
2	 January/February 2018	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/17/$33.00 © 2018 IEEE

FLOW DATA ANALYSIS

Flow-Based Compromise Detection:
Lessons Learned

Rick Hofstede, Aiko Pras, and Anna Sperotto | University of Twente
Gabi Dreo Rodosek | Universität der Bundeswehr München

Although the aggregated nature of exported flow data provides many advantages in terms of privacy and
scalability, flow data may contain artifacts that impair data analysis. In this article, we investigate the
differences between flow data analysis in theory and practice—that is, in lab environments and produc-
tion networks.

B rute-force attacks are as old as the Internet, and
therefore antiquated, yet their popularity is

increasing.1,2 One of the main targeted services of these
attacks is Secure Shell (SSH). In 2015, the threat intel-
ligence organization Talos, together with Tier 1 net-
work operator Level 3 Communications, mitigated SSH
brute-force attacks from a group named SSHPsychos
or Group 93, generating more than 35 percent of the
global SSH network traffic.3

Another target of brute-force attacks is rapidly gain-
ing popularity: content management systems (CMSs),
such as WordPress. For example, failed authentication
attempts on WordPress instances behind the secu-
rity company Sucuri’s protection services showed an
increase of a factor eight over a period of six months in
2015.2

While brute-force attacks are omnipresent and their
existence widely known, we know that only few attacks
actually result in compromises.4 We therefore believe
that monitoring would be more effective once it targets
compromises rather than attacks.

Monitoring compromises is vital for maintaining
secure networks. Traditionally, security monitoring is
performed in a host-based fashion by running intru-
sion detection systems (IDSs) on networked devices.
As such, IDSs have access to network interfaces and

file systems, allowing them to achieve high detection
rates with few false positives and negatives. However,
the problem with host-based approaches is their scal-
ability. In environments where IT service departments
do not have global machine access, it is virtually impos-
sible to install and manage agents on every machine.
For this reason, network-based approaches may be used
for monitoring networked systems, where information
is gathered at central observation points within the
network.

One approach is to capture individual packets. How-
ever, this results in large amounts of data. Especially
when packet payloads are captured, the scalability of
packet-based approaches is limited due to stringent hard-
ware requirements for storage and analysis. It should be
noted, however, that due to the ever-increasing amount
of network traffic being encrypted, the benefit of stor-
ing packet payloads is vanishing.

Another, more scalable, network-based monitoring
approach is to analyze traffic flows using export capa-
bilities of packet-forwarding devices or dedicated appli-
ances (probes).5 These flow exporters aggregate packets
into flows and export flow data using protocols like Net-
Flow and IPFIX.

Flow data is a proven source of information for
detecting various types of security incidents, such as

www.computer.org/security� 3

distributed denial-of-service (DDoS) attacks and net-
work scans.5 However, for analyses like SSH and web
application compromise detection, the use of flow data
is much harder. First, the lower granularity of flow data
(compared to packet-based alternatives) generally results
in more false positives and negatives. Second, artifacts in
flow data, such as inaccuracies and packet loss, can be
subject to misinterpretation. It is often underestimated
how much flow data in theory and lab environments
may differ from flow data in practice, rendering many
flow-based analyses unsuitable for production usage. In
this article, we investigate whether flow-based compro-
mise detection for SSH and web applications is possible
in production networks, or whether its application is
limited to lab environments. The work presented here is
a summary of four years of PhD research.6

Compromise Detection—A Case Study
Compromised machines are the core building blocks
of many illegal activities on the Internet. Examples of
such activities are spamming, DDoS attacks, and illegal
content distribution. Detecting and quarantining com-
promised machines is therefore of vital importance for
maintaining secure networks.

Compared to host-based IDSs, network-based IDSs
are far behind when it comes to compromise detec-
tion. They generally report on the presence of attacks,
regardless of whether the attacks were successful or
not. Again, high false positive rates and the presence
of data artifacts have prevented advanced flow-based
security analyses in general and compromise detection
in particular from breaking through.

A typical application for compromise detection is
SSH. With almost 26 million connected and scannable
SSH daemons in November 2015, according to Shodan
(www.shodan.io), SSH daemons are a popular attack
target.4 SSH is used for remote server administration;
therefore, the compromise of a target machine immedi-
ately results in adversaries gaining unprivileged control.
In this section, we describe our experiences with SSH
compromise detection.

