wire-
less network technologies have attracted many new application
domains to utilize the potential of the internet of things (IoT).
Wildlife monitoring is one of such trending IoT applications
where a number of heterogeneous sensors (e.g. accelerometer
and gyroscope, etc) are deployed either as collars or buried in
the ground, to monitor the activities of wild animals dwelling
in a remote and geographically large habitat [1]. While wild
animals usually form a compact herds of con-species with
short inter-herd proximity during their regular activities (e.g.
grazing), they often show a level of movement which could
change the spatial proximity in case of distressing situations
(e.g. pursuing a prey or running from danger such as illegal
hunters or poachers). Therefore, wildlife monitoring systems
(WMS) need to detect the type of herd activities in real time
(e.g. grazing, running, etc.) as well as provide network services
such as localization, proximity detection, data pre-processing,
and cluster nodes management. To these ends, it is required
to achieve (i) high energy efficiency, since the sensors used
in a WMS will operate with a limited source of energy, (ii)
good reliability to avoid false alarms, and (iii) low latency for
a responsive WMS design.

Given the characteristics of wild animals and the tar-
get application requirements, numerous wireless technologies

could be potential candidates for WMS. While major IoT
applications, such as smart city [2], industrial monitoring [3],
mostly rely either on short range wireless technologies such as
Bluetooth [4], WiFi, or on long range wireless technologies
such as cellular to communicate among network devices,
WMS imposes a mixed set of requirements. In the past,
radar, GPS and satellite based systems have been deployed
to track and monitor wild lives [5]. However, the inherently
high cost and intolerable communication latency made these
approaches less attractive. Some efforts have also been made to
develop wireless sensor network (WSN) based WMS, where
short range wireless technologies (e.g., ZigBee) are utilized
by forming multi-hop mesh networks [6, 7]. Most of these
systems are developed on top of IEEE802.15.4 standard [8],
which often suffers from huge overheads due to the complex
implementation and scales poorly [9, 10]. More recently, the
energy efficient version of Bluetooth known as Bluetooth
Low Energy (BLE) or Bluetooth Smart, has surfaced as an
appealing alternative due to its higher data rate (upto 1Mbps),
lower latency (typically 6ms), better energy efficiency and
wider coverage over IEEE802.15.4 based solutions [4]. While
making some progress in energy efficiency aspect, short range
wireless technologies are still not suitable for wide and sparse
monitoring applications. Although this aspect can be addressed
by using long rage wireless technologies (e.g., cellular), they
are often considered power hungry. In addition, remote areas
where wild animals dwell are often out of cellular coverage.

Fortunately, emerging low power wide area network (LP-
WAN) technologies such as LoRa, Sigfox, etc. promise to pro-
vide better coverage with a low energy consumption that seem
to support many requirements of remote wild life monitoring
application [2, 11]. Among LPWAN technologies, LoRa is
believed to have high potential for realization of LPWAN IoT
goals. LoRa is utilized for low data rate, low power, and long
range IoT applications. LPWANs in general are fundamentally
designed to ensure very long battery lifetime and provide
seamless interoperability among end-devices without the need
for complex local installations. However, IoT applications
requiring high data rate and low latency are not particularly
the strength of LPWANs mainly due to the generic low
bit-rate, stricter duty-cycle restrictions and the larger packet
header associated with it. Thus to realize the WMS design
requirements, a mechanism to control the trade-off between978-1-5090-4130-5/16/$31.00 c© 2016 IEEE



energy versus data rate is necessary, which is not practically
achievable by using a single category of wireless technology
alone. Although a few works have been conducted to address
this issue by proposing an architecture for WMS [12], to the
best of the authors’ knowledge, none of these works include
the LPWAN technologies in their approach.

