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a b s t r a c t

We describe and discuss the design and prototype of the Distributed Model Integration Framework
(DMIF) that links models deployed on different hardware and software platforms. We used distributed
computing and service-oriented development approaches to address the different aspects of interop-
erability. Reusable web service wrappers were developed for technical interoperability models created in
NetLogo and GAMS modeling languages. We investigated automated semantic mapping of text-based
input-output data and attribute names of components using word overlap semantic matching algo-
rithms and using an openly available lexical database. We also incorporated automated unit conversion
in semantic mediation by using openly available ontologies. DMIF helps to avoid significant amount of
reinvention by framework developers, and opens up the modeling process for many stakeholders who
are not prepared to deal with the technical difficulties associated with installing, configuring, and
running various models. As a proof of concept, we implemented our design to integrate several climate-
energy-economy models.
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Cost Free
Program language C# and Java
Program size 250 MB
Software Access http://owsgip.itc.utwente.nl/projects/

complex/index.php/2-uncategorised/46-
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1. Introduction

Models are simplifications of reality and are developed with the
objective to understand a concept or system, to analyze what its
future states and trends may look like, and if possible to come up
with appropriate management decisions and mitigation or adap-
tation strategies. Thousands of computer models have been
developed. However, complex problems such as climate mitigation
require interdisciplinary knowledge and data from many domains
including climate, hydrology, energy, economy, land use, behavioral
sciences, etc. The complex and interrelated nature of such real-
world problems requires holistic system-of-systems thinking
(Laniak et al., 2013). In this case it is not practical, perhaps impos-
sible, to construct a single model that could simulate such complex
processes (Gijsbers and Gregersen, 2005). Integration of models
and tools may be a solution (Stoorvogel, 1995). It also reuses
existing models and it is faster and less expensive than reengin-
eering legacy systems (Madni and Sievers, 2014).

During integration, we should understand that component
models can be developed using different assumptions and se-
mantics, different methodologies, tools and techniques, may
operate at different temporal and spatial scales, may have different
levels of complexity, etc. Integration of models assumes linking
such heterogeneous models together into an operational model
chain (Knapen et al., 2013), or rather a network with loops and
feedbacks, where one model down the chain can also feed input
back into a model above. This requires addressing interoperability
at technical, semantic, and dataset levels (Belete et al., 2017). Based
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on this we define a model integration framework as a set of soft-
ware libraries, classes, and components that enable one to manage
technical, semantic, and dataset aspects of interoperability.

Integration of models requires mediation that goes beyond
merging information and data that use different schemas.
Computer-based models contain sophisticated knowledge state-
ments, which may be represented in different ways. Due to this,
integration of models requires understanding of the different
contexts of the models involved. It also requires mechanisms to
modify the incoming information so that it fits to the assumptions,
conditions (rules), and processes in the data-receiving model. Best
practice indicates that this can be achieved by providing dedicated
components or modules that handle context-based interpretation
and semantic mediation. For example, such a mediator component
is known as the Knowledge Manager in SEAMLESS (Athanasiadis
and Janssen, 2008) or the Semantic Discovery Broker in eHabitat
web processing service (Dubois et al., 2013). One of the objectives of
modeling is to provide information to decision makers. Despite the
large number of available models, decision makers lack easy access
to models to evaluate alternative scenarios (Booth et al., 2011).
Models that do not require installation of special software, and that
do not need special training, are more accessible but rare. With the
advance of web technology, presenting models and integration
frameworks on the web, i.e. when a model can run in a normal web
browser requiring no additional software installation, is becoming
more popular since it can significantly increase model accessibility
and sharing. However, the volume of data involved, complexity of
the software platform required, computational demand for model
execution are identified as barriers that prevent sharing and re-
using models over the web (Brooking and Hunter, 2013).

Although availing models through web pages is useful, usage of
models will still be constrained by the way the web page presents
the model. For example, users may want to directly access model
output and display it as part of another application. This leads to the
idea of providing a “Model as a Service” (Geller and Turner, 2007;
Geller and Melton, 2008; Roman et al., 2009). Presenting models
as web services has the benefits of making models and their out-
puts more accessible, easier for model comparison, scalable, and
implementable using a variety of approaches (Nativi et al., 2013;
Peckham and Goodall, 2013). A web service developed using one
programming language can be accessed and consumed by appli-
cations using a number of other programming languages, i.e.
without requiring intermediary language interoperability tools. The
Interoperable nature of services gives the opportunity to integrate
legacy models by presenting them as web services (Goodall et al.,
2013; Granell et al., 2010).

Currently, one of the main challenges facing the integrated
environmental modeling community is lack of interoperability
across independently built systems (Goodall et al., 2011; Laniak
et al., 2013). This means that besides improving accessibility of
models and data, we also need a mechanism for integration across
disciplines and models developed using different platforms. There
is an increasing need for methodology that enables to build a
system-of-systems (Butterfield et al., 2008) by connecting inde-
pendent component systems and making them interoperable.

The context in which a certain model is used can vary signifi-
cantly. Besides, a model can be linked to a number of models in
different ways. Users have their own integration requirements.
Integration scenarios identified and designed by a certain group of
modelers or developers may not satisfy integration requirements of
the whole user community. Even one particular user can come up
with a number of integration requirements. On the other hand, only
a small subset of end users may have the programming skills
needed to modify the source code of integration frameworks in
accordance to their requirements. Due to this, there is a need for
tools in which users can select certain models and link them
without the need for additional design, coding, debugging, etc.

In this paper, we present the design methodology of a Distrib-
uted Model Integration Framework (DMIF). We present the
approach used to convert heterogeneous and independently built
models into plug-and-play components, and the mechanisms used
to automate some of semantic mediation tasks. In addition, we
present a case study in semantic mediation using semantic
matching algorithms and lexical databases. We also introduce in-
terfaces that enable runtime access and integration of web service
based models without the need of additional coding. We also
discuss the limitations of such approach. After all, models are al-
ways built for a purpose and there is no guarantee that when we
reuse a model we will be using it in the same way as intended by
the original model construction. This is how so called ‘inte-
gronsters’ (Voinov and Shugart, 2013) are created, which we
certainly want to avoid. User mediation and pre-integration
assessment are the only ways that we can safeguard ourselves
from unintended misuse of models. We explore how integration
interfaces and semantic mediation can assist in such user guided
model evaluation.

