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Abstract—Particle Filter (PF) is a popular sequential Monte
Carlo method to deal with non-linear non-Gaussian filtering
problems. However, it suffers from the so-called curse of di-
mensionality in the sense that the required number of particle
(needed for a reasonable performance) grows exponentially with
the dimension of the system. One of the techniques found in the
literature to tackle this is to split the high-dimensional state in
to several lower dimensional (sub)spaces and run a particle filter
on each subspace, the so-called multiple particle filter (MPF).
It is also well-known from the literature that a good proposal
density can help to improve the performance of a particle filter.
In this article, we propose a new particle filter consisting of
two stages. The first stage derives a suitable proposal density
that incorporates the information from the measurements. In
the second stage a PF is employed with the proposal density
obtained in the first stage. Through a simulated example we
show that in high-dimensional systems, the proposed two-stage
particle filter performs better than the MPF with much fewer
number of particles.

Keywords: high-dimensional systems, particle filter, optimal

proposal

I. INTRODUCTION

Particle filter (PF) [1] is now a popular and well-established

sequential Monte Carlo method to deal with nonlinear systems

with possibly non-Gaussian errors. It is, however, also well

known that PF has difficulty coping with high-dimensional

state space systems. In [2], for example, an approximate upper

bound for the computational complexity for the PF in high

dimension is given and the authors conclude afterwards that

the PF does not avoid the curse of dimensionality. In [3],

the authors consider the number of so-called good samples
in the state space representation. Their conclusion is that

propagating these good samples in the prediction phase and

maintaining them as good samples becomes problematic in

high-dimensional scenarios. Also, in general, PF has the

tendency that after a few time steps, only one particle has the

unity weight and the rest zero (often referred to as the sample
impoverishment problem). The authors in [4] conclude that

to avoid this problem the required number of particles grows

exponentially with the dimension.

Recently, many efforts have been made to find a general

solution for filtering in high-dimension. The block scheme is

an important attempt to achieve a fair accuracy of estimation

in high dimension while the computation complexity is still

tolerable. For instance, the multiple particle filter (MPF) [5],

[6] divides the state space into several subspaces and then

runs one particle filter in each low-dimensional space. Another

approach to avoid sample impoverishment is to optimise the

importance or the proposal density used in the particle filter.

The authors in [7] suggest the use of an optimal proposal

density that minimizes the variance of the particle weights and

thereby increasing the effective sample size of the particle rep-

resentation. In fact, it is argued in [8] that the aforementioned

optimal proposal density does postpone the weight degeneracy,

though cannot avoid it completely. However, obtaining the

optimal proposal is not always possible. In [9], the authors

used approximated optimal proposal to show its effectiveness.

Another similar approach is the adaptive importance sampling

(AIS) technique. With AIS one obtains the particles from the

desired posterior distribution through a few iterative steps, us-

ing an improved importance density at each iteration. Several

such AIS techniques are reviewed in [10].

In this work, we propose a novel two-stage particle filter

where the first stage is used to determine the proposal density

using the knowledge from the measurements. On one hand, the

new method can be thought of as an attempt to find the optimal

proposal density, but completely differently from that of [9].

On the other hand, it is similar to the AIS with two iteration

steps. However, the final proposal density is derived in a very

different manner than that mentioned in [10]. In the AIS, a

PF is run at every iteration and they are combined to come up

with the final proposal. In our method, the first stage does not

use a PF. It decouples the different components of the state

vector and uses the measurements to find the best particle-

component along every dimension-index and uses them to

obtain the proposal density. The numerical results show that in

high dimensional systems, the proposed filter performs better

than the MPF approach, providing more accurate estimation

using much less particles.