SSH Compromise Detection in Theory
Brute-force attacks aim to compromise user accounts
by trying many combinations of usernames and pass-
words. One particular type of brute-force attack is the
dictionary attack. Dictionaries are lists of frequently
used username and password combinations. Attacks
using dictionaries are particularly effective because
purely random passwords are difficult to remember and
therefore less common than passwords that are simple
and easy to remember.

Before a target can be attacked, it must be discov-
ered. This can be done by scanning a network, for

example, by using tools like nmap (nmap.org) or by
using publicly available lists of potential targets, such
as those provided on PasteBin (pastebin.com) or gath-
ered by services like Shodan. Once potential targets
have been found, brute-force attacks can be launched.
Eventually, targets may be compromised, depending on
whether valid credentials were discovered. In short, we
can say that brute-force attacks consist of three phases:
a scan phase, followed by a brute-force phase, poten-
tially concluded by a compromise phase if the attack was
successful.

Although these attack phases feel rather natural, they
were formalized first in the context of network flows
in 2009 in “Hidden Markov Model Modeling of SSH
Brute-Force Attacks.”7 It was found that they could be
easily identified in lab environments by the number of
packets per flow (PPF).

For example, the scan phase features a low number
of PPF since it consists of only one or two TCP SYN
packets, while the brute-force phase is characterized
by a significantly higher number of PPF, for instance,
10 to 15, due to the SSH connection initiation and
one or more authentication attempts. In theory, traf-
fic in the brute-force phase is flat, that is, alike in terms
of packets, bytes, and duration, because of repeated
application-layer actions or events, namely authentica-
tion attempts. In a compromise, we may observe either
a number of PPF that is higher than the brute-force
phase’s, if the target is being actively misused, or lower,
if the connection to the target is maintained but left
idle. The behavior of a typical SSH brute-force attack in
terms of the number of PPF is shown and summarized
in Figure 1.

SSH Compromise Detection in Practice
The theoretical model described in “Hidden Markov
Model Modeling of SSH Brute-Force Attacks”7 aimed at
defining brute-force attack behavior, including the scan,
brute-force, and compromise phases. To demonstrate
that flow-based compromise detection is feasible, we
developed an open-source application named SSHCure
(https://github.com/sshcure/sshcure). SSHCure has
a strong focus on detecting the three attack phases and
was the first flow-based IDS that could report on com-
promises. The detection was realized by monitoring the
number of PPF between a potential pair of attacker and
target to identify flat traffic. If the traffic was found to
be flat enough, a brute-force phase was detected, and any
significant change to the traffic flatness was thought to
be indicative of a compromise.

Since SSHCure relies on flow data exported using
NetFlow or IPFIX, it was believed to work on flow data
from any source, like any other flow data analysis soft-
ware. To validate this, we tested SSHCure on our own

4	 IEEE Security & Privacy� January/February 2018

FLOW DATA ANALYSIS

campus network as well as on a backbone link of the
Czech NREN (CESNET). In addition, we promoted
SSHCure at many conferences and gave demos at vari-
ous companies. The result was wide user base, ranging
from small web-hosting companies to backbone net-
works and governmental CSIRTs. However, as soon as
SSHCure was released and after we requested feedback
from users, we received mixed results. For some, SSH-
Cure worked great and provided them with a power-
ful tool to detect compromises. Others, however, were
reporting on false positive and negative detections.

Analysis of the reported problems revealed that
the vast majority was caused by a broken assumption;
although flat traffic was thought to signify brute-force
traffic,8,9 we discovered this was often not the case.10 So
instead of the theoretical attack behavior, depicted in
Figure 1, we discovered that attacks may feature devia-
tions in the number of PPF, as shown in Figure 2, for
network and measurement artifacts.

Another source of false positive compromise detec-
tions was authentication monitors, such as Fail2ban (www
.fail2ban.org) and DenyHosts (denyhosts.sourceforge
.net), which block connecting hosts after a number of
failed login attempts. When blocking a connecting host
after a brute-force phase, the result would be connection
initiations toward the target—on the network-level,
those initiations appear exactly like the behavior of a
compromise in Figures 1 and 2.