The remainder of the paper is organized as follows: Section 2
presents the design criteria of model integration frameworks.
Section 3 describes the architecture of DMIF. Section 4 provides
information on how we provided for technical interoperability by
presenting models as web services. Section 5 describes the meth-
odology for building the semantic mediation module of model
integration frameworks. This section also presents algorithms for
semantic matching of text-based input-output data and for
searching of components using attribute names of components.
Section 6 introduces runtime access and integration of web service
based models at the GUI level. Section 7 discusses additional issues
that we should consider in developing integration frameworks, and
we give our conclusions in Section 8.
2. Design criteria for DMIF

Our aim is to provide a verifiable design of a model integration
framework that helps to link multidisciplinary heterogeneous
models distributed over various software and hardware platforms
in a meaningful way. Design should follow user requirements, and
it should be verifiable against those user requirements. There are
many factors that a model integration framework should consider
(Belete and Voinov, 2014, 2016; Belete et al., 2014, 2017). There is no
ideal integration technique, which best suites all kinds of model
integration requirements. However, as a guideline we know that an
integration framework should consider the following design
criteria. It should:

� support models developed using different programming
languages,

� include models hosted on different hardware and software
platforms,

� access models located anywhere on the Internet,
� keep independently developed models autonomous,
� avoid reinventing whenever reuse of resources is possible,
� provide functionalities as reusable components,
� be extensible without disturbing the existing system,
� be accessible on the web.

Given these criteria, our design focuses on interoperability of
heterogeneous models. To realize this we need to establish a few
well-known dependencies (Rosen et al., 2008) among such models
that enable them to exchange data and to collaborate.
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3. The DMIF framework

3.1. Background

To meet model integration requirements, we considered Best
Practices of System Integration, Enterprise Application Integration,
Distributed Systems, and Software Design Patterns (Erl, 2008a;
Gamma et al., 1994; Tanenbaum and Van Steen, 2007). We
observed that web services have a good potential to transform
independently built models into plug-and-play components. This is
because web services are platform independent, self-contained,
interoperable applications that are accessible over the web. More-
over, any piece of existing code can be transformed into a network
available service (Papazoglou, 2008). Besides, those independently
built service-based models can be linked into a system-of-systems
by using Service-Oriented Approach (SOA) of software develop-
ment. SOA is a design approach in which services are linked
together based on the following principles: participating services
are expressed using standardized metadata, services are loosely
coupled, reusable, autonomous, distributed across different plat-
forms, discoverable, and composable regardless of their size (Erl
et al., 2009). Due to the nature of SOA, it inherently addresses
such integration issues as loose coupling, interoperability, and
platform independence (Erl, 2008b).

3.2. Architecture of the framework

The Distributed Model Integration Framework (DMIF) is
designed with the aim to handle linking of various heterogeneous
computer-based models. A prototype of DMIF can be accessed from
the COMPLEX1 project model repository page. In this section we
start describing DMIF by presenting its architecture (Fig. 1), which
defines the logical organization of the system in terms of software
components (Fowler, 2003). Fig.1 depicts the high-level view of the
integration framework. Besides, software architecture demon-
strates how concepts in the problem domain are handled by the
solution domain (Butterfield et al., 2008).

The architecture of DMIF follows a layered structure based on
principles of separation of concerns and distributed computing.
Following the separation of concerns principle (Laplante, 2007), the
system is a composition of a group of logically related elements. As
a result, it relieves models frommanaging integration related tasks,
for example, interoperability and data conversion. Following the
distributed computing paradigm (Tanenbaum and Van Steen,
2007), a system is a collection of subsystems deployed on
different heterogeneous platforms that communicate with each
other by exchanging messages (Papazoglou, 2008). Distributed
systems hide the fact that the resources and processes are
distributed across multiple computers, and the system presents
itself as if it were hosted only in a single computer. Due to this,
models can be anywhere on the Internet (Nativi et al., 2013).

In the context of model integration frameworks, distributed
computing paradigm provides the following benefits:

� Models can be developed using different programming lan-
guages and can be deployed in different operating systems,

� Participating models are kept autonomous,
� Models can run concurrently on different machines using mul-
tithreading techniques e which has significant performance
gain when linking model with ‘longer’ execution times (Wainer
et al., 2008),
1 DMIF - http://owsgip.itc.utwente.nl/projects/complex/index.php/2-
uncategorised/46-model-integration-framework.
� Distributed systems are scalable, more resources, such as,
models, databases, files can be added later on.

As shown in Fig. 1, DMIF consists of three layers. Integration
begins from the User Interface layer. This layer is used to select the
models that will be integrated; to specify the execution workflow,
representing the correct order in which the models have to be
connected; and, to provide all required input data for the execution
of the workflow. The user inputs are converted into appropriate
data structure and then passed to the Integration layer. Based on
the specified workflow, the Technical Integration Module is
responsible for accessing the models and ontologies that reside in
the Resource layer, and which can be located anywhere on the
Internet. Translation and interpretation of different data repre-
sented by participating models is done using the Semantic Media-
tion Module. Workflows can be stored as part of the Integration Rule
for future use. The same applies for and semantic mapping and
translation since they can be stored into the existing Semantic
Mapping. The Resource Layer represents a number of available
models in the system including their corresponding wrappers. A
model may read its inputs from a file, a database, or directly from its
user interface. Wrapper web services associated with the models
make them web-enabled and allow the Integration layer to
interoperate with them by exchanging messages. However, using
web services as wrappers has some disadvantages since they use
verbose text-based protocol to exchange messages, which means
larger message sizes than for example binary protocols. Besides,
web service based approach has challenges due to limited reli-
ability of the communication between services over the Internet.
Detailed discussion of different parts of the architecture is pre-
sented in the following sections.
4. Wrapping and technical interoperability

4.1. Enabling technical interoperability

Technical integration of models requires automating data ex-
change between models and making them jointly executable. As
Knapen et al. (2013) indicate that technical integration of models
can be achieved in five different approaches: soft linking, using
scripts, proprietary monolithic, proprietary loose linking, and with
open standards. As mentioned earlier, the strategy we used to build
the model integration framework is W3C open Web Service stan-
dards.2 We assume that all participating models and tools can be
presented as web services. Then the interaction between models is
managed by the technical integration module using SOA principles.
The technical integration module is the core for the whole inte-
grated system, since it is responsible for establishing the connec-
tion between models, for routing, and messaging. It is the
composition engine (Alonso et al., 2004) of service-based models.

Presenting models as web services will make them compo-
nentized. Here a software component is defined as an independent
unit of functionality, with a well-defined interface, and which in-
ternal states are not externally observable (Clemens et al., 1998).
Componentization has the benefits of reusability, interoperability,
limited dependency on other components, and dynamic linking
capability during runtime (Peckham et al., 2013; Rizzoli et al.,
2008). Since we are integrating already existing models, we pre-
fer to avoid rewriting themwhen presenting them as web services.
We turn models into web services by wrapping them, and trans-
forming them into plug-and-play autonomous components. A
2 http://www.w3.org/standards/webofservices/.
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Fig. 1. Architecture of the distributed model integration framework - DMIF. The models together with their input-output files/databases and ontologies are based on the principle of
reuse of available resources. Wrapper web services are developed as means to link models to the integration layer.
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wrapper is an interface that encapsulates a model and provides
access to the model, its functions and data, in a required way. For
example, in the Community Surface Dynamics Modeling System
(CSDMS), the BMI3 wrapper is a set of functions named initialize,
update, finalize, run_model, get_attribute, etc. that provide infor-
mation about the model and run it.

