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Abstract. Digital Enhanced Cordless Telecommunications (DECT) is
a standard for connecting cordless telephones to a fixed telecommunica-
tions network over a short range. The cryptographic algorithms used in
DECT are not publicly available. In this paper we reveal one of the two
algorithms used by DECT, the DECT Standard Authentication Algo-
rithm (DSAA). We give a very detailed security analysis of the DSAA
including some very effective attacks on the building blocks used for
DSAA as well as a common implementation error that can practically
lead to a total break of DECT security. We also present a low cost at-
tack on the DECT protocol, which allows an attacker to impersonate a
base station and therefore listen to and reroute all phone calls made by
a handset.

1 Introduction

Digital Enhanced Cordless Telecommunications (DECT) is a standard for
connecting cordless telephones to a fixed telecommunications network. It was
standardized in 1992 by the CEPT, a predecessor of the ETSI (European
Telecommunications Standards Institute) and is the de-facto standard for cord-
less telephony in Europe today. For authentication and privacy, two proprietary
algorithms are used: The DECT Standard Authentication Algorithm (DSAA)
and the DECT Standard Cipher (DSC). These algorithms have thus far only
been available under a Non-Disclosure Agreement from the ETSI and have not
been subject to academic scrutiny. Recently, the DSAA algorithm was reverse
engineered by the authors of this paper to develop an open-source driver for a
PCMCIA DECT card.

Our contribution: This paper gives the first public description of the DSAA as
well as cryptanalytic results on its components. Furthermore we show two types
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of flaws that result in practical attacks against DECT implementations. One is
a protocol flaw in the authentication mechanism, the other is a combination of
a common implementation error combined with a brittle protocol deisgn.

The paper is structured as follows: Section 2 describes the authentication
methods used in DECT. Section 3 details how easily a DECT base station can
be impersonated in practice and outlines the consequences. Section 4 describes
the DECT Standard Authentication Algorithm and explains how a weak PRNG
can lead to a total break of DECT security. Section 5 presents the first public
analysis of the DSAA. We conclude the paper in Section 6.

1.1 Notation and Conventions

We use bold font for variable names in algorithm descriptions as well as for
input and output parameters. Hexadecimal constants are denoted with their
least significant byte first in a typewriter font. For example, if all bits of
the variable b are 0 except for a single bit, we write 0100 if b[0] = 1, 0200 if
b[1] = 1, 0001 if b[8] = 1 and 0080 if b[15] = 1. Function names are typeset
with a sans-serif font.

Function names written in capital letters like A11 are functions that can be
found in the public DECT standard [5]. Conversely function names written in
lowercase letters like step1 have been introduced by the authors of this paper.
Functions always have a return value and never modify their arguments.

To access a bit of an array, the [·] notation is used. For example foo[0] denotes
the first bit of the array foo. If more than a single bit, for example a byte should
be extracted, the [· . . . ·] notation is used. For example foo[0 . . . 7] extracts the
first 8 bits in foo, which is the least significant byte in foo.

To assign a value in pseudocode, the ← operator is used. Whenever the oper-
ators + and ∗ are used in pseudocode, they denote addition and multiplication
modulo 256. For example foo[0 . . . 7] ← bar[0 . . . 7] ∗ barn[0 . . . 7] multiplies the
first byte in bar with the first byte in barn, reduces this value modulo 256 and
stores the result in the first byte of foo.

If a bit or byte pattern is repeated, the (·)· notation can be used. For example
instead of writing aabbaabbaabb, we can write (aabb)3. For concatenating two
values, the || operator is used. For example aa||bb results in aabb.

1.2 Additional Terminology

In the following we will use the terminology of the DECT standards [5,4]. To
make this paper self-contained, we briefly explain the most important terms:
A FT is fixed terminal, also called base station. A PT is a portable terminal,
e.g. a telephone or handset. The Radio Fixed Party Identity (RFPI) is a 40-bit
identifier of an FT. A PT is identified by a International Portable User Identity
(IPUI), a value similar to the RFPI of variable length. In challenge/response
authentications, responses are named RES1 or RES2. The value received during
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the authentication is called SRES1 or SRES2, and the value calcluated by the
station (expected as a response) is called XRES1 or XRES2.

2 Authentication in DECT

The public standard describing the security features of DECT specifies four dif-
ferent authentication processes A11, A12, A21 and A22. These four processes are
used for both authentication and key derivation and make use of an authentica-
tion algorithm A. DECT equipment conforming to the GAP standard [4] must
support the DSAA to achieve vendor interoperability.

The algorithms A11 and A12 are used during the authentication of a PT.
They are also used to derive a key for the DSC and to generate keying material
during the initial pairing of a PT with a FT. The algorithms A21 and A22 are
only used during the authentication of a FT. Furthermore the processes A11,
A12, A21 and A22 are used to pair a PT with a FT.