Lessons Learned
Our case study has shown that we cannot just assume
flow data in production networks to be similar, in
terms of quality, to flow data in lab environments.
Flow data analysis is therefore not as simple as it is
often assumed. In the upcoming sections, we discuss
why flow data analysis is sometimes impaired. We
found that two kinds of artifacts may severely impair
analysis: measurement artifacts and network artifacts
(see Figure 3).

Measurement Artifacts
Measurement artifacts cause traffic metadata to not fully
resemble the original traffic anymore, and therefore likely
impair data analyses. These artifacts may range from data
loss as a consequence of under-dimensioned network
links and storage to complex race conditions in the firm-
ware of export devices. Since flow export is widely sup-
ported by higher-end packet-forwarding devices and can
typically be enabled very easily, we initially assumed the
presence of network measurement artifacts to be limited.
After we discovered that measurement artifacts were not
uncommon in flow data, we systematically compared six
frequently used flow export devices for the presence of
measurement artifacts.11 Other works on measurement
artifacts in flow data have appeared over the years as well,
such as “Peeling Away Timing Error in NetFlow Data,”12
reporting on timing issues, and “Uncovering Artifacts
of Flow Measurement Tools,”13 reporting on artifacts
in flow data from widespread Juniper devices. We elab-
orate on the most important artifacts that we found to
impair flow-based compromise detection. We illustrate
each artifact by means of an example in the context of
SSH. Unless indicated differently, the examples show
traffic from attacker to target, that is, traffic with destina-
tion port 22. Since understanding this requires techni-
cal knowledge on flow monitoring, we refer the reader
to “Flow Monitoring Explained: From Packet Capture
to Data Analysis with NetFlow and IPFIX”5 for a com-
prehensive tutorial on the matter.

TCP Flows without Flags
TCP flags in flow data are an invaluable source of
information when it comes to understanding network
behavior. Their availability is however far less com-
mon than it seems; many (older) flow exporters, espe-
cially those embedded in packet-forwarding devices
that perform forwarding in hardware, do not export
TCP flags for hardware-switched flows. (Higher-end
packet-forwarding devices typically feature [fast]

Figure 2. Brute-force attack behavior under network and
measurement artifacts.

Sc
an

Time

Brute-force

C
om

pr
om

ise

PP
F

Figure 1. Theoretical brute-force attack behavior.

Sc
an

Brute-force

C
om

pr
om

ise

Time

PP
F

www.computer.org/security� 5

hardware and [slow] software paths. Most packets
should be switched in hardware to achieve the highest
performance.) In a typical campus scenario, this corre-
sponds to roughly 99.6 percent of all TCP flows.11

An exemplary situation in which the lack of TCP
flags can easily lead to erroneous conclusions is the
following. Although rather unknown, the OpenSSH
SSH daemon includes functionality for rate-limiting
connection requests. On the network-level, this func-
tionality appears similar to authentication monitors
like Fail2ban and DenyHosts when blocking connect-
ing machines, due to a source or attacker vainly trying
to establish TCP connections to the target. Without
TCP flags, the resulting flow data is in line with the
following:

ID Start End Src. port Flags Packets
1 10:37:09 10:37:13 37162 13
2 10:37:17 10:37:22 37165 13
3 10:37:29 10:37:33 37193   3

Several conclusions could be drawn:

■■ Flow record 3 represents a newly established con-
nection and signifies a compromise, that is, featuring
TCP SYN, ACK, and PSH flags.

■■ Flow record 3 is part of a long connection and may
signal a slow brute-force phase or a compromise, that
is, featuring only TCP ACK and PSH flags.

■■ Flow record 3 represents three connection attempts
to the daemon, while the target blocks the attacker. In
this case, the flow record would feature merely a TCP
SYN flag.

Most important is that regardless of the conclusion
drawn, the illustrated behavior appears very similar
to what is shown in Figure 1. Several brute-force phase
flows can be observed, followed by a flow that has a sig-
nificantly different number of PPF (3) than the flows
in the brute-force phase—a potential sign of a compro-
mise. TCP flags for the last flow would however reveal
that this is certainly not indicating a compromise. Since
a successful TCP three-way handshake and subsequent
SSH connection setup would require at least multiple
TCP ACK flags, observing only the TCP SYN flag indi-
cates that a connection was never established.

