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FLOW DATA ANALYSIS
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Although the aggregated nature of exported flow data provides many advantages in terms of privacy and 
scalability, flow data may contain artifacts that impair data analysis. In this article, we investigate the 
differences between flow data analysis in theory and practice—that is, in lab environments and produc-
tion networks.

B rute-force attacks are as old as the Internet, and 
therefore antiquated, yet their popularity is 

increasing.1,2 One of the main targeted services of these 
attacks is Secure Shell (SSH). In 2015, the threat intel-
ligence organization Talos, together with Tier 1 net-
work operator Level 3 Communications, mitigated SSH 
brute-force attacks from a group named SSHPsychos 
or Group 93, generating more than 35 percent of the 
global SSH network traffic.3

Another target of brute-force attacks is rapidly gain-
ing popularity: content management systems (CMSs), 
such as WordPress. For example, failed authentication 
attempts on WordPress instances behind the secu-
rity company Sucuri’s protection services showed an 
increase of a factor eight over a period of six months in 
2015.2

While brute-force attacks are omnipresent and their 
existence widely known, we know that only few attacks 
actually result in compromises.4 We therefore believe 
that monitoring would be more effective once it targets 
compromises rather than attacks.

Monitoring compromises is vital for maintaining 
secure networks. Traditionally, security monitoring is 
performed in a host-based fashion by running intru-
sion detection systems (IDSs) on networked devices. 
As such, IDSs have access to network interfaces and 

file systems, allowing them to achieve high detection 
rates with few false positives and negatives. However, 
the problem with host-based approaches is their scal-
ability. In environments where IT service departments 
do not have global machine access, it is virtually impos-
sible to install and manage agents on every machine. 
For this reason, network-based approaches may be used 
for monitoring networked systems, where information 
is gathered at central observation points within the 
network.

One approach is to capture individual packets. How-
ever, this results in large amounts of data. Especially 
when packet payloads are captured, the scalability of 
packet-based approaches is limited due to stringent hard-
ware requirements for storage and analysis. It should be 
noted, however, that due to the ever-increasing amount 
of network traffic being encrypted, the benefit of stor-
ing packet payloads is vanishing.

Another, more scalable, network-based monitoring 
approach is to analyze traffic flows using export capa-
bilities of packet-forwarding devices or dedicated appli-
ances (probes).5 These flow exporters aggregate packets 
into flows and export flow data using protocols like Net-
Flow and IPFIX.

Flow data is a proven source of information for 
detecting various types of security incidents, such as 
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distributed denial-of-service (DDoS) attacks and net-
work scans.5 However, for analyses like SSH and web 
application compromise detection, the use of flow data 
is much harder. First, the lower granularity of flow data 
(compared to packet-based alternatives) generally results 
in more false positives and negatives. Second, artifacts in 
flow data, such as inaccuracies and packet loss, can be 
subject to misinterpretation. It is often underestimated 
how much flow data in theory and lab environments 
may differ from flow data in practice, rendering many 
flow-based analyses unsuitable for production usage. In 
this article, we investigate whether flow-based compro-
mise detection for SSH and web applications is possible 
in production networks, or whether its application is 
limited to lab environments. The work presented here is 
a summary of four years of PhD research.6

Compromise Detection—A Case Study
Compromised machines are the core building blocks 
of many illegal activities on the Internet. Examples of 
such activities are spamming, DDoS attacks, and illegal 
content distribution. Detecting and quarantining com-
promised machines is therefore of vital importance for 
maintaining secure networks.

Compared to host-based IDSs, network-based IDSs 
are far behind when it comes to compromise detec-
tion. They generally report on the presence of attacks, 
regardless of whether the attacks were successful or 
not. Again, high false positive rates and the presence 
of data artifacts have prevented advanced flow-based 
security analyses in general and compromise detection 
in particular from breaking through.

A typical application for compromise detection is 
SSH. With almost 26 million connected and scannable 
SSH daemons in November 2015, according to Shodan 
(www.shodan.io), SSH daemons are a popular attack 
target.4 SSH is used for remote server administration; 
therefore, the compromise of a target machine immedi-
ately results in adversaries gaining unprivileged control. 
In this section, we describe our experiences with SSH 
compromise detection.