Depending on the ease of implementation, wrapper web ser-
vices can be developed by using different programming languages.
As a proof of concept for our design approach, we implemented
wrappers for a case study that links three models from the COM-
PLEX4 project. The first model is GCAM,5 a dynamic-recursive
partial equilibrium model that represents the economy, the en-
ergy sector and land use. The model is developed using Cþþ and it
uses a number of XML based configuration files. The second model
is EXIOMOD6- a macroeconomic model developed using GAMS7

programming language. The third model is NIROO (Niamir and
Filatova, 2015), an agent based model that focuses on households'
energy use and potential behavioral changes, and developed using
NetLogo.8 The objective of linking the three models is to build a
system-of-systems that could simulate the effects of implementa-
tion of United Nations Framework Convention on Climate Change
(UNFCCC9) policy scenarios. The UNFCCC policy scenarios are
implemented in GCAM and the effect can be analyzed on EXIOMOD
3 BMI - http://csdms.colorado.edu/wiki/BMI_Description.
4 COMPLEX - http://owsgip.itc.utwente.nl/projects/complex/.
5 GCAM - http://www.globalchange.umd.edu/gcam/.
6 EXIOMOD - http://owsgip.itc.utwente.nl/projects/complex/index.php/2-

uncategorised/23-exiomod.
7 GAMS - https://www.gams.com/.
8 NetLogo - https://ccl.northwestern.edu/netlogo/.
9 UNFCCC - http://unfccc.int/meetings/copenhagen_dec_2009/items/5264.php.
and NIROO (Belete et al., in revision). However, the three models
cannot interoperate naturally. To create interoperability between
these three models we developed C#-based web service wrappers
for the GCAM and EXIOMOD models. The wrapper for EXIOMOD
was built on top of the GAMS.NET API. This API manipulates GAMS
based models from C#. Similarly, a Java-based web service wrapper
was built for NIROO model on top of NetLogo-Java library (NetLo-
go.jar). The challenge here is that models are developed indepen-
dently, they are not designed to interoperate with other models
(Nativi et al., 2013), and they do not have knowledge about other
member models (Butterfield et al., 2008). Yet for integration pur-
poses, we have to come up with an interface that will help a model
to act as a plug-and-play component.

By choosing the web service approach we offer the ultimate
flexibility for using the models. As long as they are wrapped as web
services they become available for further integration. Web service
based wrapping addresses our main design goals: it supports
models located anywhere on the Internet, developed using
different programming languages, hosted on different hardware
and software platforms, and it keeps independently developed
models autonomous. The amount of work in developing wrappers
depends on how much we need to adapt the existing model. If the
model is built using a modular approach, developing wrappers may
be straightforward; but if a complex model is implemented as a
monolithic function, we may also need to modify the model code.
Still, from the software development viewpoint, as long as the
wrapper produces a web service, we do not need to impose any
additional requirements on its functionality.

What still remains problematic is the descriptive part of the
model and how it will be delivered by the web service. In fact, in
addition to wrapping the model code to expose it as a web service,
we need to put extra effort in properly documenting and exposing

http://csdms.colorado.edu/wiki/BMI_Description
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https://ccl.northwestern.edu/netlogo/
http://unfccc.int/meetings/copenhagen_dec_2009/items/5264.php
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the model. Machine-readable description of web services, the
WSDL10 file, is designed to provide metadata information about the
service. The contents of the WSDL file mainly focuses on technical
issues such as data type definitions, set of operations or functions
provided by the service, binding information, etc. However, the
WSDL can also be used to provide semantic information about
models that will be used during integration. For example,WSDL has
optional Document element aimed for human readable documen-
tation. This element can be used to incorporate standardized model
metadata that will facilitate searching and integration of compo-
nent models.

4.2. Web service orchestration

In DMIF, models do not interact with each other directly.
Instead, the technical integration module handles the interaction
between models. Service orchestration (Erl, 2008a; Papazoglou,
2008) is one of the main tasks of the technical integration mod-
ule. It serves as a mediator (Gamma et al., 1994) that encapsulates
the interaction between models. Based on the design principle of
separation of concern, models are not expected to maintain infor-
mation about ‘where’ other models are hosted and to support a
protocol for ‘how to’ communicate with them. If we require models
to maintain such information, then:

� a model should maintain a list of other models that could be
linked to it,

� whenever a new model joins the framework, existing models
should incorporate new information,

� when there is change in location or some modification in the
interface of a certain model these changes should be reflected in
the data maintained by existing models.

All this results in information duplication and hinders
scalability.

In our approach, only the technical integration module main-
tains reference information about participating models. By using
this information, the technical integration module can access both
local and remotely hosted models. It also coordinates the
communication betweenmodels so that the system gives a sense of
a single aggregate service. Addition or removal of a component
does not affect other existing components and this makes the
framework extensible.

The workflow of orchestration of services varies depending on
the type and number of models involved (Yang et al., 2012; Zhao
et al., 2012). This is because communication between models
could be unidirectional, bidirectional or iterative. As a result, each
case of integration will have its own workflow. However, as shown
in Fig. 1, in all cases integration starts at the user interface level. The
user interface passes user inputs together with the sequence of
execution to the technical integration module. The technical inte-
grationmodule then executes themodels and receives their output.
It also handles interactionwith the semantic mediation and dataset
conversion modules.

This design approach allows users to select the components
they prefer to couple at the GUI level and this makes them
responsible for the final decisions made about candidate models
and their linkage mechanisms. User defined coupling presents
significant challenges since users are free to couple any available
component models, which could possibly give birth to ‘inte-
gronsters’ (Voinov and Shugart, 2013), i.e., products that are valid in
terms of component coupling but useless as models. To avoid this,
10 WSDL - https://www.w3.org/TR/wsdl.
during design time, based on the logical and contextual informa-
tion of participating components we can identify input-output data
exchanges between them, and make sure that the accompanying
semantic mediation and dataset conversion functionalities are in
place. We can document all such validated coupling potentials in a
file and use them as integration rules (Belete et al., 2014). During
run-time, the technical integration module will validate the user-
defined coupling against the integration rule before proceeding to
service orchestration. If the proposed coupling is not available in
the integration rule, the systemwill alert about the possibility of an
‘integronster’ but the user can override the suggestion and
continue. On the other hand, this checking can become automated
once adequate model documentation standards become accepted
and implemented. Only when wrapped models contain sufficient
semantic metadata to allow the system to determine whether the
composition results make sense, the integration process will allow
some level of automation. Until then the user will have to be
involved for the final checking and quality assurance of the pro-
posed integration schemes.

The other major issue we need to consider during orchestration
is optimization of performance of the integrated model. In reality,
many processes that are represented by integrated models happen
in parallel. However, it is common practice to represent such par-
allel processes using sequential execution of simulationmodels. For
better performance of simulation, our design approach supports
parallel execution of models using the multi-threading technique
(Tanenbaum and Van Steen, 2007) e i.e. the technical integration
module calls the participating services as different threads of a
single process but each of those services will run in parallel on their
hosting machines. Currently, almost all modern computers have
multi-core CPUs, and the parallel execution approach gives the
opportunity for effective utilization of available processing re-
sources (David et al., 2013). In distributed systems, the multi-
threading technique has a significant effect in the performance of
the system since subsystems can be executed in parallel on
different computers. Especially if each of the processes are taking
longer execution times, multi-threading will have rewards in per-
formance (Wainer et al., 2008).