Imprecise Flow Cache Entry Expiration
Flow exporters maintain a flow cache for accounting
active flows. Once a flow is considered to have termi-
nated, cache entries are expired and removed from the
cache, and inserted in NetFlow or IPFIX messages.
Although expiring and removing flow cache entries
should theoretically be done (almost) simultaneously,

measurements presented in “Measurement Artifacts in
NetFlow Data”11 have shown that this is often not the
case. The consequence: two or more connections that
are mapped to the same cache entry are (partially)
merged, as shown in Figure 4.

The consequences of imprecise flow cache
entry expiration can best be explained by means of
Figure 5. The figure shows an attack in the brute-force
phase that features a small spike in terms of the num-
ber of PPF, meaning that there was a single flow that
featured more packets than the other flows. Intui-
tively, one may believe that this is a compromise. The
fact that an authentication attempt was successful
and perhaps the attacker executed some commands
is likely to feature a different number of PPF than
the other flows in the brute-force phase. In early ver-
sions of SSHCure, this event would be reported as a
compromise.

Understanding whether a spike in flat traffic is caused
by application behavior or measurement artifacts is far
from trivial. However, repairing or working around this
artifact is often possible, but only if TCP flags are avail-
able. This can be illustrated by means of the following
example. If flow cache entry expiration works well, two
flows that map to the same flow cache entry are being
exported in two different flow records:

ID Start End Src. port Flags Packets
1 10:37:09 10:37:13 37162 .AP.SF 13
2 10:37:17 10:37:22 37162 .AP.SF 13

Figure 3. Components where artifacts may be introduced during brute-force
attacks.

Attacker Network Target

Flow exporter
1

2

Figure 4. Accidental merging of flows due to imprecise flow cache entry
expiration.

Flow A Flow A’

Flow A Flow A’

Expected expiration↓ ↓Actual expiration

Expected:

Actual:

Time

6	 IEEE Security & Privacy� January/February 2018

FLOW DATA ANALYSIS

However, if cache entries are not expired and
exported precisely, the following may happen:

ID Start End Src. port Flags Packets
3 10:37:09 10:37:16 37162 .AP.SF 16
4 10:37:16 10:37:22 37162 .AP..F 10

The first three packets of the second flow are merged
with the first flow, causing a sudden spike (16 PPF
instead of 13).

Although resource intensive, it might be possible to
detect this case by not flagging the compromise until
flow record 4 is detected within reasonable time. This
would allow the analysis to conclude that the sum of
packets of records 3 and 4 equals the (expected) sum of
packets of records 1 and 2, and that erroneous merging
may have occurred.

There can however be situations where the result of
imprecise expiration is even worse:

ID Start End Src. port Flags Packets
5 10:37:09 10:37:22 37162 .AP.SF 26

Although in this case it may seem likely that two
flows were merged erroneously (because the number
of PPF equals the sum of packets of records 1 and 2),
we can only guess whether this is a case of two merged
flows, or a compromise.

The extent that imprecise flow cache entry expira-
tion affects the exported flow data depends strongly on
the design and specifications of the export device, and
the traffic load to which the export device is exposed.
We therefore cannot provide any general numbers on
this artifact, but refer the reader to “Measurement Arti-
facts in NetFlow Data”11 for a detailed analysis.

Gaps
Gaps can be found in flow data both on the level of pack-
ets and flows. In any case, they signal data loss and are
therefore one of the worst types of artifacts. Note that

gaps may also be introduced intentionally, typically to
reduce load of monitoring devices, which is commonly
referred to as sampling. In this article, we consider only
unintended gaps, leaving sampling out of scope.