2.1 Keys Used in DECT

In most cases of residential DECT usage, the user buys a DECT FT, and one
or more DECT PTs. The first step then is to pair the PTs with the FT, unless
they have been bought as a bundle and the pairing was already completed by the
manufacturer. This procedure is called key allocation in the DECT standards
and described in more detail in Section 2.5. After this process, every DECT PT
shares a 128 bit secret key with the FT, called the UAK.

In all scenarios we have seen so far, the UAK was the only key used to derive
any other keys, but the DECT standard allows two alternative options:

– The UAK is used together with a UPI, a short 16-32 bit secret, manually
entered by the user of the PT. The UAK und UPI are then used to derive a
key.

– No UAK is used. Instead a short 16-32 bit secret called AC is entered by the
user, which forms the key. The DECT standard suggests that the AC should
only be used, if a short term coupling between PT and FT is required.

For the rest of this paper we will mainly focus on the first case, where the
only the UAK is used.

2.2 Authentication of a PT and Derivation of the DSC Key

When a PT needs to authenticate itself against a FT, the procedures A11 and
A12 are used. The FT generates two random 64 bit values RS and RAND F and
sends them to the PT.

The PT uses the A11 algorithm, which takes a 128 bit key UAK and a 64
bit value RS as input, and generates a 128 bit output KS, which is used as an
intermediate key. The PT then uses the A12 algorithm, which takes KS and



Attacks on the DECT Authentication Mechanisms 51

RAND F as input and produces two outputs: a 32 bit response called SRES1
and a 64 bit key DCK, which can be used for the DSC. SRES1 then is sent to
the FT.

The same computation is done on the FT too, except here the first output of
A12 is called XRES1 instead of SRES1. The FT receives the value SRES1 from
the PT and compares it with his own value XRES1. If both are equal, the PT
is authenticated.

2.3 Authentication of a FT

When a FT needs to authenticate itself against a PT, a similar procedure is
used.

First the PT generates a 64 bit value RAND P and sends it to a FT. Then the
FT generates a 64 bit value RS and uses A21 to compute a 128 bit intermediate
key KS from UAK and RS. Now A22 is used to compute a 32 bit response SRES2
from KS and RAND P. A22 only generates SRES2 and no key for the DSC. The
FT sends SRES2 and KS to the PT.

After having received KS, the PT can do the same computations. Here the
output of A22 is called XRES2. The PT now compares XRES2 with the received
value SRES2. If both are equal, the FT is authenticated.

This protocol might seem odd at the first look. As far as we know, the design
goal was to build a protocol where a PT can be used in a roaming scenario,
similar to GSM. Here, the home network provider could hand over a couple of
(RS, KS) pairs to the partner network, which can then allow a PT to operate
without having to know the UAK.

2.4 Mutual Authentication

The standard specifies different methods of mutual authentication:

– A direct method, which simply consists of executing A11 and A12 to authen-
ticate the PT first followed by A21 and A22 to authenticate the FT.

– Indirect methods which involve a one-sided authentication of the PT together
with a cipher key derivation that is used for data confidentiality.

However, even though the indirect methods are recommended for all applications
except for local loop installations (see the reference configurations in Appendix
F.2 of [5]), they are inherently flawed as they do not provide a mutual authen-
tication at all. This indirect method is reminiscent of the case of GSM [1]. A
derived cipher key does not necessarily have to be used, a FT may simply send
a message indicating that it does not support encryption – it is an optional fea-
ture in the GAP standard. Moreover, even if encryption is enabled, being able
to transmit encrypted messages under a derived key does not proof possession
of this key: The FT may just replay authentication challenges, subsequently
replaying encrypted messages that were previously recorded.
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2.5 Key Allocation

Most DECT systems allow an automatic pairing process. To initiate pairing the
user switches both a PT and a FT to a dedicated pairing mode and enters the
same PIN number on both devices1. This step needs to be repeated with all
DECT PT devices. Each PT performs a handshake with the FT and a mutual
authentication using the DSAA algorithm and the PIN as a shared secret is
performed. During this handshake, three 64-bit random numbers are generated.
However only a single 64 bit random number RS sent by the FT is used together
with the PIN to generate the 128 bit UAK. For a 4 digit PIN number, there are
only 277.288 possible values for the UAK. If a flawed random number generator is
used on the FT for which an attacker can predict the subset of random numbers
generated during key allocation, the number of possibe UAKs shrinks accord-
ingly. This can be exploited by sniffing challenge-response pairs ((RAND F, RS),
SRES1) at any time after key allocation that can be used as 32-bit filters. In
practice we did indeed find weak PRNGs implemented in the firmware of several
base stations – across a variety of vendors – in one specific case only providing
24 bits of entropy for the 64 bit value RS. This leads to a very practical and
devastating attack against DECT PTs using vulnerable DECT stacks.

3 Impersonating a Base Station

As described in the previous section, in most cases authentication of the FT is
optional. This makes DECT telephones vulnerable to a very simple, yet effective
and practical attack: An attacker impersonates a DECT FT by spoofing its RFPI
and faking the authentication of the PT. This is done by sending out random
values RAND F and RS for which any response SRES1 is accepted. Subsequently
the impersonating FT simply rejects any attempts to do cipher mode switching.
This technique is significantly simpler to implement than a protocol reflection
attack and has been verified to work in practice by us.