The other point in relation to performance optimization is the
size of data to be exchanged, which could be dependent on the way
we develop wrappers. A model may return several variables as
output. In designing wrapper services, we can include either all
these variables or only some of them as the output of the wrapped
model. If the wrapper includes only the required variables for the
data exchange thenwe can minimize performance overhead due to
exchange of large size of data over the network. However this at the
same time can restrict the application of wrappers making them
coupling specific: when a model is coupled with yet another model
a new wrapper will be needed if additional model output is to be
exposed.
5. Semantic mediation

5.1. What is involved in semantic mediation

Semantic mediation is a means to link knowledge represented
in different ways. In integrating models, semantic mediation is
done based on the contextual information of participating models,
and metadata information of models is the main source of
contextual information. Depending on the extent of the semantic
mediation automation, it requires providing a certain level of
intelligent translation of concepts. This may include gathering and
analyzing information based on the contexts involved. The chal-
lenges in semantic mediation are:

https://www.w3.org/TR/wsdl
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� How to minimize hard coding in semantic mediation?
� How to provide standardized semantic mediation?
� How to accommodate the vast semantic difference among
different models?

In semantic mediation, hard coding or hard wiring should be
minimized (Uschold, 2003) since hard-coded semantic mediation
is fragile whenever there is change in representation of model at-
tributes, data structure, and data itself. Hard coding can be mini-
mized by standardizing the way we represent concepts and build
structures that maintain the semantic relations between different
concepts. Depending on the specific context, the level of detail in
which a concept is represented varies. Based on this, such artifacts
as Glossary, Lexicon, and Ontology have been used to organize
concepts (Buccella et al., 2009; De Nicola et al., 2009). Among these
an ontology contains more organized information since it includes
a hierarchy of concepts, relationships between concepts, and car-
dinality, which are not present in a glossary. Ontology preserves the
semantics of the represented concept and this helps to eliminate
the need for custom developed code for semantic mediation
(Papazoglou, 2008). Since ontologies are based on a set of formal
expressions upon which a computer can reason (Janssen, 2009),
they also enable higher level of reuse (Wang et al., 2002). In general,
ontologies together with semantic mapping and translation tech-
niques are crucial to minimize hard coding in semantic mediation
(Li et al., 2011; Uschold, 2003). If a multi-disciplinary ontology is
available, the metadata of participating models can be mapped and
translated using semantic processing techniques. However, build-
ing ontology to address semantic interoperability across multi-
disciplinary models is not an easy task and requires concerted ef-
forts of many people (Argent, 2004). Constructing a multi-
disciplinary full-fledged ontology requires huge collaborative ef-
forts among different disciplines. Again, we find a need for some
model documentation standards and metadata for the provision of
reusable and standardized data conversion functionalities.

In DMIF, we classified the semantic mediation task into two
categories:

1) semantic matching, which includes translating text data and
mapping of variable names and,
2) unit conversion.
11 WordNet - https://wordnet.princeton.edu/.
5.2. Semantic matching in integration of models

We developed a semantic matching module for text data and
variable names used in models. For both cases, first, we used the
word overlap matching (Canhasi, 2013) or token-based matching
(Cohen et al., 2003) algorithms that does not consider hierarchical
semantic relationships between concepts, and then we used a
lexicon database based matching algorithm that considers se-
mantic relationships between concepts.

5.2.1. The semantic matching algorithms
Suppose we are linking model 1 with model 2. Our aim is to

match a list of available text-based input data/variable names in the
second model, with a list of text-based output data/variable names
from the first model. While in many models we still see variable
names that are quite semantically meaningless, there is a trend
towards choosing informative naming conventions (Peckham,
2014). First, let us consider the word overlap matching algorithm,
which has two phases. The first phase is direct text matching. The
algorithm tries to find a text that matches exactly, and if it finds a
match then it will assign matching index value as 1, which means
the two texts match 100%. The next phase is to do token-based
matching for those texts that did not match directly. In this
phase, the algorithmwill try to find a number of matching words in
the two texts under consideration, and it does the matching by
using the following steps:

� split (tokenize) the first text into words,
� split (tokenize) the second text into words,
� count the number of matching words between the two texts,
� compute matching index

To compute the matching index, we use Jaccard similarity coef-
ficient (Achananuparp et al., 2008; Sarawagi and Kirpal, 2004),
since it measures the size of intersection between two given texts,
it is suitable to represent the word level similarity measurement
(Niwattanakul et al., 2013). The Jaccard similarity coefficient (J) for
texts A and B is computed as:

JðA; BÞ ¼ jA∩Bj
jA∪Bj ¼

jA∩Bj
jAj þ jBj � jA∩Bj 0 � JðA; BÞ � 1

If A and B are both empty then JðA; BÞ ¼ 1

Where the notation ∩ stands for intersection and ∪ is union be-
tween sets A and B.

However, the word overlap algorithm does not completely
satisfy our needs, because it is common that different modelers can
represent the same concept using different words and phrases,
which have similarity inmeaning. For example, supposewewant to
check the similarity of ‘car’ and ‘automobile’ using theword overlap
algorithm. The algorithm returns matching index of zero. Never-
theless, semantic mediation requires a matching algorithm that
considers relations between texts based on meaning of words.

Due to this, we developed the second semantic matching algo-
rithm that uses a lexicon database that considers hierarchical se-
mantic relation between concepts. We used an openly available
lexicon database called WordNet11 that consists of over a hundred
thousand words with meanings and a complex architecture of a
network of words. In the database nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonyms called synsets,
each expressing a distinct concept. The main relation among words
in WordNet is 'being synonymous', e.g. car and automobile are
synonymous. WordNet computes similarity between two words
using the following steps:

� find shortest path length (in links/edges) between the synsets
containing the compared words w1 and w2,

� find the depth of the first common subsumer (or superset) of
both synsets,

� compute the similarity index based on the path length and
depth information.

Like the word overlap algorithm, the similarity index value for
WordNet based algorithm ranges between zero and one. For
example, if we compute similarity between ‘car’ and ‘automobile’ it
returns one.

In general, applying the two semantic matching algorithms has
challenges. The first challenge is that it is difficult to do the
matching for acronyms and abbreviations that are commonly used
by the modeling community. The second challenge is to decide
where to put the margin for similarity index values after which we
can consider matching as ‘valid’. We observed that, in some cases
matching index value of 0.8 may not be good enough to consider

https://wordnet.princeton.edu/


Table 1
Text data for semantic matching.