SSH Compromise Detection in Theory
Brute-force attacks aim to compromise user accounts 
by trying many combinations of usernames and pass-
words. One particular type of brute-force attack is the 
dictionary attack. Dictionaries are lists of frequently 
used username and password combinations. Attacks 
using dictionaries are particularly effective because 
purely random passwords are difficult to remember and 
therefore less common than passwords that are simple 
and easy to remember.

Before a target can be attacked, it must be discov-
ered. This can be done by scanning a network, for 

example, by using tools like nmap (nmap.org) or by 
using publicly available lists of potential targets, such 
as those provided on PasteBin (pastebin.com) or gath-
ered by services like Shodan. Once potential targets 
have been found, brute-force attacks can be launched. 
Eventually, targets may be compromised, depending on 
whether valid credentials were discovered. In short, we 
can say that brute-force attacks consist of three phases: 
a scan phase, followed by a brute-force phase, poten-
tially concluded by a compromise phase if the attack was 
successful.

Although these attack phases feel rather natural, they 
were formalized first in the context of network flows 
in 2009 in “Hidden Markov Model Modeling of SSH 
Brute-Force Attacks.”7 It was found that they could be 
easily identified in lab environments by the number of 
packets per flow (PPF).

For example, the scan phase features a low number 
of PPF since it consists of only one or two TCP SYN 
packets, while the brute-force phase is characterized 
by a significantly higher number of PPF, for instance, 
10 to 15, due to the SSH connection initiation and 
one or more authentication attempts. In theory, traf-
fic in the brute-force phase is flat, that is, alike in terms 
of packets, bytes, and duration, because of repeated 
application-layer actions or events, namely authentica-
tion attempts. In a compromise, we may observe either 
a number of PPF that is higher than the brute-force 
phase’s, if the target is being actively misused, or lower, 
if the connection to the target is maintained but left 
idle. The behavior of a typical SSH brute-force attack in 
terms of the number of PPF is shown and summarized 
in Figure 1.

SSH Compromise Detection in Practice
The theoretical model described in “Hidden Markov 
Model Modeling of SSH Brute-Force Attacks”7 aimed at 
defining brute-force attack behavior, including the scan, 
brute-force, and compromise phases. To demonstrate 
that flow-based compromise detection is feasible, we 
developed an open-source application named SSHCure 
(https://github.com/sshcure/sshcure). SSHCure has 
a strong focus on detecting the three attack phases and 
was the first flow-based IDS that could report on com-
promises. The detection was realized by monitoring the 
number of PPF between a potential pair of attacker and 
target to identify flat traffic. If the traffic was found to 
be flat enough, a brute-force phase was detected, and any 
significant change to the traffic flatness was thought to 
be indicative of a compromise.

Since SSHCure relies on flow data exported using 
NetFlow or IPFIX, it was believed to work on flow data 
from any source, like any other flow data analysis soft-
ware. To validate this, we tested SSHCure on our own 
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campus network as well as on a backbone link of the 
Czech NREN (CESNET). In addition, we promoted 
SSHCure at many conferences and gave demos at vari-
ous companies. The result was wide user base, ranging 
from small web-hosting companies to backbone net-
works and governmental CSIRTs. However, as soon as 
SSHCure was released and after we requested feedback 
from users, we received mixed results. For some, SSH-
Cure worked great and provided them with a power-
ful tool to detect compromises. Others, however, were 
reporting on false positive and negative detections.

Analysis of the reported problems revealed that 
the vast majority was caused by a broken assumption; 
although flat traffic was thought to signify brute-force 
traffic,8,9 we discovered this was often not the case.10 So 
instead of the theoretical attack behavior, depicted in 
Figure 1, we discovered that attacks may feature devia-
tions in the number of PPF, as shown in Figure 2, for 
network and measurement artifacts.