The rest of the paper is organised as follows. We introduce

in Section II the state space model we are going to use. In

Section III and Section IV, we review the basic ideas behind

the PF and the MPF, respectively. The main contribution of this

work, i.e., the details of the proposed two-stage particle filter

is described in Section V. Section VI contains the comparison

results for the three methods (PF, MPF and the newly proposed

filter, what we call TPF) in the context of high dimension and

based on simulated experiments. Finally, some conclusions are

drawn in Section VII.
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II. STATE-SPACE MODEL

We consider a first-order Markov dynamic system described

by the following state space model:

State: xt = F(xt−1,ut−1), (1)

Measurement: yt = G(xt,vt), t = 1, 2, · · · , T, (2)

where t denotes the discrete time, T is the length of the

time-series, ut and vt are, respectively, the process and

measurement noises and xt,yt,ut,vt ∈ R
D. Furthermore,

for the current exposition, we assume that the measurement

function G : RD → R
D satisfies the following property. For

a ≡ (a1, . . . , aD) ∈ R
D,

G(a) = (G1(a1), . . . , GD(aD)) , (3)

where Gd : R → R for d = 1, 2, . . . , D. In other words, the

measurement, yd, along the d-th dimension depends only on

the state, xd, along the same dimension. The assumption (3)

can, however, be easily relaxed. See Remark 2 at the end of

Section V-C.

Usually, the state vector is hidden and cannot be observed

directly. The main goal is to estimate the current state xt from

all the measurements, y1:t, up to the current time t. This is

given by the posterior distribution p(xt|y1:t).

III. PARTICLE FILTER

A particle filter is a sequential Monte Carlo method to

approximate the joint posterior p(x0:t|y1:t), recursively in

time t. The desired posterior p(xt|y1:t) is then obtained by

marginalizing the joint posterior. The approximation is done

by representing the density p(x0:t|y1:t) by a set of weighted

particles: {xi
0:t, w

i
t}Np

i=1. More precisely ([11]),

p(x0:t|y1:t) ≈
Np∑
i=1

wi
t δ(x0:t − xi

0:t), (4)

where xi
0:t denotes the i-th particle, wi

t is its associated weight,

Np is the number of particles, δ(·) is the Dirac delta function.

Given the representation {xi
0:t−1, w

i
t−1}Np

i=1 at time (t− 1)
and the new measurement yt, one draws xi

t from a so-

called proposal density (also known as the importance density)

q(·|xi
0:t−1,y1:t) and updates the weights as

wi
t ∝ wi

t−1

p(xi
t|xi

t−1) p(yt|xi
t)

q(xi
t|xi

0:t−1,y1:t)
(5)

where p(xi
t|xi

t−1) and p(yt|xi
t) are determined by (1) and (2),

respectively. To avoid unnecessarily carrying the particles with

very small weights, often a resampling step is added.

In practice, the importance density q(xt|xi
0:t−1,y1:t) is

often taken to be the transition density p(xt|xi
t−1). In that

case the weight update equation (5) simplifies to

wi
t ∝ wi

t−1p(yt|xi
t). (6)

The optimal proposal density [7] that minimizes the variance

of the weights is given by q(xt|xi
0:t−1,y1:t) = p(xt|xi

t−1,yt).
However, it is usually difficult to obtain.

Though the PF performs quite well for general nonlinear

non-Gaussian problems, the performance degrades rapidly as

the dimension of the system increases. The MPF, which we

describe in the next section, is an attempt to overcome this

problem in high dimension.

IV. MULTIPLE PARTICLE FILTER

Since the PF works well in low dimensional systems, the

multiple particle filter divides the state space into several

subspaces/blocks and apply the PF in the lower dimensional

space. It thus runs multiple PF [6]. More precisely, MPF splits

the state vector xt into M blocks, xt =
(
x
(m)
t

)M
m=1

.

In implementing the PF on the m-th block, the proposal

used to update the particles is the transition density (for that

block), p(x
(m)
t |x(m)

t−1). However, according to state equation

(1), states of the m-th block at time t may depend on the

states of the other blocks, x
(−m)
t−1 , as well. Subsequently, the

proposal is taken to be

p
(
x
(m),i
t |x(m),i

t−1

)
= p

(
xi
t|x(m),i

t−1 , x̂
(−m)
t−1

)
, (7)

where x̂
(−m)
t−1 is the estimated mean of the posterior

distribution, at time (t − 1), of all the blocks except

the m-th one, obtained from the particle representations{
x
(j),i
t−1 , w

(j),i
t−1

}Np

i=1
, j �= m.