Therefore, in this paper we propose a new dual radio
based IoT network for WMS that exploits the LPWAN and
short range wireless technology by switching the operating
radio based on proximity measures for optimal performance.
The results and analysis presented in this paper are modeled
by considering LoRa as an LPWAN technology and BLE
as a short range wireless technology. WMS optimizes the
system bandwidth and energy requirement through local data
pre-processing and concatenation that merges multiple BLE
packets under a single larger LoRa header. However, the design
approach can also be applied when using other LPWAN and
short range wireless technologies. The main contributions of
this work are listed below.
• A new dual radio based IoT network architecture for

wildlife monitoring is proposed.
• A theoretical analysis is introduced to evaluate the net-

work energy consumption of BLE and LoRa radios.
• Design guidelines for WMS are presented based on

LPWAN and short range wireless technology.
The rest of the paper is organized as follows: Section II

presents the proposed network architecture and details the
constraints for a WMS design. Section III further describes
the energy consumption modelling. Section IV discusses the
use case scenario and presents the evaluation results. Finally,
Section V outlines the concluding remarks and future research
challenges.

II. PROPOSED WMS MODEL

In this section, we present the dual radio network model for
WMS. Next, we present the design constraints as well as the
analytical model for critical range.

A. Dual Radio Network Architecture
The proposed dual radio network architecture is shown in

Figure 1 in layered hierarchical layout. The bottom layer
consists of a network of clustered wireless sensor nodes among
collared animals. The collars include inbuilt sensors coupled
with BLE and LoRa radio platform. For details on LoRa and
BLE technology, the readers are referred to [2, 4, 11]; in
this paper we mainly focus on its utilization to WMS. Within
a herd or cluster of animals, the end-devices use short range
BLE, to communicate with each other and long range LoRa
radio to link to the gateway. The inter-cluster cooperation
among the sensor networks allows run-time monitoring of
events in the area while reducing false alarms. The cluster-
head (C) coordinates communication and concatenates the
data to be forwarded to the central system via LoRa gateway
(LG), which reduces the total overhead associated with each
LoRa transmission. Since the range among animals changes
depending on the living activity, the WMS adapts to changes
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Fig. 1: Proposed dual radio based network architecture for animal
monitoring application.

by configuring its network topology based on the proximity
information among animals. LoRa gateway (LG) serves as
the main component by relaying data to the central server.
Gateway backbone network is based on LoRa [11], which
is particularly suitable due to its long range communication
provision at much lower power compared to the other existing
IoT protocols [11]. LoRa network server runs the operation
and management application, and run-time event monitoring
and mapping will be provided in this layer.

B. Design Constraints
Generally when a signal is transmitted through a wireless

channel several factors will influence its propagation range; in
this section, we present the calculation of the critical range-dc
beyond which there is no connectivity between two nodes. It
is expressed by Equation 1 for both BLE and LoRa radios,
by considering parameters such as: (i) transmitter power level
(Pt), (ii) minimum receiver sensitivity (Prmin ) and (iii) outage
probability under path-loss (K) and shadowing (σψdB ).

dc =

10
Pt−Prmin+σψdB

×Cinv−K
D for LoRa

10
Pt−Prmin+σψdB

×Cinv−K
10×γ for BLE

(1)

The path-loss (K) is determined by empirical models such
as Hata Cost-231 and simplified path-loss model. Hata Cost-
231 is used for LoRa radio, since it is suitable for path loss
estimation with large and open rural cell (0 to 20 km), and
lower frequency (fLoRa=868MHz) [13]. However, since BLE
is often utilized for shorter range communication and the
frequency is relatively higher (fBLE=2.4GHz), the simplified



path-loss model is adopted as suggested in [13]. Thus the path-
loss K is expressed in Equation 2, where: c = 2.8× 108m/s,
ahMS = (1.1 × log10(fLoRa) − 0.7) × hr − (1.56 ×
log10(fLoRa)− 0.8); and Cm = 0 for flat rural environment;
D = 44.9− 6.55× log10(ht). All mathematical notations are
summarized in Table I.