Another source of false positive compromise detec-
tions was authentication monitors, such as Fail2ban (www 
.fail2ban.org) and DenyHosts (denyhosts.sourceforge 
.net), which block connecting hosts after a number of 
failed login attempts. When blocking a connecting host 
after a brute-force phase, the result would be connection 
initiations toward the target—on the network-level, 
those initiations appear exactly like the behavior of a 
compromise in Figures 1 and 2.

Lessons Learned
Our case study has shown that we cannot just assume 
flow data in production networks to be similar, in 
terms of quality, to flow data in lab environments. 
Flow data analysis is therefore not as simple as it is 
often assumed. In the upcoming sections, we discuss 
why flow data analysis is sometimes impaired. We 
found that two kinds of artifacts may severely impair 
analysis: measurement artifacts and network artifacts 
(see Figure 3).

Measurement Artifacts
Measurement artifacts cause traffic metadata to not fully 
resemble the original traffic anymore, and therefore likely 
impair data analyses. These artifacts may range from data 
loss as a consequence of under-dimensioned network 
links and storage to complex race conditions in the firm-
ware of export devices. Since flow export is widely sup-
ported by higher-end packet-forwarding devices and can 
typically be enabled very easily, we initially assumed the 
presence of network measurement artifacts to be limited. 
After we discovered that measurement artifacts were not 
uncommon in flow data, we systematically compared six 
frequently used flow export devices for the presence of 
measurement artifacts.11 Other works on measurement 
artifacts in flow data have appeared over the years as well, 
such as “Peeling Away Timing Error in NetFlow Data,”12 
reporting on timing issues, and “Uncovering Artifacts 
of Flow Measurement Tools,”13 reporting on artifacts 
in flow data from widespread Juniper devices. We elab-
orate on the most important artifacts that we found to 
impair flow-based compromise detection. We illustrate 
each artifact by means of an example in the context of 
SSH. Unless indicated differently, the examples show 
traffic from attacker to target, that is, traffic with destina-
tion port 22. Since understanding this requires techni-
cal knowledge on flow monitoring, we refer the reader 
to “Flow Monitoring Explained: From Packet Capture 
to Data Analysis with NetFlow and IPFIX”5 for a com-
prehensive tutorial on the matter.

TCP Flows without Flags
TCP flags in flow data are an invaluable source of 
information when it comes to understanding network 
behavior. Their availability is however far less com-
mon than it seems; many (older) flow exporters, espe-
cially those embedded in packet-forwarding devices 
that perform forwarding in hardware, do not export 
TCP flags for hardware-switched flows. (Higher-end 
packet-forwarding devices typically feature [fast] 

Figure 2. Brute-force attack behavior under network and 
measurement artifacts.
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Figure 1. Theoretical brute-force attack behavior.
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hardware and [slow] software paths. Most packets 
should be switched in hardware to achieve the highest 
performance.) In a typical campus scenario, this corre-
sponds to roughly 99.6 percent of all TCP flows.11

An exemplary situation in which the lack of TCP 
flags can easily lead to erroneous conclusions is the 
following. Although rather unknown, the OpenSSH 
SSH daemon includes functionality for rate-limiting 
connection requests. On the network-level, this func-
tionality appears similar to authentication monitors 
like Fail2ban and DenyHosts when blocking connect-
ing machines, due to a source or attacker vainly trying 
to establish TCP connections to the target. Without 
TCP flags, the resulting flow data is in line with the 
following:

ID Start End Src. port Flags Packets
1 10:37:09 10:37:13 37162 ...... 13
2 10:37:17 10:37:22 37165 ...... 13
3 10:37:29 10:37:33 37193 ......   3

Several conclusions could be drawn:

■■ Flow record 3 represents a newly established con-
nection and signifies a compromise, that is, featuring 
TCP SYN, ACK, and PSH flags.

■■ Flow record 3 is part of a long connection and may 
signal a slow brute-force phase or a compromise, that 
is, featuring only TCP ACK and PSH flags.

■■ Flow record 3 represents three connection attempts 
to the daemon, while the target blocks the attacker. In 
this case, the flow record would feature merely a TCP 
SYN flag.