The weight update for the m-th block is performed as

w
(m),i
t ∝ w

(m),i
t−1 p

(
yt|x(m),i

t

)
(8)

where the likelihood p(yt|x(m),i
t ) is calculated in a similar

fashion as in (7):

p
(
yt|x(m),i

t

)
= p

(
yt|x(m),i

t , x̂
(−m)
t|t−1

)
, (9)

where x̂
(−m)
t|t−1 is the estimated mean of the predicted distribu-

tion, at time t, of all the blocks except the m-th one, obtained

from the particle representations
{
x
(j),i
t , w

(j),i
t−1

}Np

i=1
, j �= m.

It is worth noting here that the MPF provides only the

marginalised filtering distribution of each block separately. In

other words, it provides p(x
(m)
t |y1:t) for each m, separately

and not the full filtering posterior p(xt|y1:t), which is the

desired quantity. In the next section, we describe our method

which does provide the full posterior.

V. THE TWO-STAGE PARTICLE FILTER

In this section we describe the proposed two-stage PF. The

first stage is used to determine a suitable proposal density

and the second stage implements a PF with the proposal

density of the first stage. To explain the intuition behind the

new proposal an alternative visualization of vectors is helpful.

Section V-A describes this alternative visualization. Then we

give, in Section V-B, the motivation and intuition behind the

proposal. The exact derivation of the new proposal is presented

in Section V-C. Section V-D contains the pseudocode for the

two-stage particle filter algorithm.



A. Alternative visualization of vector

In general, it is difficult to visualise a 4 or higher dimen-

sional vector, due to the limit of perception of human beings.

We can, however, represent a vector a ≡ (a1, . . . , aD) ∈ R
D

as a piecewise linear curve, by joining the subsequent points

(1, a1), (2, a2), . . . , (D, aD) in a 2D-plot. Here the horizontal

axis represents the element-index (or dimension-index) of the

vector and the vertical axis represents the value of the vector

elements (or equivalently, along the dimensions).

Figure 1 illustrates this alternative visualization for vectors

in R
3. The left plot (Figure 1a) provides the common visu-

alization of three 3-dimensional vectors: [1, 3, 5] (red cross),

[3, 5, 1] (blue dot) and [5, 1, 3] (magenta diamond). The same

three vectors are represented on the right plot (Figure 1b) by

the piecewise-linear curves marked with red cross, blue dots

and magenta diamonds, respectively.

(a) The common representation

1 2 3
dimension (d)

0

1

2

3

4

5

6

x d

(b) The new representation

Fig. 1: Alternative visualization of vectors. In the righthand

figure, the x-axis shows the dimension-index (d = 1, 2, 3) and

the y-axis shows the value of the vector elements (i.e., xd

along the d-th dimension).

B. Motivation for the proposal

In a PF algorithm, a weight is assigned to a particle.

If the state is multi-dimensional then the weight is for the

whole state-vector x. Unless all the components of the particle

are good, i.e., come from the higher probability area of the

posterior, the weight will be negatively affected by the bad

components. Thus, a few bad components in the predicted

vector, for example, from the transition density, will result in

low likelihood for the particle (vector). Subsequently, a low

unnormalized weight will be assigned to the particle vector

as a whole and thus to the good components as well. In fact,

as the dimension of the state vector increases, a particle will

have fewer and fewer good components and thereby reducing

the unnormalized weight (for the whole vector) to be close to

zero.

In the first stage of our proposed filter, we decouple particles

(vectors) into different dimension-indices, so that we can

choose the best along every dimension-index. In choosing the

best we make use of the measurements. We then combine

all these “best” estimates to obtain a good (preliminary)

point estimate, x̂t, of the state-vector that has incorporated

information from the measurement.