K =

{
46.3 + 33.9× log10(fLoRa)− 13.82× log10(ht)− ahMS + Cm for LoRa
20× (log10((4× π × d0)/(c/fBLE))) ≈ 40.04 for BLE

(2)
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Fig. 2: Critical Range (dc), plotted by extrapolating the Pt levels from
the specified Pt in levels in the data sheets: for LoRa = [-1, -20]dBm;
in steps of 1dBm, for BLE = [-20, 4]dBm; in steps of 4dBm. BW =
Bandwidth, SF=Spreading Factor. Cov(C) = 97%, σ = 3.65dB

The critical range that could be achieved by BLE and LoRa
radios under rural flat environment is shown in Figure 2. A
high transmission power results in a higher received signal
strength, increasing the range of reception. In an open field, the
range of BLE could reach up-to 200m at maximum Pt = 4dBm.
The maximum dc for LoRa for BW125SF12 setting is 15.7km,
this range is achieved at the highest SF and Pt configuration.
Figure 2 shows that for every increase in SF, the transmission
range increases accordingly. Higher SF indicates longer range
with better reception, and but longer packet duration.

TABLE I: Symbol Notations

Pt transmit power
Pr received power
dc range from transmitter at a specific transmit power (Pt)
d0 near-field range, d0 is typically assumed to be 1m for BLE
σψdB log-normal shadowing model σψdB = 3.65dB
γ path-loss exponent γ = 3.71
fLoRa 868MHz
fBLE 2.4GHz
ht effective base station antenna height [m]
hr mobile node height
Cov(C) coverage area probability
Prmin receiver sensitivity

Algorithm 1, summarizes the basic procedures towards
enabling dual radio based IoT network architecture. The sys-
tem computes max possible critical range d

cBLE(max) and

d
cLoRa(max); using the Pt, Pmin, path-loss (K) and log-

normal shadowing (σψdB ), coverage probability (Cov(C))
parameters configured as per Eq. 1. Consequently, based on the
critical ranges computed from the minimum received power,
transmission power and environment information, the system
chooses to operate at a specific radio platform. We are aware
of the practical complexity associated with the proposed model
such as various modeled wireless parameters are not directly
available for the physical radio hardware. However, in the
future, we plan to investigate a simple distributed online
proximity estimation scheme similar to exponential moving
average (EWMA) [14].

Algorithm 1 Towards Adaptive Radio Scheme
Input: Pt, Pmin, path-loss (K) and Log-normal shadowing
(σψdB ), area coverage (Cov(C)).
Output: Critical range dc, max critical range d

cBLE(max),
d
cLoRa(max).
1: procedure ADAPTIVE RADIO
2: top:
3: Pr ∝ (Pt −K + σψdB × Cinv)
4: Log(dc) ∝ (Pt − Prmin −K + σψdB × Cinv)
5: Determine the max critical ranges d

cBLE(max),
d
cLoRa(max)

6: d
cBLE(max) ← Eq. 1

7: d
cLoRa(max) ← Eq. 1

8: if 0 < dc < d
cBLE(max) then

9: ←Select BLE Radio
10: end if
11: if dc > d

cBLE(max) then
12: ←Select LoRa Radio
13: end if
14: goto top
15: end procedure

III. NETWORK ENERGY CONSUMPTION MODEL

In this section, a more practical network wide energy
consumption comparison of the proposed network architecture
with a typical LoRa star network is introduced. To investigate
the energy performance, the network presented in Section II-A
is modeled as a network Λ defined as Λ(n,L), where n is the
total number of nodes in the network and L is the total number
of established links in the network (Fig. 3).