When not all packets of a flow are metered, a flow
exporter may be suffering from high load. Although
missing packets in a flow can be catastrophic for analy-
sis, they can often be compensated for using clever tech-
niques. This is illustrated by the following example:

ID Start End Src. port Flags Packets
1 10:31:53 10:31:57 37008 .AP.SF 13
...
2 10:37:09 10:37:13 42815 .AP.SF 13
3 10:37:27 10:37:31 37008 .AP..F 12

For flow record 1, we can be rather sure that all pack-
ets have been metered. At least, we have observed all
expected TCP flags (that is, TCP SYN, ACK, PSH, and
FIN), meaning that there has been some application-layer
information exchange between attacker and target. Later
in time, we observe a flow (ID 3) with the same source
port that features one packet less and no TCP SYN packet.
Given that the flow represented by record 1 has completed,
as we observed a TCP FIN flag, and there have been no
other flows with the same source port between these two
flows, we can assume that the non-metered TCP SYN
packet is likely a measurement artifact. Also, it should be
noted that many stateful middleboxes would likely have
dropped the flow with ID 3 if the TCP SYN packet was
really missing. A more severe type of gap is when flows
are not being accounted at all, which happens especially
in situations where the flow cache is under-dimensioned
and full. When this “lost” flow happens to feature a com-
promise, the IDS will never be able to detect it.

The problem of under-dimensioned flow caches can
usually be observed only in flow exporters with hard-
ware caches. Common examples are the Cisco Cata-
lyst 6500 and 7600 series routers, Cisco’s most-sold
routers for campus environments.14 Older versions of
these devices come with fixed-size caches of 128,000
or 256,000 entries, which is rather small for typical
university deployments without sampling enabled.11
Exporters that are fully built-in software, however, often
use constructions like linked lists for handling cases
in which the cache reaches its maximum utilization,
although that may reduce overall exporter performance.

Some gaps in flow data may be detected by inspect-
ing the sequence numbers in NetFlow and IPFIX pro-
tocol messages. In the case of NetFlow v5 and IPFIX,
the sequence number records the number of exported
flow records, while for NetFlow v9, sequence numbers
record the number of protocol messages. Gaps that are a
consequence of exporter overload are, however, unlikely

Figure 5. Deviation in the brute-force phase: compromise
or artifact?

Sc
an

Brute-force

Time

Pa
ck

et
s-

pe
r-

flo
w

 (P
PF

)

www.computer.org/security� 7

to be recorded in the protocol’s sequence numbers and
hence harder to detect. Also, given that gaps in flow data
are completely load dependent, it is hardly possible to
provide general numbers on the presence of this artifact.

Timestamp Errors
NetFlow and timing problems are widely known to go
hand in hand. For example, clock resolutions of vari-
ous flow exporters are described in “One-Way Delay
Measurement Based on Flow Data: Quantification and
Compensation of Errors by Exporter Profiling.”15 The
authors conclude that “timestamp errors in flow data
are dominated by errors resulting from limited time-
stamp resolution.” Several other related problems are
described and quantified in “Peeling Away Timing Error
in NetFlow Data.”12 First, the authors describe a cyclic
error of up to one second that is inherent to the design
of NetFlow v9. Second, due to the implementation of
typical NetFlow metering processes, timestamps may
be off by several seconds. The main conclusion of the
authors is that “any assumption that devices exporting
NetFlow v9 are capable of millisecond-level accuracy
and/or strict ordering of flows does not hold.”

An illustrative example of a timestamping artifact was
discovered during the development of SSHCure and
involves the Cisco Catalyst 6500/SUP2T. (The artifact
was observed in Cisco IOS v15.1(1)SY and v15.1(1)
SY3.) This artifact causes the start time of a few flows
to be set to a time that comes even before the boot
time of the forwarding device, which can impair sub-
sequent analysis, such as SSHCure’s. Since SSHCure is
developed as a plugin for NfSen, which uses flow data
chunks of five minutes, many functions operate once
every five minutes. However, to improve the accuracy
of internal components, we decided to divide chunks
into sub-chunks of one minute. The only way to do this
is by dividing the interval between the first and last flow
record of every chunk into equally sized sub-chunks.
However, when some timestamps feature major devia-
tions, this leads to major problems, since it will cause the
set of flow records to not be distributed uniformly over
the sub-chunks. Subsequently, thresholds are not calcu-
lated correctly, resulting in false positives and negatives.

Lessons Learned
Artifacts exist in practically any measurement device,
even in devices from renowned vendors, and we have
highlighted artifacts of various severities. The wide
presence of artifacts in flow exporters almost seems
paradoxical, since flow export is often presented as
“plug-and-play” functionality. According to vendors,
merely enabling the functionality brings all the nice fea-
tures of flow export technologies, while the exported
data should actually be treated with care. However,

it should be clear that every application has its own
requirements on data quality.