This can be best visualized with Figure 2. Suppose that the

three vectors in Figure 1a are actually the predicted particles

xi
t, i = 1, . . . , Np = 3. After representing the particles in the

alternative manner, as in Figure 1b, we remove the connecting

lines and consider each dimension-index d (d = 1, . . . , D),
separately. See Figure 2a. We consider only the vertical points

along, for example, d = 1. Suppose y1,t is the measurement

along dimension-index d = 1 (represented in the plot by the

green star). From these vertical points, we choose the “best”

in the sense of likelihood for the measurement y1,t. This is

represented by the square in Figure 2a. We do the same for all

dimension-indices d = 1, 2, . . . , D. The vector x̂t is then the

vector corresponding to the piecewise-linear curve obtained

by joining the squares by lines. The black square in Figure 2b

represents x̂t.

1 2 3
dimension (d)

0
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y d

(a) Best particle-element along each
dimension-index

(b) Best state-vector

Fig. 2: Derivation of x̂t. For every dimension-index d in

the left plot, consider the vertical points (red cross, blue

dot and magenta diamond). The one enclosed in a square

has the highest likelihood, corresponding to the measurement

indicated by green star. The piecewise-linear curve marked by

the squares on the left, represents x̂t, the black square on the

right plot.

Finally, to determine the proposal density we modify the

transition density by pushing the center of the distribution

towards the newly found estimate x̂t. We now give the exact

derivation of the proposal density.

C. Derivation of the new proposal

Suppose, at time (t−1), the weighted particle representation

is given by
{
xi
t−1, w

i
t−1

}Np

i=1
. We propagate the particles using

the state equation (1) and predict the particles at time t as

xi
t−1 ∼ p(xt|xt−1). Note that using assumption (3) on G, we

can rewrite the D-dimensional measurement equation as D
equations given by

yt,d = Gd(xt,d) + vt,d, 1 ≤ d ≤ D, (10)

where xt =
(
xt,d

)D
d=1

. We now consider

x̂t =
(
xi∗
t,d

)D
d=1

, i∗ = arg max
1≤i≤Np

p
(
yt,d|xi

t,d

)
, (11)

where the likelihood p(yt,d|xi
t,d) is corresponding to (10).



The proposal density q(·) is then obtained by pushing the

center of the prediction density corresponding to (1) towards

x̂t. More precisely, samples xi
t ∼ q(·) are generated as

follows.

(a) Draw x̃i
t ∼ p(xi

t|xi
t−1), ˜̃x

i
t ∼ N (x̂t, σ

2 I), σ > 0.

(b) Take xi
t = β ˜̃x

i
t + (1− β) x̃i

t, β ∈ [0, 1].
(12)

If the state noise is additive Gaussian with ut ∼ N (0, σ2
u I),

then the new proposal density is equivalent to

q(xt|x0:t−1,y1:t)

= N
(
βx̂t + (1− β)F(xt−1), (β

2σ2 + (1− β)2σ2
u) I

)
.

(13)

In general, the proposal density is given by the convolution

of the N (β x̂t, β
2 σ2 I)–density and the conditional density of

(1− β)xt given xt−1.

Remark 1: We note here that by pushing the center of the

transition density towards x̂t can be considered as an attempt

to incorporate the information from the measurement into the

importance density. Though this is not exactly the optimal

importance function given in [7].

Remark 2: We like to state here that the two-stage

particle filter can be applied even without the restriction (3)

on the measurement model. The proposed technique can still

be applied if, for example, the state and the measurement

vector can be divided into equal number of blocks and one

block of measurements relates (only) to one unique block

of the state vector. The block-sizes need not be the same.

So, the dimensions of the state and measurements can also

be different. We will discuss the general case in a future

exposition.

D. The pseudocode for the proposed filter

The proposed two-stage particle filter (TPF) can be de-

scribed through Algorithm 1.

