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The support vector machine (SVM) classification algorithm has received increasing
attention in recent years in remote sensing for land-cover classification. However, it
is well known that the performance of the SVM is sensitive to the choice of
parameter settings. The traditional single optimized parameter SVM (SOP-SVM)
attempts to identify globally optimized parameters for multi-class land-cover classi-
fication. In this article, a novel multi-parameter SVM (MP-SVM) algorithm is
proposed for image classification. It divides the training set into several subsets,
which are subsequently combined. Based on these combinations, sub-classifiers are
constructed using their own optimum parameters, providing votes for each pixel with
which to construct the final output. The SOP-SVM and MP-SVM were tested on
three pilot study sites with very high, high, and low levels of landscape complexity
within the Sanjiang Plain – a typical inland wetland and freshwater ecosystem in
northeast China. A high overall accuracy of 82.19% with kappa coefficient (κ) of
0.80 was achieved by the MP-SVM in the very high-complexity landscape, statisti-
cally significantly different (z-value = 3.77) from the overall accuracy of 72.50% and
κ of 0.69 produced by the traditional SOP-SVM. Besides, for the moderate-complex-
ity landscape a significant increase in accuracy was achieved (z-value = 2.44), with
overall accuracy of 84.03% and κ of 0.80 compared with an overall accuracy 76.05%
and κ of 0.71 for the SOP-SVM. However, for the low-complexity landscape the
MP-SVM was not significantly different from the SOP-SVM (z-value = 0.80). Thus,
the results suggest that the MP-SVM method is promising for application to very
high and high levels of landscape complexity, differentiating complex land-cover
classes that are spectrally mixed, such as marsh, bare land, and meadow.

1. Introduction

Development of robust and accurate computer-aided image classification algorithms is a
key topic in geoscience. A support vector machine (SVM) is a supervised binary classifier
that works on the basis of statistical learning theory (Vapnik 1995, 1998; Mountrakis, Im,
and Ogole 2011). It has been applied widely in computer vision, pattern recognition,
image classification, information retrieval, and data mining. Numerous studies have
shown that the SVM can produce more accurate classification results than other para-
metric, as well as non-parametric, classifiers such as the maximum likelihood, neural
network, and decision tree classifiers (Huang, Davis, and Townshend 2002; Foody and
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Mathur 2004; Camps-Valls and Bruzzone 2005; Waske and Benediktsson 2007;
Watanachaturaporn, Arora, and Varshney 2008; Shao and Lunetta 2012). The SVM is
arguably the most popular machine learning algorithm of the last decade (Su 2009).
Training a SVM often requires appropriate kernel function and parameter settings to
ensure model accuracy and generalization capability (Friedrichs and Igel 2005). In
terms of SVM kernel choice, the Gaussian radial basis function (RBF) has been demon-
strated to be an appropriate kernel in remote-sensing image classification in comparison
with the polynomial kernel or linear kernel, due to the capacity of the former to solve
complex non-linear classification problems and recognize complex spatial patterns with-
out fitting a fixed parametric model (Zhu and Blumberg 2002). Kavzoglu and Colkesen
(2009) compared comprehensively the Gaussian kernel SVM and polynomial kernel SVM
and concluded that the former generally achieved greater accuracy and robustness with
remotely sensed data. However, one of the main disadvantages of the Gaussian kernel
SVM classifier is its sensitivity to the choice of Gaussian kernel width (γ) and regulariza-
tion parameters (C), which are data dependent and currently lack unified standards
(Ceamanos et al. 2010). Different parameter settings can give rise to variation in the
classification results, thereby influencing classification accuracy.

In order to optimize parameters γ and C, several practical methods have been
proposed, including exhaustive grid search using fivefold cross-validation (Min and Lee
2005), genetic-based (Wu et al. 2007), and particle swarm optimization (PSO) approaches
(Bazi and Melgani 2007). These parameter optimization methods attempt to identify a
single set of parameters (γ and C) for the SVM model, with successful application
especially in the non-spatial domain, with crisp description and characterization.