List of airports in a country
(source airports web service)

List of cities in a country
(source weather web service)

AMSTERDAM SCHIPHOL Amsterdam Airport Schiphol
BERGEN OP ZOOM WONSDRECHT AntillesFlamingo Airport, Bonaire
BREDA GILZE RIJN AntillesHato Airport, Curacao
DEN HELDER DE KOOY AntillesJuliana Airport, Saint Maarten
EINDHOVEN AntillesRoosevelt Airport Saint Eustatius
ENSCHEDE TWENTE Groningen Airport Eelde
GRONINGEN EELDE Leeuwarden
LEEUWARDEN Maastricht Airport Zuid Limburg
LEIDEN VALKENBURG Rotterdam Airport Zestienhoven
MAASTRICHT De Bilt
ROTTERDAM Deelen
SCHIPOL De Kooy
THE HAGUE Eindhoven
UDEN VOLKEL Gilze-Rijen
UTRECHT SOESTERBRG Soesterberg
WOENSDRECHT AB Twenthe

Valkenburg
Volkel
Vlieland
Woensdrecht
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thematching as ‘valid’ and in some other cases an index value of 0.3
might be enough. For better results, setting the margins requires
the decision of the human user. As test cases, we applied these two
semantic matching algorithms in matching text data and variable
names of models.

5.2.2. Semantic matching of text data
Case study 1: The first case study focuses on matching text-

based input-output data to link an Airports information web ser-
vice12 with a Global Weather13 model that is available as a web
service. This example is a case of the integration of data as a service
with a model as service. The objective of the linking is to generate
an enhanced list of airports in a country, which includes current
weather information such as visibility, sky conditions, pressure,
temperature, relative humidity, and dew point. This can be done since
the Airports web service provides a list of airports in a country, and
the Global Weather web service provides weather information of a
given city in a country. Name of cities are text data to be passed
from one web service to the next web service. Consider, for
example, the case of 'Netherlands', as being an input text data given
to the two web services. Table 1 shows that the two web services
represent the names of cities in different ways.

Then, given the list of names of cities, we can handle the se-
mantic mediation by direct mapping between the names. The
problemwith this approach is that we are not controlling theseweb
services while the owners can modify the content of the data
anytime. Therefore, whenever the content of data is modified we
have to modify the mapping. Due to this hard-coded semantic
mapping is fragile. The solution is to develop an automatic se-
mantic matching algorithm that manages the semantic linking
between the text values.

The result of word overlapmatching (Fig. 2) shows that only 25%
of the names match using direct text matching, and 43.75% of the
names can be matched using word overlap matching technique. In
this case, we observed that matching results (Table 2) with
index � 0.25 can be considered as ‘valid’ for our purpose. On the
other hand, when we consider the results of matching using
WordNet, we get matching for ENSCHEDE TWENTE, SCHIPOL, and
UTRECHT SOESTERBRG, which is certainly wrong and was not
identified using word overlap matching algorithm due to the dif-
ference in spelling. However, such results as 1) BERGEN OP ZOOM
WONSDRECHT match with De Kooy with index ¼ 0.625 and 2)
ROTTERDAMmatch with Eindhovenwith index¼ 0.899999 are not
‘valid’ for our purpose. In terms of semantics, thematching could be
correct since they are cities in the same country but it does not
solve our problem. This means, 12.5% of the matching output is
misleading. This shows that for matching short text based input-
output data, usage of a lexicon database may not necessarily
improve the results of the semantic mediation. This could be
mainly because a short text provides very limited contextual
information.

5.2.3. Semantic matching of variable names of models
Case study 2: The second case study was to match variable

names of components in the CSDMS model repository. The objec-
tive is: given a component (data-receiving component) that re-
quires external input data find other possible components (data-
providing components) that could provide input data for it. The
CSDMS uses standard names (Peckham, 2014) to document
component attributes, and we consider only models which are
documented following the standard names. As a first step, we put
12 Airports information web service - http://www.webservicex.net/airport.asmx.
13 Weather web service - http://www.webservicex.net/globalweather.asmx.
all input variable names of components in one category and output
variable names in another category. Then, we apply both word
overlap matching and WordNet based matching algorithms to find
components that could provide data to a given component. In this
case, we applied the WordNet based algorithm to investigate to
what extent standardization will minimize the need for complex
semantic processing.

The results of the semantic matching (Table 3) show that for
standardized variable names the usage of lexicon-based semantic
matching does not provide better results than the simplistic direct
text matching, which clearly indicates the benefits of standardized
names when searching for relevant components. In this specific
case, we observed that, although lexicon-based semantic matching
index values are close to 1 the texts we are comparing represent
different concepts. For example, variables channel_in-
flow_end_water__discharge and sea_water_surface_wave__period
return matching index of 0.904. These matching values are
misleading to perform automated mediation.

We also considered searching for data-providing components
over the full metadata of the components instead of doing the se-
mantic matching within processed data, i.e. within a specific list of
input and output variable names. Note that the CSDMS provides an
API that returns standardized metadata of components in JSON14

(JavaScript Object Notation) format. The metadata information
from the APIs consists of data beyond the list of input-output var-
iable names of components. Due to this, we need a functionality to
extract the list of input and output variable names from the full
metadata of the component. To realize the search for components
on the full metadata we used the following algorithm:

� Read the whole metadata of the data-receiving component,
� Read the whole metadata of all other components in the
repository,

� Extract input variable names of the data-receiving component
from its metadata information,

� Extract the list of output variable names of all components from
the metadata information,

� Do semantic matching,
14 JSON - http://www.json.org/.

http://www.webservicex.net/airport.asmx
http://www.webservicex.net/globalweather.asmx
http://www.json.org/


Fig. 2. Screen shot of output of direct semantic matching for Netherlands.

Table 2
Results of semantic matching using word overlaps algorithm and using WordNet.

Airport name Word overlaps matching WordNet based matching

Matching city Matching index Matching city Matching index

AMSTERDAM SCHIPHOL Amsterdam Airport Schiphol 0.66666666 Amsterdam Airport Schiphol 0.863999
BERGEN OP ZOOM WONSDRECHT e 0 De Kooy 0.625
BREDA GILZE RIJN Gilze-Rijen 0.25 Gilze-Rijen 0.759999
DEN HELDER DE KOOY De Kooy 0.5 De Kooy 0.966666
EINDHOVEN Eindhoven 1 Eindhoven 1
ENSCHEDE TWENTE e 0 Twenthe 0.6833336
GRONINGEN EELDE Groningen Airport Eelde 0.66666666 Groningen Airport Eelde 0.8000000
LEEUWARDEN Leeuwarden 1 Leeuwarden 1
LEIDEN VALKENBURG Valkenburg 0.5 Valkenburg 0.7333333
MAASTRICHT Maastricht Airport Zuid Limburg 0.25 Maastricht Airport Zuid Limburg 0.5
ROTTERDAM Rotterdam Airport Zestienhoven 0.33333333 Eindhoven 0.8999999
SCHIPOL e 0 Amsterdam Airport Schiphol 0.5124999
THE HAGUE e 0 AntillesHato Airport, Curacao 0.2119999
UDEN VOLKEL Volkel 0.5 Volkel 0.7233332
UTRECHT SOESTERBRG e 0 Soesterberg 0.6599999
WOENSDRECHT AB Woensdrecht 0.5 Woensdrecht 0.6666666
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Table 3
Semantic matching in the CSDMS repository for standardized model variable names (a) using direct matching algorithm, (b) using WordNet based matching algorithm.