Network Artifacts
Solid measurements require a calibrated measurement
infrastructure. But even in environments with an optimal
measurement infrastructure, problems may arise. In this
section, we discuss a second class of artifacts, namely net-
work artifacts. The presented artifacts cannot be discrim-
inated in flow data and affect the flatness of brute-force
traffic, effectively impairing compromise detection. For
a comprehensive overview and discussion on the pre-
sented artifacts, we refer the reader to “Unveiling Flat
Traffic on the Internet: An SSH Attack Case Study.”10

TCP Retransmissions
After SSHCure was released to the public, several users
reported on false positive compromise detections. This
came as a surprise, since we validated SSHCure’s detection
performance in our campus network based on a large-scale
validation involving almost 100 machines over a period of
two months.4 Users started to investigate authentication
logs of machines that were reported to be compromised,
yet did not find any signs of compromises. To rule out the
presence of measurement artifacts as described earlier,
users were asked to provide us with packet traces, which
provided us clear insights into the problem. Retransmis-
sions were affecting attacks from countries that are far
away from the observation point, such as the Far East in
the case of observation points in Europe.

Retransmissions are the cornerstone of reliable com-
munication channels. Despite the ever-increasing band-
widths toward end systems, TCP retransmissions occur
at all times and feature clear diurnal patterns. In a recent
work, we have shown that in an academic campus net-
work, retransmissions account for 1.43 and 0.97 percent
of all packets and bytes, respectively.10 Analogously, we
have measured 3.22 percent of all packets and 1.22 per-
cent of all bytes on a link to the “commercial Internet”
of an academic backbone.

The problem with retransmissions and flow data is
that flow export devices generally count packets and
bytes at the network layer (L3), while retransmissions
can only be discriminated at the transport layer (L4).
As such, retransmissions cannot be discriminated from
other packets, directly affecting the detection metric
used by SSHCure, that is, the number of PPF. In case of
retransmissions, spikes can be observed when analyzing
brute-force behavior over time, as shown in Figure 5.

TCP Control Information
TCP features many mechanisms for connection probing
and optimizing traffic flow between endpoints. Most fall
under the umbrella of TCP control information, among

8	 IEEE Security & Privacy� January/February 2018

FLOW DATA ANALYSIS

which are duplicate and non-piggybacked acknowledg-
ments, window updates, and keep-alive probes. Con-
trary to retransmissions, which result in additional
packets in the network by definition, control informa-
tion often employs TCP header fields and therefore does
not necessarily result in additional packets. However, in
some situations, it may consume additional bandwidth.

An exemplary type of control information that affects
the amount of network traffic exchanged between two
endpoints is TCP’s delayed acknowledgment mechanism.
Its goal is to slightly delay the transmission of acknowledg-
ments, such that the successful reception of multiple packets
can be acknowledged at once. Whether additional packets/
acknowledgments are sent heavily depends on timing, mak-
ing it a dynamic mechanism that is not constantly activated.
The work described in “Unveiling Flat Traffic on the Inter-
net: An SSH Attack Case Study”10 shows that TCP control
information can be observed at any time of the day, in both
academic and “commercial” networks, and between end-
points both close to and far away from the observation point.

The effects of TCP control information on
brute-force traffic flatness should be clear. The unpre-
dictable nature of some sorts of control information
(for example, due to timing) makes assumptions on
traffic flatness to fail. The measurements presented in
“Unveiling Flat Traffic on the Internet: An SSH Attack
Case Study”10 show that approximately 30 percent of all
TCP packets in the monitored networks carry control
information, which clearly underlines the importance of
considering this type of traffic in detection algorithms.

Lessons Learned
In this section, we described two network artifacts that cause
sudden deviations in network traffic, in particular when look-
ing at the number of PPF over time. Traditionally, there is no
way to discriminate retransmissions and control informa-
tion packets from other packets in flow data. In “Unveiling
Flat Traffic on the Internet: An SSH Attack Case Study,”10
however, we have shown how to overcome this problem.
By exporting the number and size of TCP retransmissions
and control information packets on a per-flow basis, the
“real” number of packet and bytes can be measured. In addi-
tion, we have measured the impact of the compensation
measures taken. For example, without any change to the
detection algorithm, the accuracy of state-of-the-art IDSs
improved significantly by more than 6 percentage points.