Algorithm 1 Two-stage Particle Filter

Require: Initial distribution p(x0), measurement y1:T

1: Initialize
2: Draw xi

0 ∼ p(x0) and set wi
0 = 1

Np
, i = 1, . . . , Np

3: for t = 1 : T do
4: First stage (proposal density)

5: Draw xi
t ∼ p(xi

t|xi
t−1)

6: Determine x̂t according to (11) and the proposal q(·).
7: Second stage (particle filter)

8: Draw, afresh, xi
t ∼ q(·) according to (12)

9: Assign xi
t with weight wi

t according to (5)

10: Resample, if necessary

11: end for

VI. NUMERICAL RESULTS

In this section we present the simulation results for the

proposed two-stage filter (TPF). We compare the performance

of the TPF with those of the standard particle filter (SPF) and

the multiple particle filter (MPF).

We implement the filters on a system, where the state is

is linear-Gaussian and the measurement is exponential. More

precisely, the state equation (1) is given by

xt = Axt−1 + ut−1, (14)

with A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0 0 · · · 0 0.9
0.9 0.1 0 · · · 0 0

0 0.9 0.1
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0
. . . 0.9 0.1 0

0 0 · · · 0 0.9 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

and the noise ut ∼ N (0, σ2
u I). The measurement equation

(2) is given in the form (3) as

yd,t = e
xd,t
2 + vd,t, d = 1, 2, . . . , D, (16)

where vt ∼ N (0, σ2
v I). We generate a synthetic time series

with length T = 100 starting from the initial state xt = 0,

with σ2
u = 1 and σ2

v = 0.1. In our experiments we vary the

dimension of the system to be 3, 10, 30, 100, 300 and 500.

During the implementation of the particle filters we assume

the noise parameters σ2
u and σ2

v are known. We take the initial

distribution p(x0) to be N (x̂0, I) with two possible values:

x̂0 = 0 and x̂0 = 5. The idea behind considering these two

values is to check to what extent the knowledge about the

initial state affects the performance of a filter. Recall that the

true x0 = 0. So, with the first choice we assume that the truth

is approximately known whereas the second choice is far form

the truth.

For the MPF we divide the D-dimensional state-vector into

B blocks of equal sizes. For D = 3, 10 and 30 we use B = 3, 5
and 6, respectively. In the other cases we use B = 10.

For the proposed TPF we set the design parameters β = 0.2
and σ2 = 0.1.

As for the number of particles, Np, we vary them as

103, 104, 105 for the SPF, 100, 1000, 5000 for each block in

the MPF and 50, 100, 200 for the TPF.

For comparison purpose we run every algorithm (with a

particular set of parameters) R = 70 times and compare the

averages over these Monte Carlo runs.

Table I summarizes the (design) parameters used in the

implementations of different filters.

A. Comparison over the timeline

To start with, we apply the algorithms SPF, MPF with the

highest number of particles in our design (105 and 5000,

respectively) and the proposed TPF with 100 particles. For

each algorithm, we calculate the RMSE for each t = 1, . . . , T
(based on R = 70 Monte Carlo runs) as:

RMSEt =

√√√√ 1

R

R∑
r=1

D∑
d=1

(
x̂
[r]
d,t − xd,t

)2

, (17)

where x̂
[r]
d,t is the point estimate (the average of the particles

along dimension-index d) of xd,t in the r-th Monte Carlo run.
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(e) 300 dimension
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(f) 500 dimension

Fig. 3: RMSE over time. The red dashed line represents the MPF, the green solid line the SPF, and the blue dotted line the

proposed TPF. All filters use the initial distribution with mean x̂0 = 0.

TABLE I: Parameters for different PF’s

Parameters value(s)

Dimension (D) 3, 10, 30, 100, 300, 500

Initial distribution:

p(x0) = N (x̂0, I)

x̂0 = [0, · · · , 0]D, or

[5, · · · , 5]D
State noise (u) σ2

u = 1

Measurement noise (v) σ2
v = 0.1

Length time series (T ) 100

Monte Carlo run (R) 70

# Particles (Np) in SPF

(for each block) in MPF

in TPF

1× 103, 1× 104, 1× 105

1× 102, 1× 103, 5× 103

5× 101, 1× 102, 2× 102

For proposal in TPF β = 0.2, σ2 = 0.1

Number of blocks in MPF 3, 5, 6, 10

Figure 3 presents the RMSEt values for different algo-

rithms and for different system-dimensions D. These results

correspond to the initial distribution with mean x̂0 = 0, i.e.,

with some knowledge about the initial distribution.