We implemented this attack in practice by modifying the driver of a PCMCIA
DECT card. The drivers and firmware for this card do not support the DECT
Standard Cipher. Furthermore, the frames are completely generated in soft-
ware which allows us to easily spoof the RFPI of another base station. Upon
initialization of the card, the RFPI was read from the card and written to a
structure in memory. We patched the driver such that the RFPI field in this
structure was overwritten with an assumed RFPI value of our choosing directly
after the original value was written there. Then we modified the routine com-
paring the RES values returned by the PT with the computed XRES values.
We verified that we were indeed broadcasting a fake RFPI with a USRP [3]
and a DECT sniffer that was written for the GNURadio framework by the
authors.

1 Some DECT FTs are shipped with a fixed default PIN number – usually specified
in the manual – which user has to enter as given on the DECT PT.
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For our lab setup, we used an ordinary consumer DECT handset paired
to a consumer base station. We set the modified driver of our PCMCIA card to
broadcast the RFPI of this base station and added the IPUI of the phone to the
database of registered handsets of the card. The device key was set to an arbi-
trary value. After jamming the DECT over-the-air communication for a short
time, the handset switched to our faked base station with a probability of about
50%. From this point on, every call made by the phone was handled by our
PCMCIA hard, and we where completely able to trace all communications and
reroute all calls. No warning or error message was displayed on the telephone.
Both the handset and the base station where purchased in 2008, which shows
that even current DECT phones do not authenticate base stations and also do
not force encrypted communication.

This attack shows that it is possible to intercept, record and reroute DECT
phonecalls with equipment as expensive as a wireless LAN card, making attacks
on DECT as cheap as on wireless LANs. Subsequently we also succeeded in
converting this card to a passive sniffing device with a custom-written Linux
and firmware2.

4 The DECT Standard Authentication Algorithm

The algorithms A11, A12, A21, and A22 can be seen as wrappers around an
algorithm, we call DSAA. The algorithm DSAA accepts an 128 bit key and a 64
bit random as input and produces a 128 bit output. This output is now modified
as follows:

– A11 just returns the whole output of DSAA, without any further modifica-
tion.

– A21 behaves similar to A11, but here, every second bit of the output is
inverted, starting with the first bit of the output. For example if the first
byte of output of DSAA is ca, then the first byte of output of A21 is 60.

– A22 just returns the last 4 bytes of output of DSAA as RES.
– A12 is similar to A22, except here, the middle 8 bytes of DSAA are returned

too, as DCK.

5 Security Analysis of the DECT Authentication

DSAA is surprisingly insecure. The middle 64 bits of the output of DSAA only
depend on the middle 64 bits of the key. This allows trivial attacks against
DSAA, which allow the recovery of all 128 secret key bits with an effort in the
magnitude of about 264 evaluations of DSAA. Even if attacks against the DSAA
cannot improved past this bound, keep in mind the entropy problems of the
random number generators that we found and described in Section 2.5.

2 This software is available at http://www.dedected.org

http://www.dedected.org
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Table 1. The DSAA S-Box (sbox)

0 1 2 3 4 5 6 7 8 9 a b c d e f

00 b0 68 6f f6 7d e8 16 85 39 7c 7f de 43 f0 59 a9

10 fb 80 32 ae 5f 25 8c f5 94 6b d8 ea 88 98 c2 29

20 cf 3a 50 96 1c 08 95 f4 82 37 0a 56 2c ff 4f c4

30 60 a5 83 21 30 f8 f3 28 fa 93 49 34 42 78 bf fc

40 61 c6 f1 a7 1a 53 03 4d 86 d3 04 87 7e 8f a0 b7

50 31 b3 e7 0e 2f cc 69 c3 c0 d9 c8 13 dc 8b 01 52

60 c1 48 ef af 73 dd 5c 2e 19 91 df 22 d5 3d 0d a3

70 58 81 3e fd 62 44 24 2d b6 8d 5a 05 17 be 27 54

80 5d 9d d6 ad 6c ed 64 ce f2 72 3f d4 46 a4 10 a2

90 3b 89 97 4c 6e 74 99 e4 e3 bb ee 70 00 bd 65 20

a0 0f 7a e9 9e 9b c7 b5 63 e6 aa e1 8a c5 07 06 1e

b0 5e 1d 35 38 77 14 11 e2 b9 84 18 9f 2a cb da f7

c0 a6 b2 66 7b b1 9c 6d 6a f9 fe ca c9 a8 41 bc 79

d0 db b8 67 ba ac 36 ab 92 4b d7 e5 9a 76 cd 15 1f

e0 4e 4a 57 71 1b 55 09 51 33 0c b4 8e 2b e0 d0 5b

f0 47 75 45 40 02 d1 3c ec 23 eb 0b d2 a1 90 26 12

Besides that, the security of DSAA mainly relies on the security of the cassable
block cipher. Our analysis of cassable showed that cassable is surprisinglyweak too.