Discussion
The previous sections have shown that flow-based tech-
niques can be used to determine which hosts are com-
promised after brute-force SSH dictionary attacks. But
can flow-based techniques also be used to detect com-
promises of other Internet services, such as web applica-
tions? To answer this question, we conducted a number

of experiments on CMSs, since such systems are often
vulnerable to brute-force attacks and, once hacked, may
be misused for spam campaigns or DDoS attacks. Such
hacked CMSs may lead to unexpected side effects, such
as the entire IP address space of the web-hosting com-
pany being blacklisted. Hosting companies therefore
often monitor webserver logfiles of all virtual web hosts,
but in cases where virtual private servers (VPSs) are pro-
vided to customers, logfile analyses may be impossible.
In such cases, flow-based techniques may be an interest-
ing alternative to detect CMS compromises.

Our experiments were conducted on the network of
Hosting 2GO, a Dutch Top-10 web-hosting provider,
over a period of one month in the summer of 2015.
Roughly 2,500 hosts were monitored and more than
400 GB of flow data analyzed. To validate our approach,
results were compared to server logfiles, which were
considered to represent ground truth. Similar to the
SSH case, we started with an elementary approach based
on attack signatures. The main lesson learned from that
experiment was that simple signatures may provide a
basis for detection, but the number of false positives is
too high due to many small connections, such as traffic
generated by web crawlers, calendar fetchers, and photo
galleries. We therefore adapted our approach; instead
of focusing on sharp transitions between the brute-force
and the compromise phase (see Figure 2), we created
per-connection histograms that provide information on
packet payload sizes in flow data. Clustering techniques
were subsequently applied to group attack traffic and
benign traffic. Such histograms turned out to deliver
good detection results, and can be seen as an alternative
approach to overcome the problems introduced at the
TCP level, like retransmissions and control information,
as described earlier. Details of these experiments can be
found in the PhD thesis that resulted from this work.6

W e believe that security researchers should focus
more on compromise detection, instead of tradi-

tional attack detection. We should not worry too much when
we see failed attacks, but rather be alarmed whenever we see
successful attacks (compromises). In this article, we wanted
to investigate whether flow-based techniques to detect com-
promises could be applied in practice. We focused on two
cases: SSH and web applications. From our research, we
may conclude that flow-based techniques not only work in
lab environments, but can also work in real operational envi-
ronments. However, it is crucial that the measurement infra-
structure is calibrated and network artifacts are understood.
Our SSH compromise analysis has revealed several artifacts
that would not appear in lab environments, such as imprecise
expirations and gaps. Our web-based CMS analysis learned
that elementary attack signatures resulted in too many

www.computer.org/security� 9

false positives, but by replacing such signatures by histo-
grams and clustering techniques, good results were pos-
sible. Therefore, our general conclusion is that flow-based
compromise detection is a promising technique, although
additional research is still needed to cover more applica-
tion scenarios and to better understand all forms of arti-
facts that may occur in operational environments.

References
1.	 “SSH Brute Force—The 10 Year Old Attack That Still

Persists,” Sucuri Inc., July 2015; https://blog.sucuri
.net/2013/07/ssh-brute-force-the-10-year-old-attack
-that-still-persists.html.

2.	 “WordPress Brute Force Attacks,” Sucuri Inc., 2015;
https://sucuri.net/security-reports/brute-force.

3.	 Safeguarding the Internet, tech. report, Level 3 Communi-
cations, June 2015; http://www.level3.com/;/media/files
/white-paper/en_secur_wp_botnetresearchreport.pdf.

4.	 R. Hofstede et al., “SSH Compromise Detection Using
NetFlow/IPFIX,” ACM SIGCOMM Computer Communi-
cation Review, vol. 44, no. 5, 2014, pp. 20–26.

5.	 R. Hofstede et al., “Flow Monitoring Explained: From
Packet Capture to Data Analysis with NetFlow and
IPFIX,” IEEE Communications Surveys & Tutorials, vol. 16,
no. 4, 2014, pp. 2037–2064.