Most natural phenomena cannot be delineated by crisp boundaries, but are bounded by
fuzzy transitions or transition zones (Cheng and Molenaar 1999). Such continuous
characteristics bring enormous challenge to conventional ‘hard’ classification methods,
which are generally performed under the assumption that each pixel represents a single
land-cover class with no confusion or uncertainty (Ibrahim, Arora, and Ghosh 2005). The
SVM classifier also addresses the difficulties of ‘hard’ class allocation along the presumed
‘boundaries’ among different land-cover categories. The single set of optimized para-
meters (γ and C) adopted by current SVMs to identify such boundaries may be unrepre-
sentative of the real world. Moreover, boundaries between neighbouring classes of land
covers often overlap. Thus, an integrated decision for boundary partition should be based
on fuzzy membership association or consensus theory (Pan et al. 2010).

Since dynamic regions are often difficult to assess, challenges faced within remote-
sensing classification involve insufficiency and inequality for different types of sample
datasets, which also affect the results of parameters γ and C. A single optimized parameter
SVM (SOP-SVM), therefore, does not satisfy certain application requirements due to the
potential diversity and complexity of real landscapes.

To integrate multiple optimized SVM parameters (γ and C), rather than focusing on
single parameter optimization, classifier ensembles provide an alternative methodology of
machine learning and provide new ideas to solve compound optimization problems. By
combining diverse individual classifiers, the resulting classifiers have been demonstrated
to be superior to individual classifiers (Friedl, Brodley, and Strahler 1999; Ghimire,
Rogan, and Miller 2010). Classifier ensemble technology falls generally into two cate-
gories. Multiple classifier systems are based on the manipulation of training sample sets,
including Boosting (Freund et al. 2003) and Bagging (Breiman 1996), Random Forests
(Rodriguez-Galiano et al. 2012), etc. This ensemble generates combinations of classifiers
by weighted or random resampling of their representative training datasets with
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replacement. However, there is hardly any improvement in classification accuracy with
SVMs via this methodology, since the construction of SVMs is relatively insensitive to
sample distribution (Chan, Chengquan, and DeFries 2001; Pal 2008). In contrast, an
alternative classifier ensemble is derived from decision fusion through the output of
multiple classifiers, achieving optimal results with SVMs. For instance, Ceamanos et al.
(2010) decomposed hyperspectral remote-sensing imagery according to the similarity of
spectral bands, with the corresponding components being applied on the SVM fusion
ensemble. The results demonstrate that SVM ensembles have the potential to outperform a
standard SVM. Ban and Jacob (2013) explored three object-based SVMs with fusion
ensembles using multitemporal SAR and multispectral optical data. The results indicated
that integration of multiple SVMs generally outperforms a single SVM in terms of
classification accuracy. However, none of the aforementioned SVM ensembles consider
parameter selection and optimization, which are crucial for the SVM performance in land-
cover classification.

In this article, unlike the usual procedure of having the same parameter setting for
each of the binary classifiers in SOP-SVM, we propose a novel multi-parameter SVM
(MP-SVM) which optimizes the parameters of each binary classifier that form the
classifier ensemble. The proposed MP-SVM solves the complex overlap issues among
class boundaries and depicts intrinsic differences within complex landscapes.

2. Methods

2.1. Overview of SVMs

Assume a set of linearly separable training data (x1, y1), (x2, y2), …, (xn, yn), where xi is a
multidimension sample vector and yi ∈ + 1,−1 is the class label. The fundamental principle
of the SVM is to construct an optimal decision hyperplane to find a maximum separating
margin between disparate datasets (Vapnik 1995, 1998). Specifically, the binary classifi-
cation problems associated to the SVM algorithm can be described as a quadratic
programming (QP) problem:

minw;b; εJðw; b; εÞ ¼ wj jj j2=2
� �

þ C
Xn

i¼1

εi; (1)

subject to yi½ðwðxiT � xjÞ þ b� � 1� εi; i ¼ 1; . . . ; :l: (2)

Mathematically, w represents the normal vector of the linear hyperplane while b refers to
the offset of the hyperplane in the coordinate system. Data points closest to the decision
hyperplane are called support vectors that often conflict across several classifications.
Therefore, support vectors are relevant directly to the construction of an optimized
separating hyperplane. C and εi refer to the penalty value and the slack variable, respec-
tively. Both are essential to the treatment of errors to the extent that some support vectors
incorrectly fall within the margins or into other categories.