Most important is that regardless of the conclusion 
drawn, the illustrated behavior appears very similar 
to what is shown in Figure 1. Several brute-force phase 
flows can be observed, followed by a flow that has a sig-
nificantly different number of PPF (3) than the flows 
in the brute-force phase—a potential sign of a compro-
mise. TCP flags for the last flow would however reveal 
that this is certainly not indicating a compromise. Since 
a successful TCP three-way handshake and subsequent 
SSH connection setup would require at least multiple 
TCP ACK flags, observing only the TCP SYN flag indi-
cates that a connection was never established.

Imprecise Flow Cache Entry Expiration
Flow exporters maintain a flow cache for accounting 
active flows. Once a flow is considered to have termi-
nated, cache entries are expired and removed from the 
cache, and inserted in NetFlow or IPFIX messages. 
Although expiring and removing flow cache entries 
should theoretically be done (almost) simultaneously, 

measurements presented in “Measurement Artifacts in 
NetFlow Data”11 have shown that this is often not the 
case. The consequence: two or more connections that 
are mapped to the same cache entry are (partially) 
merged, as shown in Figure 4.

The consequences of imprecise flow cache 
entry expiration can best be explained by means of  
Figure 5. The figure shows an attack in the brute-force 
phase that features a small spike in terms of the num-
ber of PPF, meaning that there was a single flow that 
featured more packets than the other flows. Intui-
tively, one may believe that this is a compromise. The 
fact that an authentication attempt was successful 
and perhaps the attacker executed some commands 
is likely to feature a different number of PPF than 
the other flows in the brute-force phase. In early ver-
sions of SSHCure, this event would be reported as a 
compromise.

Understanding whether a spike in flat traffic is caused 
by application behavior or measurement artifacts is far 
from trivial. However, repairing or working around this 
artifact is often possible, but only if TCP flags are avail-
able. This can be illustrated by means of the following 
example. If flow cache entry expiration works well, two 
flows that map to the same flow cache entry are being 
exported in two different flow records:

ID Start End Src. port Flags Packets
1 10:37:09 10:37:13 37162 .AP.SF 13
2 10:37:17 10:37:22 37162 .AP.SF 13

Figure 3. Components where artifacts may be introduced during brute-force 
attacks.
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Figure 4. Accidental merging of flows due to imprecise flow cache entry 
expiration.
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However, if cache entries are not expired and 
exported precisely, the following may happen:

ID Start End Src. port Flags Packets
3 10:37:09 10:37:16 37162 .AP.SF 16
4 10:37:16 10:37:22 37162 .AP..F 10

The first three packets of the second flow are merged 
with the first flow, causing a sudden spike (16 PPF 
instead of 13).

Although resource intensive, it might be possible to 
detect this case by not flagging the compromise until 
flow record 4 is detected within reasonable time. This 
would allow the analysis to conclude that the sum of 
packets of records 3 and 4 equals the (expected) sum of 
packets of records 1 and 2, and that erroneous merging 
may have occurred.

There can however be situations where the result of 
imprecise expiration is even worse:

ID Start End Src. port Flags Packets
5 10:37:09 10:37:22 37162 .AP.SF 26

Although in this case it may seem likely that two 
flows were merged erroneously (because the number 
of PPF equals the sum of packets of records 1 and 2), 
we can only guess whether this is a case of two merged 
flows, or a compromise.

The extent that imprecise flow cache entry expira-
tion affects the exported flow data depends strongly on 
the design and specifications of the export device, and 
the traffic load to which the export device is exposed. 
We therefore cannot provide any general numbers on 
this artifact, but refer the reader to “Measurement Arti-
facts in NetFlow Data”11 for a detailed analysis.

Gaps
Gaps can be found in flow data both on the level of pack-
ets and flows. In any case, they signal data loss and are 
therefore one of the worst types of artifacts. Note that 

gaps may also be introduced intentionally, typically to 
reduce load of monitoring devices, which is commonly 
referred to as sampling. In this article, we consider only 
unintended gaps, leaving sampling out of scope.