Assuming the wireless link is reliable, and the sleep mode
power consumption is negligible (which is typically less than
0.1% of transmission or reception mode). Therefore, the energy
(E) consumed to transmit a packet of length PL bytes over a
link L is:

E = ToA× (Pt +RXP ) (3)

where: Pt is determined by Eq. 1 with respect to critical range
dc, RXP is power required to run the receiver circuit [15]
Therefore, the per-packet energy overhead for a packet depends
on the ToA and Pt. The time on air (ToA) has a direct impact
on the energy consumption of a typical radio. The time on
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Fig. 3: Proposed generic tree topology, compared with the conven-
tional star network of LoRa.

air of a packet is determined by the user payload size (PL),
spreading factor (SF), bandwidth (BW), and coding Rate (CR).
ToA for LoRa and BLE is expressed in Equation 4.

In LoRa radio physical layer parameters such as Spreading
factor (SF), Bandwidth (BW), and Coding Rate (CR), influence
the effective Time-On-Air (ToA), its resistance to interference,
and ease of decoding. Theoretically, a high SF results in
an easily decodable and lower minimum receiver sensitivity,
but it results in a high (ToA). A higher CR transmits more
redundant data bits, consequently, increasing its resilience to
packet errors.

ToA(PL) =

(Ts)×
(

(Tpre) +max

{
dΓe × (CR+ 4), 0

})
for LoRa

8× (npreamble+AddressH+PLBLE+CRC)
DR for BLE

(4)
where: AddressH the number of address header bytes for
BLE (6 bytes), DE indicates LoRa robustness of the trans-
mission to frequency variation, H = 1 without header mode,
H = 0 with header mode, for BLE (CRC = 2bytes), in
case of LoRa (CRC = 1 when on, 0 when off) and symbol
period Ts = (2SF /BW ), the preamble duration Tpre =
(npreamble + 12.25), npreamble is LoRa (8 symbs.) and BLE
(1 byte), Γ =

[
8PLLoRa−4SF+28+16CRC−20H

4×(SF−2DE)

]
.

The total packet header excluding the user payload (PL)
is 24bytes for LoRa including at least 13bytes of LoRaWAN
header, and 17bytes for BLE. Thus, the exclusive ToA over-
head for LoRaWAN (at SF = 7, CR = 1, DR = 5kbps)
and BLE (at DR = 250kbps) is 46ms and 0.544ms re-
spectively. Packets to the same destination will be concate-
nated at the cluster-head (C) before being relayed to Lora
gateway, The concatenated LoRa PL would be PLLoRa =
[(PLBLE)1||(PLBLE)2...||(PLBLE)n] + 13. Here, || denotes
the concatenation operator. The maximum size of a concate-
nated packet may reach to the maximum LoRa packet size
(i.e. 256 bytes). For instance, as shown in Figure 4, using
Eq. 3 for the same pt = 4dBm, as the number of nodes
(n) increases, the per packet energy overhead for LoRa star
network (2354 × nµJ) will be significantly higher than the
proposed hybrid mesh (43 × n + 2354µJ). This is mainly
attributed to the larger preamble duration of LoRa compared
to the shorter ToA of BLE. Therefore, instead of direct LoRa
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Fig. 4: Per-packet energy overhead comparison of LoRa star and
proposed hybrid tree (BLE mesh plus LoRaWAN link) with data
concatenation applied at the cluster head.

connectivity as in star topology, utilizing data concatenation
at the cluster head will drastically reduce the overall energy
overhead. Moreover, due to the 1% transmission duty-cycle
restriction in case of LoRaWAN, end-devices are not allowed
to access the channel for at least ToffsubBand = 99 × ToA
seconds, which will contribute to the high network latency for
star based LoRa networks. In our proposed WMS scenario,
however, packet concatenation is proposed as an alternative
to reduce the packet header energy cost and decrease overall
latency.