(a)

Data-receiving component -> Avulsion. Requires input data for
variables:

Using Direct matching algorithm

Data-providing
component

Output variable name Matching
index

channel_inflow_end_bed_load_sediment__mass_flow_rate river channel_inflow_end_bed_load_sediment__mass_flow_rate 1
channel_inflow_end_water__discharge river channel_inflow_end_water__discharge 1
surface__elevation cem surface__elevation 1

child surface__elevation 1
sedflux2d surface__elevation 1

(b)

Data-receiving component e> Avulsion. Requires input data for
variables:

Using WordNet based matching algorithm

Data-providing
component

Output variable name Matching
index

channel_inflow_end_bed_load_sediment__mass_flow_rate child bed_load__mass_flow_rate 0.9228572
river channel_inflow_end_bed_load_sediment__mass_flow_rate 1

channel_inflow_end_water__discharge child channel_water__discharge 0.90875
river channel_inflow_end_water__discharge 1
waves sea_water_surface_wave__period 0.904
windwaves sea_surface_water_wave__period 0.904

surface__elevation cem surface__elevation 1
child surface__elevation 1
sedflux2d bedrock_surface__elevation 0.924
sedflux2d surface__elevation 1
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� List components (together with the corresponding output var-
iable names) that can possibly provide data to the data-receiving
component.

The result of searching for components from the whole meta-
data (Fig. 3) shows that using the semantic matching algorithmswe
can search for other components that could provide data for a given
component. In this case, we also see that applying the lexicon
database does not improve the matching of standardized variable
names, which confirms the ‘Law of the Semantic Web’ by Uschold
(2003) e “the more agreement there is, the less it is necessary to
have machine-processable semantics”.

In general, the results of the semantic matching algorithms
indicate that although we do not fully automate the semantic
mediation process we can still provide useful information that
could facilitate user guided semantic mediation.

5.3. Unit conversion in integrating models

Unit conversion is another semantic mediation task that we
considered in DMIF. As part of our design criteria - avoid rein-
venting whenever reuse of resources is possible e we found that
QUDT15 or Quantities, Units, Dimensions and Data Types Ontologies
is a good resource for unit conversion in semantic mediation. As
indicated in its website, QUDT, developed by TopQuadrant16 and
NASA,17 has the objective of improving the quality of software in-
terfaces, web services, and data interoperability by providing
consistent terms and constructs in defining attributes of datasets
and messages. Besides, QUDT ontology is freely available under
Creative Commons Attribution-Share Alike 3.0 United States Li-
cense.18 The QUDT ontology is available in both OWL and TURTLE
formats (Yu, 2011) and these standardized data structures help to
build generic semantic mediation functionalities.
15 QUDT - http://www.qudt.org/.
16 http://www.topquadrant.com/.
17 http://www.nasa.gov/.
18 https://creativecommons.org/licenses/by-sa/3.0/us/.
The Units ontology is organized into categories of units, for
example, SIUnit, SIDerivedUnit, DerivedUnit, NotUsedWithSIUnit,
NonSIUnit. These categories are further organized into types, such as
AngelUnit, ForceUnit, CurrencyUnit, MolarEnergyUnit, TimeUnit, etc.
Besides, eachunit has a number of attributes thatwill help to perform
semantic translations. For example, the unit kilometerPerHour has
attributes: Label ¼ ‘Kilometer per Hour’, Abbreviation ¼ ‘km/hr’,
Symbol ¼ ‘km/hr’, Type ¼ ‘LinearVelocityUnit’,
ConversionMultiplier¼ ‘0.2777777777777778e0’. Thismeans that, to
convert km/hr to the base unitm/swe should multiply it by the con-
version multiplier.

For a given unit, the semantic mediation module queries the
ontology and provides a list of possible matching units into which a
given unit can be translated. Consider Fig. 4 for graphical demon-
stration of how we handled unit conversion using QUDT ontology.
From the list of available units, assume that the first model is using
kilometerPerHour to express a variable. Then, the semantic medi-
ation module will search in QUDT for the Type attribute of the
selected unit; in this specific case, kilometerPerHour belongs to the
type LinearVelocityUnit. By using the fetched value of Type attri-
bute (i.e. LinearVelocityUnit), the semantic mediation module will
infer and provide a list of available LinearVelocityUnit type of units,
for example, CentimeterPerSecond, FootPerHour, Knot, MeterPer-
Second. Let us assume that the second model uses FootPerMinute
to express linear velocity, which has a conversion multiplier of
0.00508e0. Then the semantic mediation module will automati-
cally derive the conversionMultiplier from km/hr to ft/min by
dividing the conversionMultiplier of the first model by that of the
second model.

The semantic module uses dotNetRDF19 API to query the QUDT
ontology. The API is an Open Source. Net Library20 that enables to
work with RDF, SPARQL and the Semantic Web. The API provides
full support for SPARQL 1.1 Query and Update together with infer-
encing capability. Due to these features, it is possible to extend the
19 http://dotnetrdf.org/.
20 http://www.w3.org/2001/sw/wiki/DotNetRDF.

http://www.qudt.org/
http://www.topquadrant.com/
http://www.nasa.gov/
https://creativecommons.org/licenses/by-sa/3.0/us/
http://dotnetrdf.org/
http://www.w3.org/2001/sw/wiki/DotNetRDF


Fig. 3. Screen shot of the user interface for searching for components that could provide data to a certain component from the CSDMS standardized metadata of components.
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semantic mediation module by adding a number of SPARQL
queries.

6. Runtime integration of models

We define runtime integration as an integration method in
which users can select and integrate models using a graphical user
interface, on the fly, when needed. This can be achieved by
following a two-step process: first, the models should be made
available based on some standard, and second, there should be a
‘generic’ user interface that can link models and run simulations.
Note that the ‘generic’ interface is built by assuming the defined
standard. Based on this, we developed a prototype of a ‘generic’
interface that provides: 1) Runtime access interface (Fig. 5) - to run
stand-alone web service based models, and 2) Runtime integration
interface (Fig. 6) - to integrate web service based models without
the need for additional design, coding, debugging, etc. To run
stand-alone web service based models, the user needs to enter a
URL of the service description (WSDL21) in the provided text box,
then click the ‘Get Available Methods’ button. The system will list
available functions of the web service under the ‘Methods’ tree-
view control. If we select one of the listed functions, the corre-
sponding required input variables will be displayed under ‘Vari-
ables’ control. Following this, we can select each of the input
variables and set the required inputs to the model. In general, by
using this interface, we can access different web service based
models regardless of their underlying software and hardware
platforms, and their location. The models may return simple or
complex datasets and the output will be displayed in the user
interface. For example, we accessed models from UV Index and
Alert forecast service on EPA,22 Global weather prediction ser-
vices,23 U.S. neighborhood level demographic services,24 etc.