When not all packets of a flow are metered, a flow 
exporter may be suffering from high load. Although 
missing packets in a flow can be catastrophic for analy-
sis, they can often be compensated for using clever tech-
niques. This is illustrated by the following example:

ID Start End Src. port Flags Packets
1 10:31:53 10:31:57 37008 .AP.SF 13
...
2 10:37:09 10:37:13 42815 .AP.SF 13
3 10:37:27 10:37:31 37008 .AP..F 12

For flow record 1, we can be rather sure that all pack-
ets have been metered. At least, we have observed all 
expected TCP flags (that is, TCP SYN, ACK, PSH, and 
FIN), meaning that there has been some application-layer 
information exchange between attacker and target. Later 
in time, we observe a flow (ID 3) with the same source 
port that features one packet less and no TCP SYN packet. 
Given that the flow represented by record 1 has completed, 
as we observed a TCP FIN flag, and there have been no 
other flows with the same source port between these two 
flows, we can assume that the non-metered TCP SYN 
packet is likely a measurement artifact. Also, it should be 
noted that many stateful middleboxes would likely have 
dropped the flow with ID 3 if the TCP SYN packet was 
really missing. A more severe type of gap is when flows 
are not being accounted at all, which happens especially 
in situations where the flow cache is under-dimensioned 
and full. When this “lost” flow happens to feature a com-
promise, the IDS will never be able to detect it.

The problem of under-dimensioned flow caches can 
usually be observed only in flow exporters with hard-
ware caches. Common examples are the Cisco Cata-
lyst 6500 and 7600 series routers, Cisco’s most-sold 
routers for campus environments.14 Older versions of 
these devices come with fixed-size caches of 128,000 
or 256,000 entries, which is rather small for typical 
university deployments without sampling enabled.11 
Exporters that are fully built-in software, however, often 
use constructions like linked lists for handling cases 
in which the cache reaches its maximum utilization, 
although that may reduce overall exporter performance.

Some gaps in flow data may be detected by inspect-
ing the sequence numbers in NetFlow and IPFIX pro-
tocol messages. In the case of NetFlow v5 and IPFIX, 
the sequence number records the number of exported 
flow records, while for NetFlow v9, sequence numbers 
record the number of protocol messages. Gaps that are a 
consequence of exporter overload are, however, unlikely 

Figure 5. Deviation in the brute-force phase: compromise 
or artifact?
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to be recorded in the protocol’s sequence numbers and 
hence harder to detect. Also, given that gaps in flow data 
are completely load dependent, it is hardly possible to 
provide general numbers on the presence of this artifact.

Timestamp Errors
NetFlow and timing problems are widely known to go 
hand in hand. For example, clock resolutions of vari-
ous flow exporters are described in “One-Way Delay 
Measurement Based on Flow Data: Quantification and 
Compensation of Errors by Exporter Profiling.”15 The 
authors conclude that “timestamp errors in flow data 
are dominated by errors resulting from limited time-
stamp resolution.” Several other related problems are 
described and quantified in “Peeling Away Timing Error 
in NetFlow Data.”12 First, the authors describe a cyclic 
error of up to one second that is inherent to the design 
of NetFlow v9. Second, due to the implementation of 
typical NetFlow metering processes, timestamps may 
be off by several seconds. The main conclusion of the 
authors is that “any assumption that devices exporting 
NetFlow v9 are capable of millisecond-level accuracy 
and/or strict ordering of flows does not hold.”

An illustrative example of a timestamping artifact was 
discovered during the development of SSHCure and 
involves the Cisco Catalyst 6500/SUP2T. (The artifact 
was observed in Cisco IOS v15.1(1)SY and v15.1(1)
SY3.) This artifact causes the start time of a few flows 
to be set to a time that comes even before the boot 
time of the forwarding device, which can impair sub-
sequent analysis, such as SSHCure’s. Since SSHCure is 
developed as a plugin for NfSen, which uses flow data 
chunks of five minutes, many functions operate once 
every five minutes. However, to improve the accuracy 
of internal components, we decided to divide chunks 
into sub-chunks of one minute. The only way to do this 
is by dividing the interval between the first and last flow 
record of every chunk into equally sized sub-chunks. 
However, when some timestamps feature major devia-
tions, this leads to major problems, since it will cause the 
set of flow records to not be distributed uniformly over 
the sub-chunks. Subsequently, thresholds are not calcu-
lated correctly, resulting in false positives and negatives.