Next we present the network wide energy consumption.
There are three parts to network wide energy overhead: (i)
initial (node joining) phase (k), (ii) per packet energy con-
sumption (E) given by Eq. 3, and (iii) periodic synchronization
phase (kresync). In our energy modeling we are aware of the
implementation complexity associated with mesh networking,
however, for the sake of simplicity we made few assumptions.
First, cluster-head (C) is performs concatenation, and end-
devices are assumed to be tightly synchronized with the
cluster-head. And all links have equal packet transmission
and reception capacity. Second, for a given configuration, the
typical time of channel activity detection (CAD) ToC =
(2SF + 32)/BW seconds for LoRa, and ToC = 1.28ms for
BLE. And time of reception (ToR), in hybrid tree network
is ((ToR) = ToABLE + ToC). The classical approach of
sender-receiver synchronization is used for inter-cluster node
syncing [16].

Thus the total number of packets exchanged for one syn-
chronization would be (TXpckt = 2× n− 1) and RXpckt =
3× (n− 1) is the total received packets to maintain network
synchronization and joining. Therefore, the network overhead
for the initial phase (k) is:

k = (2n− 1)× ToABLE × PtBLE + 3× (n− 1)× (ToR)× (RXPBLE) (5)

Then the period of resynchronization can be calculated with the
knowledge of relative drift and required accuracy bound. Con-
sidering the desired worst-case accuracy bound between a pair
of neighboring motes in the network is δ = 10ms. Therefore,
the resynchronization period is (x = (δ− ppm)/4.75× 10−6)



[16]; where ppm is the clock accuracy and depends on the
radio hardware used. The total number of packets exchanged in
resynchronization are (TXpckt = 2× (n−1)) and (RXpckt =
2 × (n − 1)). Therefore, the network overhead with periodic
resynchronization (kresync) of the link (e− > C) is given by:

kresync(t) =


0, if 0 ≤ t < x

dt/xe × 2× (n− 1)

(
(ToABLE)×

(
PtBLE

)
+ (ToR)× (RXPBLE)

)
, otherwise

(6)
where t is total simulation duration, if 0 ≤ t < x is time before
the start of the first resynchronization. Here kresync(t) = 0
because the first synchronization overhead already included in
k as per Eq. 5. Hence, the energy cost for the hybrid mesh
network topology with aggregation at the cluster-head node,
including the packet network overhead and ToR are given by
Equation 7. For star topology (i.e. LoRa only) is expressed in
Equation 8.

ETree = Np × E + dt/IPIe ×
[
(n− 1)× [∗] + (ToALoRa)×

(
PtLoRa

)]
+ k + kresync(t)

(7)

EStar = dt/IPIe × n× (ToA)
(
Pt
)

(8)

Therefore, the energy consumption for the proposed prox-
imity adaptive approach is given by Equation 9.

EProposed =

{
ETree, for 0 < dc < dBLE
EStar, for dc > dBLE

(9)

Where: ToALoRa is the concatenated LoRa packet’s ToA,
[∗] =

(
ToA ×

(
Pt + RXP

)
+ ToC × RXP

)
for (e− > C)

link, t the simulation time, IPI inter-packet interval, Np is
the total number packets sent, and E is the energy per packet
given by Eq. 3.

IV. EVALUATION

In this section, our proposed approach is compared with the
typical LoRa star network for a wildlife monitoring use case
scenario.

A. Simulation Set-up
The animal herd (group) size (n) and number of groups are

proportional to the number of animals in a herd at grazing
time, which are uniformly deployed [7, 17]. Depending on the
animal species, empirical and modelled data have shown that
the optimal average group size in a herd is in the range of n
= [1,400], for instance, impala and zebra has a mean cluster
size of n ≤ 70 [18]. Hence, in this evaluation we assume the
group size to be 70 without loss of generality. Within a cluster
the distance among animals is dc. We the proposed network
is simulated in Matlab. At anytime, the radio transmission
is assumed to cover a disk area of radius dc. The carrier
frequency is set to BLE (2.4GHz) and LoRa (868MHz). For all
simulation set-up, we assume that the nodes are homogeneous
in their initial amount of energy [7, 11]. To avoid the effect
of cluster-head location on the over-all performance, in each
case the cluster-head is assumed to be placed at the center of