5.1 The Cassable Block Cipher

The DSAA can be interpreted as a cascade of four very similarly constructed
block ciphers. We shall call this family of block ciphers cassable. A member of
this family is a substitution-linear network parametrized by two parameters that
only slightly change the key scheduling. The block cipher uses 6 rounds, each of
the rounds performing of a key addition, applying a bricklayer of S-Boxes and a
mixing step in sequence. The last round is not followed by a final key addition,
so that the last round is completely invertible, besides the key addition. This
reduces the effective number of rounds to 5.

In the following we will describe how the cassable block ciphers are con-
structed. The functions σi : GF (2)64 → GF (2)64 with 1 ≤ i ≤ 4 denoting
bit permutations that are used to derive the round keys from the cipher key.
The function λi : (Z/256Z)8 → (Z/256Z)8 denotes the mixing functions used in
the block ciphers, the function γ : GF (2)64 → GF (2)64 is a bricklayer transform
that is defined as:

γ(A||B|| · · · ||A) = ρ(A)||ρ(B)|| · · · ||ρ(H)

with A, B, . . . , H ∈ GF (2)8 and ρ : GF (2)8 → GF (2)8 denoting the application
of the invertible S-Box that is given in Table 1. The linear transforms perform
butterfly-style mixing:
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λ1 : (A,. . . ,H) �→(2A+E, 2B+F, 2C+G, 2D+H, 3E+A, 3F+B, 3G+C, 3H+D)
λ2 : (A,. . . ,H) �→(2A+C, 2B+D, 3C+A, 3D+B, 2E+G, 2F+H, 3G+E, 3H+F )
λ3 : (A,. . . ,H) �→(2A+B, 3B+A, 2C+D, 3D+C, 2E+F, 3F+E, 2G+H, 3H+G)

The round keys Ki ∈ GF (2)64 with 1 ≤ i ≤ 6 are iteratively derived from the
cipher key K0 ∈ GF (2)64 using the following parametrized function σ(m,l):

σ(m,l) : (k0, . . . , k63) �→ (km, k(m+l) mod 64, k(m+2l) mod 64, . . . , k(m+63l) mod 64)

by simply applying a σ(m,l) to the cipher key i times:

Ki = σi
(l,m)(K)

The individual bytes of the key Ki can be accessed by Ki,A to Ki,H .
To be able to compose the round function, we identify the elements of the

vector space GF (2)8 with the elements of the ring Z/256Z using the canonical
embedding. Given a fixed σ, the round function fr for round r with 1 ≤ r ≤ 6
that transforms a cipher key K and a state X into the state of the next round
then looks as follows:

fr : (X, K) �→ λ(((r−1) mod 3)+1)(X ⊕ σr(K))

The Mixing Layer. To diffuse local changes in the state bits widely, the func-
tions λi with 1 ≤ i ≤ 3 (lambda1, lambda2, and lambda3 in the pseudo-code) are
used. These form a butterfly network. At first look, it seems that full diffusion
is achieved after the third round, because every byte of the state depends on
every other byte of the input at this point. However, we made an interesting
observation: The λi functions only multiply the inputs with either the constant
2 or 3. This means that for the components of the output vector formed as

c = (a ∗ 2 + b) mod 256

the lowestmost bit of c will be equal to the lowestmost bit of b and not depend
on a at all. This observation will be used in Section 5.2.

The S-Box. The DSAA S-Box has a tendency towards flipping the lowest bit.
If a random input is chosen, the lowest bit of the output will equal to the lowest
bit of the input with a probability of 120

256 . For up to three rounds we were able
to find exploitable linear approximations depending on the lowest bits of the
input bytes, the lowest bits of the state and various bits of the key. Although
this sounds promising, the linear and differential properties of the S-Box are
optimal. Interpolating the S-Box over GF (28) yields dense polynomials of degree
254, interpolation over GF (2) results in equations of maximum degree.

The Key Scheduling. The key bit permutation used in the key scheduling is
not optimal for the cassable ciphers used in DSAA. Although the bit permutation
could have a maximum order of 64, a lower order was observed for the cassable
ciphers instantiated, namely 8 and 16.
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5.2 A Practical Attack on Cassable

The individual block ciphers used within the DSAA can be fully broken using
differential cryptanalysis [2] with only a very small number of chosen plaintexts.
Assume that we have an input m = mA||mB ||mC ||mD||mE ||mF ||mG||mH with
mi ∈ {0, 1}8 and a second input m′ = m′

A||m′
B||m′

C ||m′
D||m′

E ||m′
F ||m′

G||m′
H

where every second byte is the same, i. e. mB = m′
B, mD = m′

D, mF = m′
F ,

and mH = m′
H . Now both inputs are encrypted. Let s = si,A|| . . . ||si,H and

s′ = s′i,A|| . . . ||s′i,H be the states after i rounds of cassable. After the first round,
s1,B = s′1,B, s1,D = s′1,D, s1,F = s′1,F , and s1,H = s′1,H holds. This equality still
holds after the second round. After the third round, the equality is destroyed,
but s3,A ≡ s′3,A mod 2, s3,C ≡ s′3,C mod 2, s3,E ≡ s′3,E , and s3,G ≡ s′3,G mod 2
holds. The key addition in round four preserves this property, with only the
fourth application of the S-Box ρ4,j destroying it.