A real classification problem is normally not guaranteed to be linearly separable
among different classes. Kernel functions are, therefore, used to map the input vectors
into high-dimensional Hilbert space based on Mercer theory (Ban and Jacob 2013). One
of the most commonly used kernel functions and its kernel matrix is the RBF:
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k xi; xj
� � ¼ exp �γkxi � xj

��2� �
; γ> 0: (3)

The dot product xi
T · xj in Equation (1) is substituted by k(xi, xj) in high-dimensional

space, thus enabling the classification to be linearly separable. Using the Lagrange
multiplier method, the QP problem can be solved by conversion into the dual problem:

minW αð Þ ¼ �
Xn
i¼1

αi þ 1

2

Xn
i¼1

Xn
j¼1

αiαjyiyjk xi; xj
� �

; (4)

constrained to
Xn
i¼1

αiyi ¼ 0; αi 2 0;C½ �: (5)

The regularization parameter (or penalty value) C controls the trade-off between mini-
mizing the errors between the SVM and training dataset and maximizing the margin,
while γ is inversely proportional to the Gaussian kernel width that determines the
computing window of the RBF kernel matrix (Ghoggali, Melgani, and Bazi 2009).
These both largely determine the boundary complexity of the SVM, which reflects the
final classification performance in real applications.

2.2. MP-SVM

For a RBF kernel SVM classifier, the penalty value C and kernel parameter γ need to be
predetermined via the training data. A standard SVM may achieve high accuracy by
setting a single set of parameters (C and γ) in certain applications (e.g. bankruptcy
prediction (Min and Lee 2005)). However, in the remote-sensing domain, this is not the
case. The first and foremost difficulty arises from the complexity of land-cover classes
(along the boundary) that usually overlap each other due to the similarity of spectra and
spatial features. Furthermore, training sample sizes obtained in situ often differ from class
to class, which may produce biased estimation for SVM parameters. Therefore, this article
proposes a multi-parameter SVM (MP-SVM) to resolve these issues.

First, the MP-SVM divides the whole training set (n land-cover classes) into n (n − 1)/
2 subsets composed of any two land-cover classes, e.g. marsh and meadow, forest and
meadow, etc. The distinction among these subsets guarantees the diversity of training
samples for proper construction of SVM models. The parameters of each SVM model are
then optimized. Parameter optimization methods can be divided into two categories:
exhaustive grid search (Min and Lee 2005) and heuristic parameter search (Wu et al.
2007), like the PSO and GA algorithms. Both methods are evaluated based on a cross-
validation procedure to prevent overfitting and enhance the generalization capability.
Although both PSO and GA have shown their efficiency in optimizing the parameters
of the SVM (Lin et al. 2008), these methods select the best parameter combinations from
the populations evolved from generation to generation with very large sample-size
requirements (Wu and Wang 2009). Also, the PSO and GA algorithms require the
optimization of some additional parameters such as the population number, the probability
of mutation, and crossover, which increases the computational time and complexity
(Lorena and De Carvalho 2008). In this research, the grid search approach is used due
to its straightforwardness and robustness for parameter optimization (Hsu and Lin 2002).
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The grid search methodology attempts to identify the pair of parameters (C and γ) with
optimum cross-validation accuracy through trial and error. Since performing a complete
grid search is often time-consuming, a coarse grid is used in advance to rapidly demarcate
a certain region (i.e. grid); a further, finer grid search is then conducted within that area
(Hsu, Chang, and Lin 2010).

Based on all the SVMs with optimized parameters searched by grid, the entire image is
classified into binary images which serve as rule images for final voting. For each pixel, all
the rule images participate in the decision based on simple majority voting: an intuitive
statistical approach considering all the rule images as votes and selecting the majority voted
class (Wang et al. 2009). Classification results are based on the ‘winner-takes-all’ rule
(Waske and Benediktsson 2007) – to decide each pixel’s land-cover class by calculating its
maximum vote. Essentially, the absolute maximum distance to the hyperplane that has
achieved the largest vote determines the decision result of the final classification
map. Figure 1 depicts a detailed flowchart for multi-parameter SVM (MP-SVM)
classification.

3. Study area and experimental data

The Sanjiang Plain, encompassing two wetlands of international importance, Honghe
National Nature Reserve (HNNR) and Sanjiang National Nature Reserve (SNNR), and
located in northeastern China, was chosen as a case study area (Zhang et al. 2009). Owing
to excessive agricultural exploitation, the Sanjiang Plain has been developed into a hybrid
ecosystem integrated by marsh, meadow, forest, and cultivated farmland. For comparison
purposes, three pilot study sites (S1, S2, and S3) with distinct levels of landscape
complexity and different numbers of land-cover categories were intentionally selected
for testing the proposed classification algorithm (Figure 2). S1 is a mixture of pristine
natural environment and human reclamation distributed throughout the area, with very
high spatial heterogeneity and complexity, while S2 includes the ecologically protected
HNNR and its surrounding region, with high landscape complexity. In addition, as a

Figure 1. Flowchart of the multi-parameter SVM in remote-sensing classification.
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benchmark of this experiment, S3 has low landscape complexity – primarily land
reclaimed by humans.