Lessons Learned
Artifacts exist in practically any measurement device, 
even in devices from renowned vendors, and we have 
highlighted artifacts of various severities. The wide 
presence of artifacts in flow exporters almost seems 
paradoxical, since flow export is often presented as 
“plug-and-play” functionality. According to vendors, 
merely enabling the functionality brings all the nice fea-
tures of flow export technologies, while the exported 
data should actually be treated with care. However, 

it should be clear that every application has its own 
requirements on data quality.

Network Artifacts
Solid measurements require a calibrated measurement 
infrastructure. But even in environments with an optimal 
measurement infrastructure, problems may arise. In this 
section, we discuss a second class of artifacts, namely net-
work artifacts. The presented artifacts cannot be discrim-
inated in flow data and affect the flatness of brute-force 
traffic, effectively impairing compromise detection. For 
a comprehensive overview and discussion on the pre-
sented artifacts, we refer the reader to “Unveiling Flat 
Traffic on the Internet: An SSH Attack Case Study.”10

TCP Retransmissions
After SSHCure was released to the public, several users 
reported on false positive compromise detections. This 
came as a surprise, since we validated SSHCure’s detection 
performance in our campus network based on a large-scale 
validation involving almost 100 machines over a period of 
two months.4 Users started to investigate authentication 
logs of machines that were reported to be compromised, 
yet did not find any signs of compromises. To rule out the 
presence of measurement artifacts as described earlier, 
users were asked to provide us with packet traces, which 
provided us clear insights into the problem. Retransmis-
sions were affecting attacks from countries that are far 
away from the observation point, such as the Far East in 
the case of observation points in Europe.

Retransmissions are the cornerstone of reliable com-
munication channels. Despite the ever-increasing band-
widths toward end systems, TCP retransmissions occur 
at all times and feature clear diurnal patterns. In a recent 
work, we have shown that in an academic campus net-
work, retransmissions account for 1.43 and 0.97 percent 
of all packets and bytes, respectively.10 Analogously, we 
have measured 3.22 percent of all packets and 1.22 per-
cent of all bytes on a link to the “commercial Internet” 
of an academic backbone.

The problem with retransmissions and flow data is 
that flow export devices generally count packets and 
bytes at the network layer (L3), while retransmissions 
can only be discriminated at the transport layer (L4). 
As such, retransmissions cannot be discriminated from 
other packets, directly affecting the detection metric 
used by SSHCure, that is, the number of PPF. In case of 
retransmissions, spikes can be observed when analyzing 
brute-force behavior over time, as shown in Figure 5.

TCP Control Information
TCP features many mechanisms for connection probing 
and optimizing traffic flow between endpoints. Most fall 
under the umbrella of TCP control information, among 
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which are duplicate and non-piggybacked acknowledg-
ments, window updates, and keep-alive probes. Con-
trary to retransmissions, which result in additional 
packets in the network by definition, control informa-
tion often employs TCP header fields and therefore does 
not necessarily result in additional packets. However, in 
some situations, it may consume additional bandwidth.

An exemplary type of control information that affects 
the amount of network traffic exchanged between two 
endpoints is TCP’s delayed acknowledgment mechanism. 
Its goal is to slightly delay the transmission of acknowledg-
ments, such that the successful reception of multiple packets 
can be acknowledged at once. Whether additional packets/
acknowledgments are sent heavily depends on timing, mak-
ing it a dynamic mechanism that is not constantly activated. 
The work described in “Unveiling Flat Traffic on the Inter-
net: An SSH Attack Case Study”10 shows that TCP control 
information can be observed at any time of the day, in both 
academic and “commercial” networks, and between end-
points both close to and far away from the observation point.