An attacker can use this to recover the secret key of the cipher. Assume the
attacker is able to encrypt two such messages m and m′ with the same secret
key and see the output. He can invert the lambda3 and gamma steps of the last
round, because they are not key-dependent. To recover the value of s3,A ⊕K4,A

and s3,E⊕K4,E, he only needs 32 round key bits of round key 6 which are added
to s5,A, s5,C , s5,E , and s5,G, and 16 round key bits of round key 5, which are
added to s4,A and s4,E. Due to overlaps in the round key bits these are only
38 different bits for cassable46,35, 36 different bits for cassable25,47, 42 different
bits for cassable60,27, and 40 different bits for cassable55,39. After the attacker
has recovered s3,A ⊕K4,A, s3,E ⊕K4,E, s′3,A ⊕K4,A and s′3,E ⊕K4,A, he checks
whether s3,A ⊕ K4,A = s′3,A ⊕ K4,A mod 2 and s3,E ⊕ K4,E = s′3,E ⊕ K4,E

mod 2 holds. If at least one of the conditions is not satisfied, he can be sure
that his guess for the round key bits was wrong. Checking all possible values for
these round key bits will eliminate about 3

4 of the key space with computational
costs of about 2k invocations of cassable, if there are k different key bits for the
required round key parts of round key 5 and 6.

After having eliminated 75% of the key space, an attacker can repeat this with
another pair on the remaining key space and eliminate 75% of the remaining
key space again. Iterating this procedure with a total of 15 pairs, only about 234

possible keys are expected to remain. These can then be checked using exhaustive
search. The total workload amounts to 2k + 1

42k + 1
162k + 1

642k + . . . + 234 block
cipher invocations which is bounded by 1.5834 · 2k for k ≥ 36. For cassable25,47,
this would be about 236.7.

An efficient implementation needs only negligible memory when every possible
value of the k round key bits is enumerated and every combination is checked
against all available message pairs. Only the combinations which pass their tests
against all available pairs are saved, which should be about 2k−30.

If the attacker can choose the input for cassable, he can choose 16 different
inputs, where every second byte is set to an arbitrary constant. If the attacker
can only observe random inputs, he can expect to find a pair in whcih every sec-
ond byte is the same after 216 random inputs. After 4 · 216 inputs, the expected
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number of pairs is about 4 · 4 = 16, which is sufficient for the attack. If not
enough pairs are available to the attacker, the attack is still possible, however
with increased computational effort and memory usage.

5.3 A Known-Plaintext Attack on Three Rounds Using a Single
Plaintext/Ciphertext Pair

Three rounds of the cassable block cipher can be attacked using a single plain-
text/ciphertext pair. This is of relevance as attacking B4 or B2 allows us to
invert the preceding ciphers B1 and B3.

Assume a plaintext m = mA||mB||mC ||mD||mE ||mF ||mG||mH encrypted
over three rounds. The output after the third round then is S3 = s3,A, . . . , s3,H .
As in the previous attack, we can invert the diffusion layer λ3 and the S-Box
layer ρ without knowing any key bits, obtaining (z0, . . . , z7) := S2 ⊕ K3 with
zi ∈ GF (2)8 for 0 ≤ i < 8. At this point the diffusion is not yet complete. For
instance, the following relation holds for z0:

z0 = ρ((2 · ρ(m0 ⊕K1,A) + ρ(m4 ⊕K1,E))⊕K2,A) +
ρ((2 · ρ(m2 ⊕K1,C) + ρ(m6 ⊕K1,G))⊕K2,C)⊕K3,A

Due to overlaps in the key bits, for the block cipher B1 the value z0 then only
depends on 41 key bits, for B2 on 36 key bits, for B3 on 44 key bits and for B4

on 46 key bits.
We can use the equations for the zi as a filter which discard 255

256 of the searched
key bit subspace.

In the following, we give an example of how the attacks works for B2: Starting
with z0, we expect 228 key bit combinations after the filtering step. Interestingly,
the key bits involved in z0 for B2 are the same as for z2, so we can use this byte
to filter down to about 220 combinations. Another filtering step using both z4

and z6 will just cost us an additional 4 key bits, meaning we can filter about
224 combinations down to about 28. All of these filtering steps can be chained
without storing intermediate results in memory, making the memory complexity
negligible.

For the remaining combinations we can exhaustively search through the re-
maining 24 key bits, giving a 232 work factor. The overall cost of the attack
is dominated by the first filtering step however, which means the attack costs
about 236 cassable invocations.