One scene of cloud-free Landsat 5 TM imagery (WRS-2, path 113, row 27) acquired
on 19 September 2010, composed of six multispectral bands (TM 1–5 and 7) with a
spatial resolution of 30 m, was used in this study. The satellite sensor image was geo-
rectified to the Transverse Mercator projection based on a topographic map at a scale of
1:50 000 using 70 evenly distributed ground control points. A third-order polynomial
model was used for rectification implementing the nearest-neighbour algorithm with a
pixel size of 30 m × 30 m for all bands. The root mean square error was less than 0.5
pixels (15 m).

A land-cover classification system was established based on three considerations: (1)
the national standard land-cover classification system in China; (2) the characteristics of
the vegetation distribution in the study area; and (3) the moderate spatial and spectral
resolution of multispectral instruments such as the TM sensor and the spectral differences
among diverse land-cover categories. S1 contains eight land-cover/use categories: paddy
field (PF), dry farmland (DF), marsh (MH), bare soil (BS), meadow (MD), forest (FT),
waterbody (WB), and floodplain (FP); S2 includes six land-cover/use categories that are
identical to first six of S1; S3 comprises four land-cover/use categories: PF, DF, BS, and
FT. Throughout the three pilot study areas, training and validation sample plots were
collected during field surveys in September 2009 and September 2010 using a hand-held
GPS. The number of training and validation samples in each category relies on its overall
proportion to avoid over-prediction of rare classes. The mutual distance between sample
plots was at least 200 m, to mitigate potential spatial autocorrelation. All sample plots in
the three pilot study areas were divided randomly into 60% training and 40% testing
sample sets, with 800 samples in total in S1, 595 in S2, and 320 in S3.

A wetland can be identified by three basic factors: soil, vegetation, and water regime
(hydrology) (Janisch and Molstad 2004). Thus, the classification of land-cover categories of

Figure 2. Three pilot study sites in Sanjiang Plain, Northeast China, S1, S2, and S3, were selected
with different levels of landscape complexity.
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the study area (a wetland-distributed area) should consider the vegetation and water
information provided by the remote-sensing imagery. The normalized difference vegetation
index (NDVI), an index sensitive to leaf area index, vegetation biomass, and photosynthetic
active radiation (Gao et al. 2000; Ivanova et al. 2007; Wessels et al. 2006), and tasselled cap
transformation, which provides information for brightness, greenness, as well as wetness
(Crist and Cicone 1984), were thus employed. Therefore, 10 bands were included (Landsat
TM 1–5 and 7, NDVI, Brightness, Greenness, and Wetness) in this study.

4. Results

4.1. Model construction

For validation of the method, the LIBSVM V3.16 software based on the MATLAB
R2010b programming platform was implemented (Chang and Lin 2011). Both the SOP-
SVM and MP-SVM models were applied to the three study sites. In each case, 10 bands
were used as input features for the SVM model and the objective variables of the model
are eight, six, and four land-cover types, respectively.

The fivefold cross-validation of the SOP-SVM RBF kernel with C ∈ [2–8, 28] and γ ∈
[2–10, 210] was implemented (i.e. with a wide parameter search space, which can lead to
high validation accuracy). Table 1 presents the optimized parameters C and γ together
with the cross-validation accuracy for the traditional SOP-SVM model. The grid search
approach identified the global optimized parameters with a cross-validation accuracy
higher than 86% in all three pilot study sites.

Table 1. Optimized parameters chosen by grid search with fivefold cross-validation accuracy in
SOP-SVM and average results for each land-cover type in MP-SVM.