the WSN area coverage equidistant from the end-devices. Tree
and star network topology are considered to simulate a more
practical data collection scenario (Fig. 3). For tree topology, a
number of sender nodes generate packets to the cluster-head
(C) as per the clustering algorithm in [19], C relays aggregated
packet to the gateway through a LoRa link. The tree topology
utilizes BLE radio in a cluster depending on the proximity of
nodes. LoRa radio is utilized in star mode to communicate with
the gateway. To observe the impact of LoRa spreading factor,
LoRa Link to the gateway is set to the highest (BW125SF7)
and lowest (BW125SF12) bit-rates. Table II summarizes the
simulation parameters set.

TABLE II: Generic Input Simulation Parameters

frequency 868MHz (LoRa)/2.4GHz (BLE)
σψdB 3.65 dB
γ 3.71
ht 20m
Cov(C) 97%
Spreading Factor (SF) 7/12
LoRa Bandwidth (BW) 125KHz
Data Rate (DR) BLE(250kbps)
Pt max (20dBm), min (2dBm)
RXP LoRa(35.64mW), BLE(41.58mW)
Number of nodes (n) 70
PLBLE 22 bytes
Resync. Period (x) 34 minutes
Number of resync period (m) 1000
Simulation duration (t) m× x

B. Network Energy Consumption
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A more interesting practical scenario for the energy con-
sumption overhead is presented in Figure 5, while considering
path-loss and shadowing for rural (flat) environment into
account. In general the energy consumption is directly related
to the ToA and transmission range (which in-turn is related to
transmission power). As the the transmission range increases,



there is a trend of increased energy consumption due to the
higher transmission power need to reach the respective range.
This relationship is specially more prevalent after 100m for
BLE and after 6km for LoRa radio (Fig. 5). In a slight contrast
to the energy consumption depicted in Fig. 7, LoRa (star)
topology only performs better in-terms of energy compared
to tree BLE mode after 150m at lower bit-rate. However, for
ranges less than 150m, tree BLE mode performs better than
LoRa. The proposed approach takes advantage of this at the
shorter ranges to make the overall system more efficient in-
terms of energy and bit-rate trade-off by utilizing the relatively
high bit-rate BLE (250kbps) instead of low bit-rate LoRa (less
than 5kbps). As presented in Figure 5, when the range becomes
greater than 150m, then the proposed approach switches to the
conventional LoRa mode instead of tree LoRa mode.
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Fig. 6: Time-On-Air (ToA) for LoRa and BLE.

Figure 6, shows the ToA comparison of LoRa and BLE,
with respect to payload size for each radio types. As shown
in Figure 5 and 6, senders located closer to the receivers can
transmit using high bit-rate (i.e. with shorter ToA and less
energy), thus for shorter ranges utilizing BLE is more efficient
than LoRa. The ToA duration for BLE is relatively shorter
than LoRa radio, this is due to the higher modulation bit rate
of BLE (250kbps) compared to LoRa (max 5.46kbps). In case
of LoRa, for higher SF setting the ToA increases considerably,
reducing the bit-rate. In theory, LoRa device can transmit or
receive at maximum size of 256bytes in LoRa mode, at any
SF settings. Higher SF provides a more robust transmission
to environmental interference at a cost of slower bit-rate.
However, at high SF (i.e. SF=12), the ToA for a payload of
256bytes will be impractically long (i.e. 7708ms). It is often
suggested that, if a long payload is desired to be transmitted
with a low data rate, the payload should be fragmented into
smaller payloads. The maximum range for BLE radio is 200m,
however, LoRa allows adjustment of the SF for transmitting
over a greater range at the expense of lower bit-rate.