The runtime integration interface has the following main parts
(Fig. 6):
21 WSDL - https://www.w3.org/TR/wsdl.
22 EPA UV alert service - https://www.epa.gov/enviro/web-services#hourlyzip.
23 http://www.webservicex.net/ws/default.aspx.
24 http://ws.cdyne.com/DemographixWS/DemographixQuery.asmx.
1) Provide the URL of the WSDL of web services to be linked. Note
that the participating services can be models or data sets
organized in various ways, for example, sensor observation data
(Regueiro et al., 2015). Individual web services can have one or
more functions and the user has to select which functions are to
be involved in the integration. Besides, the user can also provide
input data or scenarios if there is any input of that kind that the
model requires.

2) Access to a data conversion service if needed. If the output of
one service can serve directly as input for the second service,
then the user will skip this part. However, if data conversion is
required and if the data conversion functionality is available as
web service, then the user should provide the URL of the data
conversion service. If data conversion service is not available,
skilled users can build data conversion services and wider user
community can reuse it.

3) The integration builder. In this part, the user should specify the
workflow and input-output data exchange pattern between the
services. The integration builder has two list or combo boxes
that will be automatically populated when the user performs
the operations described in steps (1) and (2). The first combo
box is called Output functions, and lists the functions that pro-
duce output. It maintains the concatenated value of service
name with semicolon followed by the method name. For
example, a service named servicex with a method called
methodx will be listed as servicex:methodx. If servicex has also
an additional method called methody then this method will be
listed as servicex:methody. The second combo box, called Input
variables, maintains a list of input variables together with the
corresponding method and service names. It contains a
concatenated value of the service name, method name and
input variable names. For example, if methodx of servicex has
input variables varn and varm, then it will be presented as two
entries servicex:methodx:varn and servicex:methodx:varm.
The user can define the data exchange pattern between the
services by matching the values listed in the combo boxes.

To see how a user can link models in the GUI, consider the
following example. Assume that we are integrating model M1 with

https://www.w3.org/TR/wsdl
https://www.epa.gov/enviro/web-services#hourlyzip
http://www.webservicex.net/ws/default.aspx
http://ws.cdyne.com/DemographixWS/DemographixQuery.asmx


Fig. 5. User interface for runtime access of web service based models, the case of EPA's UV alert web service.

Fig. 4. Graphic representation of semantic mediation in converting units.
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model M2 to simulate a certain scenario. For example, M1 is
predator population dynamics model and M2 is the prey popula-
tion dynamics model, so that the integration of M1 and M2 will
produce the classical predator-prey model. Suppose M1 has a
function named function1 with input variables var1 and var2, and
after execution it produces the value of var1 (i.e. var10) as an output.
Similarly, M2 has input variables var3 and var4, and after execution
it produces the value of var4 (i.e. var40) as an output. Besides,
suppose that var1 and var3 represent the same variable, except it is
named differently, and similarly for var2 and var4. As we see in
Fig. 7(a), when the integrated model runs for more than one cycle
the outputs of M1 will be used as input for M1 and M2; and simi-
larly the output of M2will be used as input for M1 andM2. The user
can define the linking by selecting the data-providing item from
Output functions combo box and data-receiving item from the
Input variables combo box and then click the ‘Link’ button, and this
will generate data exchange commands as follows:
M1: function1 ¼> M1: function1:var1
M1: function1 ¼> M2: function2:var3
M2: function2 ¼> M2: function2:var4
M2: function2 ¼> M1: function1:var2

The listing represents data exchange pattern shown in Fig. 7(a).
The first line in the expression means that ‘output produced from
function1 of model M1 will be used as input by variable var1 of
function1 of model M1’. Similarly, the second line says that ‘output
produced from function1 of model M1 will be used as input by
variable var3 of function2 of model M2’. Once the linking is defined,
the user can set the number of cycles the models should run, and
then run themodels. In every simulation cycle, the system executes
all the linkages defined by the user.

However, in most of the cases during integration the output of
one model may require a conversion to the appropriate format
before it is passed to the next model. Consider Fig. 7(b), where we
include a data conversion web service, D, which has at least two



Fig. 7. Variable mapping in integrating model M1 with model M2. M1 takes inputs var1 and var2 and produces output var10. M2 takes inputs var3 and var4 and produces output
var40 . (a) Var1 and Var3 are the same except they are named differently. The same applies for var2 and var4 and the models are linked directly; (b) Data conversion is required. That
is model D has a function that converts var10 to var100 and another function that converts var40 to var400 .

Fig. 6. User interface for runtime linking of web service based models.
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functions, let us say function3 and function4. The purpose of
function3 is to take output data from M1, and convert it so that it
can be passed to M2. Similarly, function4 takes output from M2,
converts it and so that it can be sent to M1. The user can define such
kind of data exchange pattern from the user interface as follows:

M1: function1 ¼> M1: function1:var1
M1: function1 ¼> D: function3:var1
D: function3 ¼> M2: function2:var3
M2: function2 ¼> M2: function2:var4
M2: function2 ¼> D: function4:var4
D: function4 ¼> M1: function1:var2

In addition, the user can set the temporal scales for each model
and the duration for which the integrated systemwill run. Based on
these inputs all data exchange commands defined by the user will
be executed. This kind of interfaces can resolve:

� access right issues since we do not need to acquire models and
web service based models can be hosted on the owners' servers,
� the issues related to deployment and configuration of models on
end users' computers,

� the issues related to the requirements of writing the code that
links the participating models.

In addition, it will favor accessibility and reusability of models,
and collaboration among modelers. The interface can be improved
further by providing alternative data visualization features like
maps, tables, and graphs. The usability will be certainly much
improved if the user can select the list of output variables and the
format in which the output will be displayed.
7. Discussion

Making existing independently developedmodels interoperable
can be difficult (Geller and Turner, 2007; Nativi et al., 2013). To
contribute towards a solution to this global challenge, first, we have
set our design goals for amodel integration framework and thenwe
treated interoperability at different levels.

The main contribution of our work is that we designed a
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distributed model integration framework that could link multi-
disciplinary heterogeneous models possibly deployed on different
hardware and software platforms. Given the URL of a web service
based model, it can be incorporated into the DMIF integration
framework regardless of its platform and location. As a result, a
model available in a UNIX environment and another model oper-
ating under Windows can interoperate by using our design
approach. A model developed with stakeholder participation using
the user-friendliness of the NetLogo interface can be connected to
some sophisticated climatic or economic models. Designing and
developing applications that can integrate and run models on the
web is a way forward for integrated environmental modeling
(Laniak et al., 2013) and we consider our effort as a step in that
direction.

In developing wrappers for models, we observed different
challenges that require further careful consideration. Many of leg-
acymodels are developed as one ‘main’ function that read its inputs
from a file, manipulates several variables, writes its outputs to file,
and returns nothing. In such a case, the wrapper should invoke the
‘main’ function, but the list of input-output variables that the
wrapper should implement varies depending on the specific
context of the models involved in the coupling. There is also a
possibility of the need to develop more than one wrapper for a
single model or component. For example, in our case study we
observed that, if we let the wrapper to return all model output then
it would have its effect on system performance. Due to this, for
example (in our case study that is described in section 4.1) in
developing a wrapper for GCAM, even though GCAM produces
several outputs, we designed it to return only two variables. This
helped us to improve system performance. However, if we want to
link GCAMwith another model that requires access to other output
variables of GCAM, then it may be better to develop a newwrapper
function/method than modifying the existing one. In fact, in
developing another wrapper for a model, we can reuse significant
amount of code and we need to change only the variables that
should be included as the model output.