For B4, the key bit permutations work against our favor: After filtering with
z0 we expect 238 key bit combinations to remain. Subsequently we filter with
z2, which causes another 6 key bits to be involved (z4 and z6 would involve
10 more key bits). This yields 236 key bit combinations. Subsequently filter-
ing with z4 involves 8 more key bits, causing the number of combinations to
stay at 236. Finally we can filter with z6, which adds 4 more key bits, bring-
ing the number of combinations down to 232. As there are no more unused key
bits left, we can test all of the 232 key candidates. The total cost for this attack is
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again dominated by the first filtering step which requires 246 cassable invocations.
Again the attack can be completed using negligible memory by chaining the
filtering conditions.

The attacks on B2 and B4 can be used to attack a reduced version of the
DSAA where B1 and B3 are 6 round versions of cassable and B2 and B4 are
reduced to three rounds. An attack on this reduced version costs approximately
244 invocations of the reduced DSAA since approximately three 6 round cassable
invocations are used per DSAA operation.

6 Conclusion

We have shown the first public description of the DSAA algorithm, which clearly
shows that the algorithm only provides at most 64 bit of symmetric security.
An analysis using only the official documents published by ETSI would not have
revealed these information.

We could also show that the building blocks used for the DSAA have some
serious design flaws, which might allow attacks with a complexity below 264.
Especially the block cipher used in DSAA seems to be weak and can be completely
broken using differential cryptanalysis.

Although 64 bit of symmetric security might be sufficient to hold off un-
motivated attackers, most of the currently deployed DECT systems might be
much easier attackable, because encryption and an authentication of the base
station is not always required. This allows an attacker spending about 30$ for
a PCMCIA card to intercept most DECT phone calls and totally breach the
security architecture of DECT.

Currently, we see two possible countermeasures. First, all DECT installations
should be upgraded to require mutual authentication and encryption of all phone
calls. This should only be seen as a temporary fix until a better solution is
available.

A possible long term solution would be an upgrade of the DECT security archi-
tecture to use public well analyzed methods and algorithms for key exchange and
traffic encryption and integrity protection. A possible alternative could be IEEE
802.11 based Voice over IP phone systems, where networks can be encrypted
using WPA2. These systems are currently more costly than DECT installations
and still more difficult to configure than DECT phones for a novice user, but
encrypt and protect all calls and signaling informations using AES-CCMP and
allow a variety of different protocols for the key exchange. However it is open
to debate whether these systems can provide a viable alternative to DECT sys-
tems because of their different properties in term of power consumption, radio
spectrum and quality of service provided.

We would like to thank all the people who supported and helped us
with this paper, especially those, whose names are not mentioned in this
document.
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A Pseudocode for the DSAA

The DSAA (see Algorithm 1) uses four different 64 bit block cipher like functions
as building blocks. DSAA takes a random value rand ∈ {0, 1}64 and a key
key ∈ {0, 1}128 as input and splits the 128 bit key into two parts of 64 bit.
The first part of the key are the 64 middle bits of the key. DSAA calls the step1
function with the random value and the first part of the key to produce the first
64 bits of output, which only depend on the middle 64 bits of the key. Then the
output of step1 is used to produce the second 64 bits of output using the step2
function and the second half of the key. Please note that the second half of the
output only depends on the first half of the output and the second part of the
key.

Algorithm 1. DSAA (rand ∈ {0, 1}64, key ∈ {0, 1}128)
1: t← step1(rev(rand), rev(key[32 . . . 95]))
2: b← step2(t, rev(key[96 . . . 127])||rev(key[0 . . . 31]))
3: return rev(b[32 . . . 63])||rev(t)||rev(b[0 . . . 31]))

We will now have a closer look at the functions step1 and step2. Both are very
similar and each one uses two block cipher like functions as building blocks.

Algorithm 2. step1(rand ∈ {0, 1}64,key ∈ {0, 1}64)
1: k = cassable46,35

rand(key)
2: return cassable25,47

k (rand)

step1 takes a 64 bit key key and a 64 bit random value rand as input and
uses two block ciphers to produce its output. The key is used as a key for
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the first cipher and the random value as a plaintext. The value rand then is
used as an input to the second block cipher and is encrypted with the output of
the first block cipher as the key.

Algorithm 3. cassablestart,stepkey (m ∈ {0, 1}64)
1: t← key
2: s←m
3: for i = 0 to 1 do
4: t← sigma(start, step, t)
5: s← lambda1(gamma(s⊕ t))
6: t← sigma(start, step, t)
7: s← lambda2(gamma(s⊕ t))
8: t← sigma(start, step, t)
9: s← lambda3(gamma(s⊕ t))

10: end for
11: return s

To describe the block ciphers, we introduce a family of block ciphers we call
cassable. These block ciphers differ only in their key schedule, where round keys
are always bit permutations of the input key. All bit permutations used by
cassable can be described by two numbers start and step.

The block cipher cassable itself is a substitution linear network. To mix the
round key into the state, a simple XOR is used. Additionally, Z256-linear mixing
is used for diffusion and an 8× 8 S-Box for non-linearity of the round function.