SOP-SVM MP-SVM

Grid search Grid search

Study site Global parameter
Land-cover

types
No. of

subsets with
Average
(C, γ)

Average CV
accuracy (%)

S1 Chosen (C, γ)
(20, 2–4)

Paddy field 7 (20, 2–4) 90.12
Dry farmland 7 (22, 2–7) 88.47
Marsh 7 (27, 2–2) 84.49
Bare soil 7 (23, 2–5) 88.62

Cross-validation
accuracy: 90.1%

Meadow 7 (22, 2–5) 85.37
Forest 7 (24, 2–4) 91.30
Waterbody 7 (23, 2–5) 95.60
Floodplain 7 (25, 2–3) 87.25

S2 Chosen (C, γ)
(23, 2–7)

Paddy field 5 (23, 2–4) 91.56
Dry farmland 5 (21, 2–2) 90.34
Marsh 5 (25, 2–7) 84.21

Cross-validation
accuracy: 86.7%

Bare soil 5 (24, 2–8) 85.28
Meadow 5 (23, 2–6) 82.75
Forest 5 (22, 2–4) 90.28

S3 Chosen (C, γ)
(22, 2–2)

Paddy field 3 (22, 2–5) 90.27
Dry farmland 3 (23, 2–5) 88.26

Cross-validation
accuracy: 90.3%

Bare soil 3 (21, 2–2) 84.49
Forest 3 (22, 2–4) 89.18
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In S1, 28 subsets were created based on the combination of any two categories, both
of which are treated individually to form the MP-SVM model. The optimized parameters
of these subsets were obtained by the grid search technique with fivefold cross-validation.
The procedure was iteratively repeated in S2 with 15 subsets and in S3 with six subsets.
Detailed parameters (C and γ) for each land-cover type, as well as the corresponding
average cross-validation accuracies, are summarized in Table 1. Each SVM binary
classifier was trained with two land-cover types, with the optimized parameters allowing
the entire images to be classified into two individual classes. Thus, 28, 15, and six rule
images were obtained in the three study sites and considered as contributors for the final
classification outputs.

4.2. Classification results

The classification results of the MP-SVM and traditional SOP-SVM in S1, S2, and S3
were evaluated using the testing data, which comprise 40% of each original sample set.
Figure 3(a) shows the original remote-sensing image (Landsat TM bands 4, 3, 2) with the
very complex landscape in S1. The land-cover classification results of SOP-SVM and
MP-SVM are illustrated in Figures 3(b) and (c), respectively. The complex landscape in
S2 is shown in Figure 4(a), with the SOP-SVM and MP-SVM classification results shown
in Figures 4(b) and (c). For comparison, a landscape with low complexity was also tested
using the study site S3 (Figure 5(a)), with similar results for the SOP-SVM and MP-SVM
classification outputs (Figures 5(b) and (c)). The corresponding confusion matrices for the
three experiments are listed in Tables 2–4. Generally, the overall accuracy and kappa
coefficient (κ) of the MP-SVM (82.19% and 0.80) are higher than that of SOP-SVM
(72.50% and 0.69) in S1. Similar results were achieved in S2 using MP-SVM (84.03%
and 0.80), with higher overall accuracy and κ than SOP-SVM (76.05% and 0.71), while
for the land-cover classification with low landscape complexity the MP-SVM overall
accuracy and κ were increased by only 2.35% and 0.03, respectively (Table 4).

Figure 3. The land-cover classification results in S1 with very high landscape complexity: (a)
original Landsat TM bands 4, 3, 2 based on (b) single optimized parameter SVM and (c) multi-
parameter SVM.
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To evaluate the effectiveness and robustness of the proposed MP-SVM, the model was
implemented 100 times in each study site for comparison with the traditional SOP-SVM.
On each occasion the model stratified and randomly split the sample sets into 60%
training samples and 40% validation samples. Kappa z-tests and the corresponding p-
values for pairwise comparisons are shown in Table 5, and box plots are shown in
Figure 6, demonstrating that the increases in classification accuracy in both very high-
and high-complexity settings are statistically significant, with z-values 3.77 and 2.44 (p-
values 0.0002 and 0.0147), respectively, both greater than 1.96 at the 95% confidence
level. The increase in κ in the low-complexity landscape is not statistically significant,

Figure 4. The land-cover classification results in S2 with high landscape complexity: (a) original
Landsat TM bands 4, 3, 2 based on (b) single optimized parameter SVM and (c) multi-parameter
SVM.

Figure 5. The land-cover classification results in S3 with low landscape complexity: (a) original
Landsat TM bands 4, 3, 2 based on (b) single optimized parameter SVM and (c) multi-parameter
SVM.
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Table 2. Confusion matrices for the single optimized parameter SVM (SOP-SVM) and multi-
parameter SVM (MP-SVM) for eight land-cover classifiers with very high landscape complexity,
including overall accuracy, kappa coefficient, producer’s accuracy (PA), and user’s accuracy (UA).
Numbers shown in bold font are correct classifications.