The other identified challenge we observed in relation to
wrapping and synchronizing the communication of models is error
and exception handling. Error and exception can arise from the
wrappers, mediation module, or from the underlying models. Error
and exception that arise from the mediation module can be
handled using the usual error and exception handling strategies.
However, error and exception generated by the underlying models
vary depending on the implementations of the models. Sometimes
errors generated by a model may seem to originate from the
wrapper. Unless we do not have detailed documentation of the
models, it is very difficult to list the possible kinds of errors and
exceptions that could be generated. We may have access to the
source code of the models but it could be very difficult to list errors
and exceptions, especially run-time errors. Which kind of errors
and exceptions can we tolerate? Which are not tolerable? There is
no general rule to manage error and exception generated by
models, but we have to decide based on individual cases and this
makes the way towards generic integration framework more
difficult.

With the advances inweb technology, presentingmodels asweb
services is becoming more prevailing (Castronova et al., 2013;
Geller and Melton, 2008; Goodall et al., 2011). The efforts by GEO
Model Web Initiative (Nativi et al., 2013) and Apps for the envi-
ronment25 by the US Environmental Protection Agency are also
exemplary initiatives towards developing models as services.
Nevertheless, discovery and integration of service-based models
25 http://www.epa.gov/mygreenapps/.
will be challenging unless the naming of service properties is
unambiguously defined (Nativi et al., 2013). The CSDMS Standard
Names (Peckham, 2014) is an exemplary step towards standard-
izing names for semantic mediation. However, providing generic
semantic mediation requires going beyond standardizing names, it
requires a full-fledged ontology. Again the challenge is to build such
an ontology to address semantic interoperability across multidis-
ciplinary models, which is not a simple task.

We demonstrated that the semantic mediation in unit conver-
sion among models can be managed using an openly available
ontology. Following this, wewere able to avoid the need for custom
developed code to convert, say, between SI and derived units.
However, models can represent a quantity in a number of different
ways, for example, concatenated units that are not included in the
ontology. There are other freely available ontologies, such as the
Semantic Web for Earth and Environmental Terminology -
SWEET26 that currently contains around 6000 concepts in 200
separate ontologies. These could broaden the use of ontology
beyond unit conversion.

To minimize the custom coding and hard coding in semantic
mediation, metadata of model interface such as input-output var-
iable names, units, scales, etc. should be connected to the ontology
(Papazoglou, 2008). To realize this we have to use either the ter-
minologies of the ontology inwrapper model interfaces, or we have
to incorporate model interface metadata into an existing ontology.
The first option requires understanding and consensus among
model developers. However, the second option can be done rela-
tively easily without seeking much collaboration among modeling
communities. In this case we are constructing light weight
ontology, which could be poor on axioms but sufficient for the
definition of attributes and their relationships (Kiryakov et al.,
2004). It requires only designing the appropriate structure to
accommodate model interface ontology in the existing ontology, in
our specific case to QUDT ontology. For example, a model interface
has input and output variables; and each of those input and output
variables has a name and unit attributes. We can use semantic re-
lationships like ‘is-a’, ‘equivalent’, etc. to establish links between
names of variables, which are found in different models. Similar
relationships can be established between the units used by the
model and the corresponding available units in QUDT ontology.
Once we define the structure to accommodate model interface
ontology then we can register attributes of participating models in
the ontology. This can make variable mapping and unit conversion
between models fully automatic. But this is not going to happen
until model documentation standards will be elaborated and
implemented. Here, the seven requirements for semantic annota-
tion by Uren et al. (2006) can be useful in documenting model
interface metadata.

The use of distributed modeling approach enabled us to
construct runtime access and integration tools. We showed that
the technical aspect of integration could be standardized and
developed as a ‘generic’ utility. The availability of such tools helps
to focus on providing automatic data mediation functionalities so
that users may not need to build data mediation services. Basi-
cally, data mediation requires to identify WHAT, WHERE, and
WHEN of data in the context of each model (Moore and Tindall,
2005). The WHAT is a quantity description of the data repre-
sented by the variable; WHERE is about location information;
and WHEN describes temporal information about data. Some-
times the WHERE and WHEN can be optional depending on the
context of use of the data. For example, if both model 1 and
26 https://sweet.jpl.nasa.gov/.
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model 2 refer to the same spatial location and temporal instance
then the WHERE and WHEN may be considered as optional when
performing data conversion. Due to this, unlike in technical
integration, it is difficult to develop a ‘generic’ module that will
handle the data mediation of all incoming models, until appro-
priate model documentation standards are in place and are
adopted by the modeling community. Automatic data mediation
functionalities can act on the provided data based on the specific
context of the participating models. This may require building
artificially intelligent agents that fit such purposes. This requires
further enhancement of the semantic mediation features and
embedding learning capabilities into the data conversion module.
We hope that this will be the future direction of model integra-
tion frameworks.
8. Conclusion

In the year 2007, The Ecological Forecasting Program at NASA
has set the vision for 5e10 years, calling it “The Model Web
Concept” (Geller and Turner, 2007). One of its aspirations was to
have distributed, networked, and interoperating models, datasets
and sensors. In this paper, we present the design of a modular,
distributed, scalable, and web-enabled model integration frame-
work that enables linking of a wide variety of models. We also
illustrate some of our ideas by implementing a prototype applica-
tion and by performing a pilot case study. This is hardly a complete
solution to all model integration challenges. Our aim is to demon-
strate how heterogeneous models can be linked, regardless of their
nature and their location.

By offering models as web services and providing an interface
that works in a regular browser we make models more accessible
and expect them to be more widely used both on their own as
stand-alone simulation tools and in integration with other
models, serving various needs of decision support. The fact that to
run a model we no longer need to download and install it, and
setup all the input-output interfaces, very much simplifies its use
and creates opportunities for a wider participatory use of models
for learning and decision making (Voinov et al., 2016). This also
delivers much needed functionality that can make models avail-
able in mobile devices and can facilitate co-learning and co-
management with large numbers of stakeholders becoming
involved in the process. However, further integration and mean-
ingful use of models will become possible only when appropriate
model documentation standards will become available and
implemented. Standards that can convey the contextual infor-
mation of the participating models can help consistent interpre-
tation of the represented concepts. This will also facilitate the
provision of reusable and standardized data conversion func-
tionalities by grouping available data formats and by developing
algorithms that serve specific contexts. Until then we are always
running the risk of misrepresenting the ideas, assumptions, con-
ventions, and intentions that are part of any model definition, and
as result misusing models. The involvement of experts in the
process of model integration will still be essential for some final
checks and balances when deciding how models can be coupled
and run.
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