Algorithm 4. step2(rand ∈ {0, 1}64,key ∈ {0, 1}64)
1: k = cassable60,27

rand(key)
2: return cassable55,39

k (rand)

step2 is similar to step1, just two other bit permutations are used. The function
rev simply reverses the order of the bytes of its input.

Algorithm 5. rev(in ∈ {0, 1}i∗8)
Ensure: Byte-reverses the input in

for j = 0 to i− 1 do
k← i− j − 1
out[j ∗ 8 . . . j ∗ 8 + 7]← in[k ∗ 8 . . . k ∗ 8 + 7]

end for
return out
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Algorithm 6. lambda1(in ∈ {0, 1}64)
1: out[0 . . . 7]← in[32 . . . 39] + 2 ∗ in[0 . . . 7]
2: out[32 . . . 39]← in[0 . . . 7] + 3 ∗ in[32 . . . 39]
3: out[8 . . . 15]← in[40 . . . 47] + 2 ∗ in[8 . . . 15]
4: out[40 . . . 47]← in[8 . . . 15] + 3 ∗ in[40 . . . 47]
5: out[16 . . . 23]← in[48 . . . 55] + 2 ∗ in[16 . . . 23]
6: out[48 . . . 55]← in[16 . . . 23] + 3 ∗ in[48 . . . 55]
7: out[24 . . . 31]← in[56 . . . 63] + 2 ∗ in[24 . . . 31]
8: out[56 . . . 63]← in[24 . . . 31] + 3 ∗ in[56 . . . 63]
9: return out

Algorithm 7. lambda2(in ∈ {0, 1}64)
1: out[0 . . . 7]← in[16 . . . 23] + 2 ∗ in[0 . . . 7]
2: out[16 . . . 23]← in[0 . . . 7] + 3 ∗ in[16 . . . 23]
3: out[8 . . . 15]← in[24 . . . 31] + 2 ∗ in[8 . . . 15]
4: out[24 . . . 31]← in[8 . . . 15] + 3 ∗ in[24 . . . 31]
5: out[32 . . . 39]← in[48 . . . 55] + 2 ∗ in[32 . . . 39]
6: out[48 . . . 55]← in[32 . . . 39] + 3 ∗ in[48 . . . 55]
7: out[40 . . . 47]← in[56 . . . 63] + 2 ∗ in[40 . . . 47]
8: out[56 . . . 63]← in[40 . . . 47] + 3 ∗ in[56 . . . 63]
9: return out

Algorithm 8. lambda3(in ∈ {0, 1}64)
1: out[0 . . . 7]← in[8 . . . 15] + 2 ∗ in[0 . . . 7]
2: out[8 . . . 15]← in[0 . . . 7] + 3 ∗ in[8 . . . 15]
3: out[16 . . . 23]← in[24 . . . 31] + 2 ∗ in[16 . . . 23]
4: out[24 . . . 31]← in[16 . . . 23] + 3 ∗ in[24 . . . 31]
5: out[32 . . . 39]← in[40 . . . 47] + 2 ∗ in[32 . . . 39]
6: out[40 . . . 47]← in[32 . . . 39] + 3 ∗ in[40 . . . 47]
7: out[48 . . . 55]← in[56 . . . 63] + 2 ∗ in[48 . . . 55]
8: out[56 . . . 63]← in[48 . . . 55] + 3 ∗ in[56 . . . 63]
9: return out

Algorithm 9. sigma(start, step, in ∈ {0, 1}64)
1: out← (00)8

2: for i = 0 to 63 do
3: out[start]← in[i]
4: start← (start + step) mod 64
5: end for
6: return out

Algorithm 10. gamma(in ∈ {0, 1}64)
1: for i = 0 to 7 do
2: out[i ∗ 8 . . . i ∗ 8 + 7]← sbox[in[i ∗ 8 . . . i ∗ 8 + 7]]
3: end for
4: return out
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B Test Vectors for DSAA

To make implementation of these algorithms easier, we decided to pro-
vide some test vectors. Let us assume that A11 is called with the key
K=ffff9124ffff9124ffff9124ffff9124 and the RS=0000000000000000 as in
[5] Annex K. These values will be passed directly to the DSAA algorithm. Now,
step1(0000000000000000, 2491ffff2491ffff) will be called. While processing
the input, the internal variables will be updated according to Table 2. The final
result after step2(ca41f5f250ea57d0, 2491ffff2491ffff) has been calculated
is 93638b457afd40fa585feb6030d572a2, which is the UAK. The internal states
of step2 can be found in Table 3.