The effects of TCP control information on 
brute-force traffic flatness should be clear. The unpre-
dictable nature of some sorts of control information 
(for example, due to timing) makes assumptions on 
traffic flatness to fail. The measurements presented in 
“Unveiling Flat Traffic on the Internet: An SSH Attack 
Case Study”10 show that approximately 30 percent of all 
TCP packets in the monitored networks carry control 
information, which clearly underlines the importance of 
considering this type of traffic in detection algorithms.

Lessons Learned
In this section, we described two network artifacts that cause 
sudden deviations in network traffic, in particular when look-
ing at the number of PPF over time. Traditionally, there is no 
way to discriminate retransmissions and control informa-
tion packets from other packets in flow data. In “Unveiling 
Flat Traffic on the Internet: An SSH Attack Case Study,”10 
however, we have shown how to overcome this problem. 
By exporting the number and size of TCP retransmissions 
and control information packets on a per-flow basis, the 
“real” number of packet and bytes can be measured. In addi-
tion, we have measured the impact of the compensation 
measures taken. For example, without any change to the 
detection algorithm, the accuracy of state-of-the-art IDSs 
improved significantly by more than 6 percentage points.

Discussion
The previous sections have shown that flow-based tech-
niques can be used to determine which hosts are com-
promised after brute-force SSH dictionary attacks. But 
can flow-based techniques also be used to detect com-
promises of other Internet services, such as web applica-
tions? To answer this question, we conducted a number 

of experiments on CMSs, since such systems are often 
vulnerable to brute-force attacks and, once hacked, may 
be misused for spam campaigns or DDoS attacks. Such 
hacked CMSs may lead to unexpected side effects, such 
as the entire IP address space of the web-hosting com-
pany being blacklisted. Hosting companies therefore 
often monitor webserver logfiles of all virtual web hosts, 
but in cases where virtual private servers (VPSs) are pro-
vided to customers, logfile analyses may be impossible. 
In such cases, flow-based techniques may be an interest-
ing alternative to detect CMS compromises.

Our experiments were conducted on the network of 
Hosting 2GO, a Dutch Top-10 web-hosting provider, 
over a period of one month in the summer of 2015. 
Roughly 2,500 hosts were monitored and more than 
400 GB of flow data analyzed. To validate our approach, 
results were compared to server logfiles, which were 
considered to represent ground truth. Similar to the 
SSH case, we started with an elementary approach based 
on attack signatures. The main lesson learned from that 
experiment was that simple signatures may provide a 
basis for detection, but the number of false positives is 
too high due to many small connections, such as traffic 
generated by web crawlers, calendar fetchers, and photo 
galleries. We therefore adapted our approach; instead 
of focusing on sharp transitions between the brute-force 
and the compromise phase (see Figure 2), we created 
per-connection histograms that provide information on 
packet payload sizes in flow data. Clustering techniques 
were subsequently applied to group attack traffic and 
benign traffic. Such histograms turned out to deliver 
good detection results, and can be seen as an alternative 
approach to overcome the problems introduced at the 
TCP level, like retransmissions and control information, 
as described earlier. Details of these experiments can be 
found in the PhD thesis that resulted from this work.6

W e believe that security researchers should focus 
more on compromise detection, instead of tradi-

tional attack detection. We should not worry too much when 
we see failed attacks, but rather be alarmed whenever we see 
successful attacks (compromises). In this article, we wanted 
to investigate whether flow-based techniques to detect com-
promises could be applied in practice. We focused on two 
cases: SSH and web applications. From our research, we 
may conclude that flow-based techniques not only work in 
lab environments, but can also work in real operational envi-
ronments. However, it is crucial that the measurement infra-
structure is calibrated and network artifacts are understood. 
Our SSH compromise analysis has revealed several artifacts 
that would not appear in lab environments, such as imprecise 
expirations and gaps. Our web-based CMS analysis learned 
that elementary attack signatures resulted in too many 
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false positives, but by replacing such signatures by histo-
grams and clustering techniques, good results were pos-
sible. Therefore, our general conclusion is that flow-based 
compromise detection is a promising technique, although 
additional research is still needed to cover more applica-
tion scenarios and to better understand all forms of arti-
facts that may occur in operational environments. 
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