We see that as the dimension of the system increases,

the performance of SPF (even with 105 particles) degrades

as compared to the other two algorithms. For relatively low

dimensional systems (D = 3 – 100), similar RMSE values

indicate similar performance of the MPF and TPF. However,

for high-dimensional systems, especially for D = 500, the

TPF has much lower RMSE, and thus outperforms the MPF.

To test how important the knowledge about the initial state

is, we perform a similar analysis of the algorithms with the

initial distribution having mean x̂0 = 5. We notice that at the

beginning (i.e., for small t’s) the RMSE values corresponding

to x̂0 = 5 is larger than those corresponding to x̂0 = 0.

However, as time progresses, the RMSE’s are similar, no

matter what the dimension D is. In other words, a good

knowledge of the initial state is not so important in the long

run. Also, we notice that the proposed TPF suffers the least

from inaccurate initial state. We present the comparison for

only D = 500 in Figure 4.

B. Stability of the algorithms

In order to judge how stable (over different Monte Carlo

runs) the performance of an algorithm is, we compare the

time averaged error given by

TAEr =

√√√√ 1

T

T∑
t=1

D∑
d=1

(
x̂
[r]
d,t − xd,t

)2

(18)

for each Monte Carlo run r = 1, . . . , 70.
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Fig. 4: Effect of (incorrect) initial guess. In the legends, ’0’

implies that the method uses the initial distribution with mean

x̂0 = 0, i.e., we roughly know the initial state, whereas ’5’

corresponds to x̂0 = 5, indicating that we do not use any

specific knowledge about the initial state.

The TAE’s for 15 different runs are plotted in Figure 5 for

D = 30, 100 and 500. Table II contains the mean and standard

deviation of all the TAE’s for all D’s. The standard deviations

are given within parentheses. Low standard deviations indicate

that all the algorithms are quite stable. Also, the superior

performance of the TPF in high dimension is clearly seen

from the lower mean TAE than those of MPF and SPF. We

also notice that when we do not assume the precise knowledge

of the initial state (x̂0 = 5), the TAE is slightly larger than

than that with x̂0 = 0. That is mainly due to the differences

in the beginning of the time series. As observed in Figure 4,

the estimates do not differ much as time progresses.

TABLE II: Mean and standard deviation of the TAE’s.

Standard deviations are given within parentheses.

Dimension (D)

3 10 30 100 300 500

1.576 3.951 13.05 34.70 71.40 96.97
SPF0

(1.303) (0.9571) (1.913) (2.802) (3.589) (3.519)

1.619 4.166 13.59 35.31 73.85 103.3
SPF5

(1.288) (0.8590) (2.079) (2.651) (3.405) (3.68)

1.694 3.216 5.526 14.88 46.30 70.19
MPF0

(1.734) (1.473) (0.8356) (1.066) (2.003) (2.442)

1.732 3.307 5.899 15.78 47.35 72.13
MPF5

(1.725) (1.450) (0.7721) (0.9546) (1.832) (2.393)

2.194 4.869 9.537 19.06 34.42 44.82
TPF0

(1.974) (1.168) (0.7067) (0.8192) (0.9271) (0.8334)

2.527 5.272 10.22 20.72 37.57 49.22
TPF5

(2.395) (1.443) (0.7166) (0.8677) (0.8698) (0.8212)

C. Performance with varying number of particles

In this section, we compare the performances of the three

algorithms with varying number of particles. In general, in-

creasing the number of particle will increase the accuracy of

the filter. However, increasing the number of particles will

also require more computational power. In this section, we

would like to analyze the relationship between the number of

particles and the accuracy for varying system-dimensions. As

the measure of accuracy we use the mean time averaged error

defined by

MTAE =
1

R

R∑
r=1

TAEr, (19)

where TAEr is given by (18). For this analysis we only

consider the filters using initial state distribution having mean

x̂0 = 0. The number of particles used are as shown in Table I.