Classifier Class name PF DF MH BS MD FT WB FP UA (%)

SOP-SVM Paddy field (PF) 28 0 2 2 0 0 1 1 82.35
Dry farmland (DF) 0 34 0 3 3 2 0 0 80.95
Marsh (MH) 1 2 22 4 5 1 1 1 59.46
Bare soil (BS) 2 2 5 31 4 2 1 2 63.27
Meadow (MD) 1 3 4 3 26 2 0 2 63.41
Forest (FT) 1 1 3 1 3 31 0 0 77.50
Waterbody (WB) 0 0 2 2 2 0 33 1 82.50
Floodplain (FP) 2 0 2 1 2 1 2 27 72.97
PA (%) 80 80.95 55 65.96 57.78 79.49 86.84 79.41

Overall accuracy = 72.50%, kappa coefficient = 0.69

MP-SVM Paddy field (PF) 30 0 1 1 0 0 1 0 90.91
Dry farmland (DF) 2 36 1 1 1 0 0 0 87.80
Marsh (MH) 0 1 31 2 2 1 1 2 77.50
Bare soil (BS) 1 2 4 38 3 2 0 2 73.08
Meadow (MD) 0 1 2 3 33 2 0 1 78.57
Forest (FT) 2 0 0 1 3 32 0 0 84.21
Waterbody (WB) 0 0 0 0 1 1 35 1 92.11
Floodplain (FP) 0 2 1 1 2 1 1 28 77.78
PA (%) 85.71 85.71 77.50 80.85 73.33 82.05 92.11 82.35

Overall accuracy = 82.19%, kappa coefficient = 0.80

Table 3. Confusion matrices for the single optimized parameter SVM (SOP-SVM) and multi-
parameter SVM (MP-SVM) for six land-cover classifiers with high landscape complexity, including
overall accuracy, kappa coefficient, producer’s accuracy (PA), and user’s accuracy (UA). Numbers
shown in bold font are correct classifications.

Classifiers Class name PF DF MH BS MD FT UA (%)

SOP-SVM Paddy field (PF) 41 1 3 1 0 0 89.13
Dry farmland (DF) 2 38 1 2 3 0 82.61
Marsh (MH) 3 3 20 4 4 2 55.56
Bare soil (BS) 1 1 5 29 4 1 70.73
Meadow (MD) 0 2 3 3 26 2 72.22
Forest (FT) 0 0 1 3 2 27 81.82
PA (%) 87.23 84.44 60.61 60.61 66.67 84.38

Overall accuracy = 76.05%, kappa coefficient = 0.71

MP-SVM Paddy field (PF) 42 0 2 0 0 0 95.45
Dry farmland (DF) 3 40 0 2 2 0 85.11
Marsh (MH) 2 0 26 3 3 1 74.29
Bare soil (BS) 0 3 2 34 2 1 80.95
Meadow (MD) 0 2 3 2 30 2 76.92
Forest (FT) 0 0 0 1 2 28 90.32
PA (%) 89.36 88.89 78.79 80.95 76.92 87.50

Overall accuracy = 84.03%, kappa coefficient = 0.80

International Journal of Remote Sensing 1899



Table 4. Confusion matrices for the single optimized parameter SVM (SOP-SVM) and multi-
parameter SVM (MP-SVM) for four land-cover classifiers with low landscape complexity, including
overall accuracy, kappa coefficient, producer’s accuracy (PA), and user’s accuracy (UA). Numbers
shown in bold font are correct classifications.

Classifiers Class name PF DF BS FT UA (%)

SOP-SVM Paddy field (PF) 25 3 2 1 80.65
Dry farmland (DF) 3 24 4 2 72.73
Bare soil (BS) 3 2 23 4 71.88
Forest (FT) 1 2 2 27 84.38
PA (%) 78.13 77.42 74.19 79.41

Overall accuracy = 77.34%, kappa coefficient = 0.70

MP-SVM Paddy field (PF) 26 2 3 2 78.79
Dry farmland (DF) 2 25 2 3 78.13
Bare soil (BS) 1 3 23 1 82.14
Forest (FT) 3 1 3 28 80
PA (%) 81.25 80.65 74.19 82.35

Overall accuracy = 79.69%, kappa coefficient = 0.73

Table 5. The z-statistic used to compare the performance of the two classifiers for three different
landscape complexities, with kappa z-test and corresponding p-value in the fourth column.
Significantly different accuracies with confidence of 95% (z-value > 1.96) are indicated by *.