Hence, our approach proposes to adaptively change the radio
mode, where the network switches to use a higher bit-rate for
shorter ranger links (i.e. BLE) and lower bit-rates in case of
longer ranges. This shortens the ToA, and enables to send burst
of packets in a very short time, consequently, reducing energy
usage considerably (Fig. 5). Overall, the proposed approach

decrease the energy of LoRa based star network by up-to 97%,
by adaptively changing the radio mode. Hence, as long as the
communication range is within the proximity range among
animals while in herds or groups (i.e. dc < 200m) [6, 7],
it is optimal to utilize the proposed approach with BLE radio.

C. Impact of Packet Generation Rate (PGR) and Node Density
To make a fair evaluation of the impact of packet generation

rate on the network life time, the radio range is fixed by
setting the transmission power of BLE and LoRa radio to a
fixed value equal to the maximum transmission power of BLE
radio, i.e. 4dBm. This is because even at maximum power
settings BLE reaches upto 200m, which is in the range of
the LoRa radio at BW125SF7 and BW125SF12 settings. In
this evaluation set-up, the proposed approach would be in one
of the radio configurations (i.e. BLE or LoRa mode). Given a
battery capacity Qp[mAh], and supply voltage (v), the network
life-time Nl of node n is defined as:

Nl =
n×Qp × V
E × PGR

(10)

Assuming V = 1.225v; Qp = 1150mAh (1mAh = 3.6J),
PGR is the packet generation rate.
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Fig. 7: Impact of PGR on the network life-time for rural (flat)
environment, for V = 1.225v, Qp = 1150mAh.

As shown in Figure 7, for both BLE tree and LoRa star
topology, the network life-time depicts a decreasing trend as
network packet generation rate (PGR) increases. However, for
higher PGR, LoRa star networks has relatively shorter life-
time compared to the BLE tree mode, confirming that LPWAN
networks are not suitable during high rate of packet exchange,
as it often happens in wildlife monitoring applications. This
is mainly attributed to the higher bit rate of BLE radio
(250kbps) compared to LoRa (5kbps). Overall, for high PGR
the BLE tree mode almost doubles the network life-time
compared to LoRa. This shows how the tree based approach
is more optimal than LoRa based LPWAN network for animal



monitoring applications requiring high data rates. As shown in
Figure 8, the energy consumption increases as the node number
increases, and as expected the BLE tree network saves more
energy than LoRa star. BLE mode of the tree topology shows
less energy consumption. It is clear from Figure 8, in general
higher node density in the network will contribute to having a
higher network energy consumption.
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Fig. 8: Impact of node density on energy consumption for rural (flat)
environment.

V. CONCLUSION

In this paper, we proposed a new dual radio IoT network
architecture for wildlife monitoring that achieves wider control
on the trade-off between energy consumption and range. This
is achieved by adaptively changing the operating radio of
WMS based on proximity measures and applying data con-
catenation scheme at the cluster-head. The evaluation results
indicate that the proposed network outperforms the traditional
systems that use a single type of transceiver radio alone
(i.e. LoRa or BLE). On average, our approach reduced the
energy consumption of LPWAN (LoRaWAN) by up-to 97%.
In addition the architecture improved the network life time
by up-to 99% for various packet traffic rates in the network.
Therefore, for con-speciously sparse animal population, our
approach is more optimal to deploy than utilizing only LoRa
network. Moreover, in the future, we plan to validate these
simulation results by performing a detailed implementation of
the proposed model in higher level simulator and a real world
sensor devices by building a collar prototype with dual radio
platform. We are aware of the practical limitations associated
with the proposed model, such as the path-loss based range
calculation and the various modeled wireless parameters are
not directly available for the physical radio hardware. However,
we plan to test various techniques to address this issues, for
instance, to develop a simple on-line received signal based
proximity estimation scheme similar to exponential moving
average. We also plan to perform a practical performance test
for LoRa radio (e.g. coverage, robustness to interference, etc.)
in the actual wildlife environment.
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