The results are plotted in Figure 6.

We see that indeed as the number of particles increases the

performance of all the algorithms increases (the solid line is

below the dashed line which is below the dotted line). For

10 or higher-dimensional systems performance of SPF with

105 particles is worse than that of MPF with 100 particles

(for each block) or TPF with only 50 particles. For very high

dimensional systems (D = 300, 500), the new filter TPF even

with 50 particles performs better than the MPF with 5000

particles (for each block). We could conclude from here that

the new filter is an efficient one for the high-dimensional

problems.

To compare the computational complexity of the MPF and

the TPF we have compared the execution times of each

algorithm for each run. Figure 7 plots the execution times

for 15 different runs for D = 300. The statistics (means and

standrad deviations) of all the execution times for D = 300
and D = 500 are presented in Table III.

TABLE III: Comparison of the execution times (in seconds)

MPF TPF

D \Np 100 1000 5000 50 100 200

300
9.377 84.17 424.5 6.466 12.67 27.27

(0.8635) (6.694) (39.79) (0.9055) (1.908) (3.649)

500
21.04 179.8 891.8 17.34 36.63 72.06

(0.7241) (13.55) (76.87) (2.426) (4.983) (9.772)

We see in Figure 7 that the MPF usually consumes more

time than the TPF, when D = 300. A very similar behaviour

can be seen in Table III for D = 500, except that the

difference in execution times are now higher. The MPF with

100 particles (for each block) executes slightly faster than the

TPF with 100 particles. However, taking into consideration

that the estimation performance of the TPF is far better than

the MPF (see Figure 6), we conclude that in high dimensional

systems the proposed TPF provides more accurate estimation

by consuming less time than the MPF.
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Fig. 5: TAE for 15 Monte Carlo runs. The red line represents the MPF, the green line the SPF, and the blue line the proposed

TPF. The solid line corresponds to the initial distribution having mean x̂0 = 0, and the dashed line corresponds to x̂0 = 5.

3  10 30 100 300 500
dimension (D)

0

20

40

60

80

100

120

M
T

A
E

SPF1e3
SPF1e4
SPF1e5
MPF1e2
MPF1e3
MPF5e3
TPF5e1
TPF1e2
TPF2e2

100 300 500

20

40

60

80

Fig. 6: Comparison with different number of particles. The

green colour represents the SPF, the red colour the MPF and

the blue colour the TPF. In the legend, for example, SPF1e5

means the SPF with 1×105 particles. For MPF it is the number

of particles for each block. All plots correspond to the initial

distribution with mean x̂0 = 0. The inset plot is the zoomed

in version of the MPF and the TPF for higher dimensions.

VII. CONCLUSION

In this article, we have proposed a new particle filter

(PF) that can be used with high-dimensional systems. The

proposed filter is a two-stage process. In the first stage a

suitable proposal density is determined. In the second stage

a PF is implemented using the proposal density found in the

first stage. With the help of a simulated numerical example

we have demonstrated that the proposed two-stage particle

filter (TPF) outperforms the multiple particle filter (MPF) in

high-dimensional scenarios. The TPF provides more accurate

estimates with less number of particles.

In the current form, the TPF requires the model to satisfy

that every component of the state-vector has its own obser-
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Fig. 7: Execution times (in log scale) for 15 Monte Carlo runs,

for D = 300. The red circles represent the MPF and the blue

crosses the TPF. In the legend, for example, TPF2e2 means

the TPF method with 2 × 102 particles. For MPF it is the

number of particles for each block.

vation dependent only on it, see condition (3). However, as

mentioned in the Remark 2 this condition can be relaxed. TPF

can be implemented if we can split both the state and the

measurement into same number of blocks and the r-th block

of measurements depends only on the r-th block of the state.

The block sizes do not need to be the same. Also, the current

implementation is done on a unimodal system. As immediate

future work we would like to focus on multimodal distribution

and flexible relationships between the observation-components

and the state-components.
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