Kappa (standard deviation)

Kappa z-test (p-value)Landscape complexity SOP-SVM MP-SVM

Very high 0.69 (0.022) 0.80 (0.019) 3.77* (0.0002)
High 0.71 (0.028) 0.80 (0.024) 2.44* (0.0147)
Low 0.70 (0.027) 0.73 (0.026) 0.80 (0.4237)

Figure 6. Statistic comparison between the SOP-SVM classifiers and the MP-SVM classifiers under
three different landscape complexities with kappa coefficient, z-test, and corresponding p-value.
Significantly different accuracies with confidence of 95% (z-value > 1.96) are indicated by *.
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with z-value 0.80 and p-value 0.4237, less than 1.96 at the 95% confidence level
(Congalton 1991). Notably, significant increases in classification accuracy were obtained
for three land-cover types (i.e. marsh, bare soil, and meadow).

Regarding the result for marsh, the MP-SVM achieved a much higher accuracy than
the SOP-SVM for very high and high landscape complexity. According to Tables 2 and 3,
the producer’s accuracy (PA) for marsh increased markedly (by 22.50% and 18.18%,
respectively) and the user’s accuracy (UA) increased (by 18.04% and 18.73%, respec-
tively. As illustrated in Figures 3 and 4, marshes are successfully identified in Figures 3(b)
and 4(b), whereas those in Figures 3(a) and 4(a) exhibit some conspicuous errors where
large areas of marsh were falsely identified as BS. In regard to BS, a considerable increase
in classification accuracy was also achieved by the MP-SVM in comparison with the
SOP-SVM (Tables 2 and 3). The PA for BS increased by 14.89% and 20.34% and the UA
showed a moderate increase (by 9.81% and 10.22%), respectively. Figures 3 and 4 show
that BS was largely confused with marsh and meadow in the SOP-SVM classification, this
being rectified in the MP-SVM classification. The classification PA of meadow was
significantly increased by the MP-SVM (15.55% and 10.25%) and moderately for UA
(15.14% and 4.70%), respectively. As demonstrated in Figures 3 and 4, BS was mainly
misclassified as meadow by SOP-SVM.

With respect to PF and DF, the classification accuracy of both SOP-SVM and MP-
SVM was relatively high, up to an average of 87.52% and 85%, respectively. This was the
case mainly because the spectrum feature was distinctive due to the easily distinguishable
high-level greenness and inherent regular texture. Note, from field investigations and
interviews with local farmers in Sanjiang Plain, we know that the harvest seasons of major
crops including rice, corn, and soybean are either at the end of September or the beginning
of October, and this ruled out the possibility of any confusion between DF and BS. In
regard to forest, the MP-SVM showed no obvious increase in classification accuracy in
comparison with the SOP-SVM. Nevertheless, a slight increase in both PA and UA for
forest was provided by MP-SVM (by 2.56% and 6.71%, respectively, in a very high-
complexity landscape (Table 2) and by 3.12% and 8.5%, respectively, in a complex
landscape (Table 3)).

Along with the increase in landscape complexity, two further land-cover types were
present in very high-complexity landscape, namely, WB and FP (Figure 3 and Table 2).
The inclusion of these two land-cover types complicates visual interpretation of the map.
The results show that the MP-SVM provides an average increase in accuracy of 4.11%
and 7.21%, respectively, for these two extra classes in comparison with the SOP-SVM
(Table 2).

However, individual comparisons in the low-complexity landscape are not significant.
Specifically, PA for forest increased by 2.94% compared with the MP-SVM, but with a
4.38% decrease in UA. Classes PF, DF, and BS all lie within a 5% increase in accuracy for
the MP-SVM compared with the SOP-SVM (Figure 5 and Table 4).