6.	 R. Hofstede, “Flow-Based Compromise Detection,”
PhD dissertation, University of Twente, Enschede, The
Netherlands, 2016.

7.	 A. Sperotto et al., “Hidden Markov Model Modeling
of SSH Brute-Force Attacks,” Integrated Management
of Systems, Services, Processes and People, Proceedings of
the 20th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM 09), LNCS
5841, Springer Berlin Heidelberg, 2009, pp. 164–176.

8.	 J. Vykopal, “Flow-Based Brute-Force Attack Detection
in Large and High-Speed Networks,” PhD dissertation,
Masaryk University, Brno, Czech Republic, 2013.

9.	 M. Drasar, “Behavioral Detection of Distributed Diction-
ary Attacks,” PhD dissertation, Masaryk University, Brno,
Czech Republic, 2015.

10.	 M. Jonker et al., “Unveiling Flat Traffic on the Inter-
net: An SSH Attack Case Study,” Proceedings of the 14th
IFIP/IEEE Symposium on Integrated Network and Service
Management (IM 15), 2015.

11.	 R. Hofstede et al., “Measurement Artifacts in NetFlow
Data,” Proceedings of the 14th International Conference on
Passive and Active Measurement (PAM 13), LNCS 7799,
Springer Berlin Heidelberg, 2013, pp. 1–10.

12.	 B. Trammell et al., “Peeling Away Timing Error in Net-
Flow Data,” Proceedings of the 12th International Confer-
ence on Passive and Active Measurement (PAM 11), LNCS
6579, Springer Berlin Heidelberg, 2011, pp. 194–203.

13.	 I. Cunha et al., “Uncovering Artifacts of Flow Mea-
surement Tools,” Proceedings of the 10th International

Conference on Passive and Active Measurement (PAM
09), LNCS 7799, Springer Berlin Heidelberg, 2009, pp.
187–196.

14.	 J.H. Follett, “Cisco: Catalyst 6500 The Most Success-
ful Switch Ever,” June 2006; http://www.crn.com
/news/networking/189500982/cisco-catalyst-6500-the
-most-successful-switch-ever.htm.

15.	 J. Kögel, “One-Way Delay Measurement Based on Flow
Data: Quantification and Compensation of Errors by
Exporter Profiling,” Proceedings of the International Conference
on Information Networking (ICOIN 11), 2011, pp. 25–30.

Rick Hofstede is a former PhD student of the Univer-
sity of Twente and the Universität der Bundeswehr
München, Germany. In 2016, he successfully defended
his PhD thesis titled “Flow-Based Compromise Detec-
tion,” after which he switched to the cybersecurity
industry. His main areas of interest include cyberse-
curity, big data processing, and network forensics.
Contact him at r.j.hofstede@alumnus.utwente.nl.

Aiko Pras is professor at the University of Twente, the
Netherlands, where he is member of the Design and
Analysis of Communication Systems (DACS) group.
His research interests include Internet security, mea-
surements, and management. He is chairing the IFIP
Technical Committee on Communications Systems
(IFIP-TC6), and has been chair of the EU Future Inter-
net cluster and coordinator of the European Network
of Excellence on Management of the Future Internet
(FLAMINGO). Contact him at a.pras@utwente.nl.

Anna Sperotto is assistant professor at the Design and
Analysis of Communication Systems Group of the
University of Twente, the Netherlands. She received
a PhD degree from the University of Twente, in 2010,
with the thesis titled “Flow-Based Intrusion Detec-
tion.” Her research interests include network security,
network measurements, and traffic monitoring and
modeling. Contact her at a.sperotto@utwente.nl.

Gabi Dreo Rodosek holds the Chair for Communica-
tion Systems and Network Security at the Universität
der Bundeswehr München, Germany. She is direc-
tor of the research institute CODE (Cyber Defence),
member of the Supervisory and Advisory Board of
Giesecke & Devrient GmbH, member of the advi-
sory board of BWI GmbH, member of the Governing
Board of the Deutsches Forschungsnetz (DFN) and
member of the IT expert panel of the German federal
financial supervisory agency (BaFin). In 2016, she was
awarded the European Medal from the Bavarian Min-
ister for European Affairs and International Relations
Dr. Beate Merk. Contact her at gabi.dreo@unibw.de.