Table 2. Trace of step1(0000000000000000, 2491ffff2491ffff)

algorithm after line i t s

cassable46,35 5 0 0000000000000000 549b363670244848

cassable46,35 7 0 0000000000000000 51d3084936beeaae

cassable46,35 9 0 0000000000000000 20e145b2c0816ec6

cassable46,35 5 1 0000000000000000 4431b3d7c1217a7c

cassable46,35 7 1 0000000000000000 6cdcc25bbe8bc07f

cassable46,35 9 1 0000000000000000 2037df9f8856a0a2

cassable25,47 5 0 77fe578089a40531 cce76e5f83f77b4c

cassable25,47 7 0 f5b720768a8a8817 c69973d6388f3cf7

cassable25,47 9 0 552023ae0791ddf4 1cd81853ba428a2c

cassable25,47 5 1 8856a0a22037df9f ca643e2238dc1d1d

cassable25,47 7 1 89a4053177fe5780 82fa43b0725dc387

cassable25,47 9 1 8a8a8817f5b72076 ca41f5f250ea57d0

Table 3. Trace of step2(ca41f5f250ea57d0, 2491ffff2491ffff)

algorithm after line i t s

cassable60,27 5 0 66f9d1c1c6524b4b 39ad15f5f68ab424

cassable60,27 7 0 5bd0d66bf152e4c0 59e160ed3bb1189c

cassable60,27 9 0 d5ebead34f434050 0bc33d7c093128b8

cassable60,27 5 1 d2c057d860e3dd72 3f538f008a2b52f9

cassable60,27 7 1 c6d2e3614c5953cb ab826a7542ffa5c7

cassable60,27 9 1 f158c640d3f27cc3 757782ad02592b4e

cassable55,39 5 0 b0ec588246ea9577 40be7413fe173981

cassable55,39 7 0 df212e1b790245e6 087978cbb37813af

cassable55,39 9 0 e671b9d44296ee08 d97b8d2dbae583b9

cassable55,39 5 1 2a0f207383ec575d 1340ba1df9d60b52

cassable55,39 7 1 d022e4e81dd712ee f7af7e62a1fa5ce6

cassable55,39 9 1 04b3db206f4e7d03 08d87f9aef21c939
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C Example of a Weak PRNG Used in DECT Stacks

Algorithm 11 is a typical example for the quality of pseudo random-number
generators (PRNGs) used in DECT stacks. Although it is supposed to provide
64-bit of randomness per nonce output, it only manages to use 24 bits of entropy.
Moreover, the total number of distinct 64-bit rand values of this PRNG is only
222 since outputs collide.

Algorithm 11. vendor A PRNG(xorval ∈ {0, 1}8, counter ∈ {0, 1}16)
1: for i = 0 to 7 do
2: out[(i ∗ 8)) . . . (i ∗ 8 + 7)]← �counter/2i� ⊕ xorval
3: end for
4: return out

The values produced by this particular PRNG can be easily stored in ASCII
representation in a file just 68 Megabytes big. This means that to identify vul-
nerable implementations, an attacker or evaluator simply has to search for an
intercepted rand in this text file.
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D Structure of the cassable Block Cipher

∗1 ∗2 ∗3

λ1

λ2

λ3

λ1

λ2

λ3

round key 1

round key 2

round key 3

round key 4

round key 5

round key 6

s0,A s0,B s0,C s0,D s0,E s0,F s0,G s0,H

⊕K1,A ⊕K1,B ⊕K1,C ⊕K1,D ⊕K1,E ⊕K1,F ⊕K1,G ⊕K1,H

ρ1,A ρ1,B ρ1,C ρ1,D ρ1,E ρ1,F ρ1,G ρ1,H

s1,A s1,B s1,C s1,D s1,E s1,F s1,G s1,H

⊕K2,A ⊕K2,B ⊕K2,C ⊕K2,D ⊕K2,E ⊕K2,F ⊕K2,G ⊕K2,H

ρ2,A ρ2,B ρ2,C ρ2,D ρ2,E ρ2,F ρ2,G ρ2,H

s2,A s2,B s2,C s2,D s2,E s2,F s2,G s2,H

⊕K3,A ⊕K3,B ⊕K3,C ⊕K3,D ⊕K3,E ⊕K3,F ⊕K3,G ⊕K3,H

ρ3,A ρ3,B ρ3,C ρ3,D ρ3,E ρ3,F ρ3,G ρ3,H

s3,A s3,B s3,C s3,D s3,E s3,F s3,G s3,H

⊕K4,A ⊕K4,B ⊕K4,C ⊕K4,D ⊕K4,E ⊕K4,F ⊕K4,G ⊕K4,H

ρ4,A ρ4,B ρ4,C ρ4,D ρ4,E ρ4,F ρ4,G ρ4,H

s4,A s4,B s4,C s4,D s4,E s4,F s4,G s4,H

⊕K5,A ⊕K5,B ⊕K5,C ⊕K5,D ⊕K5,E ⊕K5,F ⊕K5,G ⊕K5,H

ρ5,A ρ5,B ρ5,C ρ5,D ρ5,E ρ5,F ρ5,G ρ5,H

s5,A s5,B s5,C s5,D s5,E s5,F s5,G s5,H

⊕K6,A ⊕K6,B ⊕K6,C ⊕K6,D ⊕K6,E ⊕K6,F ⊕K6,G ⊕K6,H

ρ6,A ρ6,B ρ6,C ρ6,D ρ6,E ρ6,F ρ6,G ρ6,H

s6,A s6,B s6,C s6,D s6,E s6,F s6,G s6,H
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