5. Discussion

The results show the effect of landscape complexity on the difference between the MP-
SVM and SOP-SVM in terms of classification accuracy. Low landscape complexity
showed no statistically significant increase in accuracy. Greater landscape complexity
led to a statistically significant increase in accuracy between the models (Figure 6).
Essentially, the MP-SVM is designed to construct multiple heterogeneous SVM classifier
ensembles considering different pairs of land-cover types and to estimate the best
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parameters of each sub-SVM classifier in a fully automatic way. Given an increasing
number of landscape types and landscape patterns, it is difficult to generalize using the
traditional SOP-SVM with single parameter sets. The advantage of multiple parameter
sets is evident in the membership association of the class boundaries and voting results.
The MP-SVM, to some extent, can represent the intrinsic differences within complex
landscapes.

Originally, SVMs were defined as binary classifiers and their use for multi-class
classification is more problematic, with strategies that reduce the multi-class problem to
a set of binary problems typically adopted (Foody and Mathur 2004). To better solve such
multi-class discriminant problems in remote-sensing classification, the SOP-SVM pair-
wisely searches the global optimized parameters (C and γ), whose convenience and
effectiveness have been discussed by Foody and Mathur (2004), since only a single set
of parameters needs to be defined. However, it considers only the overall performance for
multiple classes, attempting to identify the most balanced and global optimized para-
meters while paying little attention to the individual differences between diverse land-
cover categories. However, the MP-SVM divides the entire training set into subsets
containing either of two different classes. Each subset is trained to construct its own
SVM model respectively, which considers fully the differences between and properties of
the land-cover types. In addition, the MP-SVM maintains versatility and straightforward
operating capability, since it is a fully automatic classifier for all kinds of land-cover
classification without any expert knowledge requirement.

For some complex ecosystems (e.g. marsh) it is often not a trivial task to acquire
sufficient and representative training samples, due to accessibility difficulties (Lu and
Weng 2007). The SOP-SVM achieves low classification accuracies (average only
57.81%) in the classification of marsh since it is almost impossible to find globally
optimized parameters for model construction. In contrast, the MP-SVM can recognize
this kind of class by searching all the SVMs’ optimized parameters, leading to higher
classification accuracies (average 78.15%) as shown in Tables 2 and 3. It should be noted
that the differentiation between natural wetlands (marsh) and BS, as well as meadow, is an
ongoing challenge due to the extraordinary similarity between their spectral features. The
classification accuracies of marsh are still relatively low in the MP-SVM (average
78.15%), although a 20.34% increase was achieved compared with the traditional SOP-
SVM. Hence, it is necessary to incorporate textural information as well as ancillary
geographical data like terrain slope and aspect to further increase the classification
accuracies of marsh (wetlands) in future research (Camps-Valls et al. 2008; Na et al.
2009). Moreover, BS often overlaps with other classes because it lacks a distinguishing
characteristic, and as such may be misclassified as meadow or DF. Nevertheless, the MP-
SVM can analyse any subtle distinctions, and increase the classification accuracy of both
BS and meadow accordingly. Thus, the MP-SVM is promising generally for land-cover
classification.

One benefit of the proposed MP-SVM approach is the use of ensemble classifiers. It
combines all the rule images and votes to produce a final class allocation through majority
voting. Such an ensemble technique can overcome the instability of individual classifiers
and take full advantage of the variety of different single classifiers to achieve robust
results. Although the accuracy of each classifier in the ensemble may decrease due to
individual errors, the use of many classifiers, as well as the final result of voting,
eliminates the misclassifications, increasing classification accuracy. The results in this
research are consistent with previous studies conducted by Waske and Benediktsson
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(2007) and Pal (2008), and further demonstrate that decision fusion is crucial to effective
land-cover classification (Waske and Benediktsson 2007).

6. Conclusions

Traditional SOP-SVM involves major uncertainties and inconsistencies in the distribution
of data along highly dynamic natural boundaries by using single SVM models with
subjective and (only) globally optimal SVM parameters. The main goal of this paper
was to propose and demonstrate a novel MP-SVM by comparing it to a traditional SOP-
SVM method for remote-sensing land-cover classification. The classification accuracy and
robustness were tested at three different study sites using remotely sensed data with
distinct levels of landscape complexity.

The MP-SVM was found to be a promising tool for land-cover classification, espe-
cially given very high levels of landscape complexity. The higher the landscape complex-
ity and the larger the number of land-cover categories, the greater the increase in accuracy
of the MP-SVM in comparison with the SOP-SVM.

For future research, a series of indices should be developed to quantify landscape
complexity, such as examining the correlation between landscape complexity and the
classification accuracy of the MP-SVM. In addition, the suitability and robustness of the
MP-SVM for regional or even global remote-sensing classification requires further
investigation.
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