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Abstract—The interest in hybrid energy systems that coor-
dinate multiple commodities simultaneously on residential level
(e.g., electricity, heat, gas) is increasing. Such systems can
benefit from the synergy between energy carriers to improve the
overall energy system efficiency. However, dependencies between
commodities make optimisation of such a system generally hard.
This paper presents a planning-based multi-commodity energy
management system that scales linearly with the number of
commodities and connected devices. We apply our approach to
balance the three phases in a low voltage grid while charging
a fleet of electric vehicles. Simulation results show that our
approach is capable of balancing the three phases in this network
to enhance the delivered power quality. This balancing also
results in a decrease of distribution losses of up to 41.2%
compared to a control strategy that does not consider multiple
commodities and phase balancing.

Index Terms—load management, demand-side management,
phase balancing, multi-commodity energy grids

I. INTRODUCTION

Due to the depletion of fossil fuels and their impact on
the environment, there is an increasing interest in efficient
energy usage and the integration of renewable energy sources
(RES) into our energy systems. Many RES are subject to
some production unpredictability (e.g., because of weather
conditions) and might therefore not be able to supply the
required energy at the time it is needed. Distributed energy
management (DEM) aims to solve this problem by using the
flexibility of distributed energy resources to match supply
and demand. To do so, the flexibility of local production
(e.g., combined heat and power (CHP)) and consumption (e.g.,
electric vehicles (EVs)) assets is exploited.

Several flexible assets involve multiple forms of energy
(e.g., electricity, heat, gas). However, current research gen-
erally focuses on the optimization of only one of these forms,
e.g., to meet a certain (part of) electricity demand by a micro-
CHP, fed by biogas when available. Such a system may
be combined with a heat pump and heat buffer to ensure
that the heat demand can be satisfied at all times. With
only control over one commodity, the optimization is often
done on basis of electricity profiles, such that the heat pump
is preferred when abundant electricity is already produced,
e.g., by photovoltaic (PV). This excludes a possible optimal
combination mix of biogas and electricity usage at certain
times. With multi-commodity optimization it is possible to
optimize the combination of electricity, heat buffering and
consumption of biogas.

A similar problem occurs in phase balancing in the low
voltage (LV) grid. Field tests have shown that unbalance
between the three phases can lead to serious problems in the
future when, e.g., many EVs are connected to the residential
grid (see, e.g., [1]). In essence, the three phases can be seen
as separate flows of energy (and thus interpreted as separate
commodities) that need to be considered jointly in order to
balance them.

This paper presents a multi-commodity energy management
system that scales linearly with the number of commodities. It
is an extension to the profile steering algorithm as presented
in [2], which steers the total energy load profile towards
a desired profile. Evaluations have shown that the profile
steering algorithm performs very well when matching the
demand to the availably supply. The approach can also be
readily applied to operational control of energy grids in an
event-driven setting [3]. Furthermore, due to the structure of
the profile steering algorithm, Toersche [4] already suggested
that multi-commodity support can be added easily. The added
value of multi-commodity profile steering is demonstrated by
a use-case which balances the three phases in an unbalanced
LV network. The results of this use-case serve as a proof
of concept and show the potential of our system for multi-
commodity energy management.

The main contributions of this paper are as follows:
• A planning-based multi-commodity management system,
• which scales linearly in the number of commodities, and
• is scalable using device level optimization algorithms.
The remainder of this paper is organized as follows.

Section II provides some background on multi-commodity
management systems and phase balancing. In Section III, we
present our extension of the profile steering approach with
multi-commodity support. As a proof of concept, we apply our
method to balance the three phase system within the LV grid
while charging a fleet of EVs. For this, we consider different
scenarios that we discuss in Section IV. We use simulations to
evaluate our approach in Section V. Finally, Section VI gives
some conclusions.

II. BACKGROUND

In the context of multi-commodity energy management,
hybrid energy systems (HES) can optimize energy streams
simultaneously by exploiting the different characteristics of
various forms of energy. For example, heat is easier to store
in large quantities than electricity, but harder to transport over
long distances. The challenge in designing these HES is to978-1-5386-1953-7/17/$31.00 © 2017 IEEE



find a proper combination of energy converters and carriers
that minimizes the losses in the system. As an example, many
systems exist that use waste heat of industrial processes for
heating houses (see [5] for a survey).

The shift towards HES also resulted in new distributed
energy management (DEM) frameworks that support multiple
commodities. Molderink et al. [6] introduce a model for such
hybrid energy systems with multiple energy carrier streams
and devices. Subsequently, this model is used by a three-step
approach to optimize the total energy usage of the system
using forecasts, planning and real-time control. Another exam-
ple is the MultiCommodityMatcher [7], which is an extension
of the PowerMatcher [8]. This approach uses a double-sided
auction for real-time control of a hybrid system with heat
and electricity. The MultiCommodityMatcher is tested in a
lab environment and compared to two other control systems
in [9], where scalability of the system is seen as a positive
point. However, scalability here only refers to the number of
controllable assets and not to the number of commodities. The
bidding function used by this method grows with one dimen-
sion per commodity. Furthermore, the system also requires an
additional bid for each commodity, leading to an exponential
growth in the required communication volume as the number
of commodities increases.

The electricity system itself can also be seen as a hybrid
system with multiple commodities such as active and reactive
power. Weckx et al. [10] have shown that coordinated reactive
power control for PV inverters can be used to improve the
voltage levels within the grid. Another example of multi-
commodity usage within the electricity grid is the three-phase
system. Unbalanced LV grids are a rising concern with the
integration of more PV and EVs as shown in a field test
[1]. Unbalance means that loads are unevenly distributed over
the three phases. This effect results in a current flowing
through the neutral conductor, which increases the distribution
losses. This also results in the effect of neutral-point shifting
where the neutral-to-ground voltage increases and the phase-
to-neutral voltages of the three phases differ. Therefore, a
balanced LV grid is desired to enhance its operation. One
way to balance an unbalanced grid is to rearrange the phase
connections of households [11], [12]. Significant reductions in
voltage unbalance and equalization of load at the transformer
are possible with this method. Similar results are achieved
by balancing single phase loads by carefully setting up the
DEM control hierarchy as shown in [13]. However, these
methodologies cannot cope with three-phase loads. A control
mechanisms to balance LV grids using three single phase in-
verters with a common DC bus is presented in [14]. Simulation
results for an unbalanced use-case show that this solution is
able to restore the balance and thereby improve voltage levels.
Furthermore, overall performance is best measured through
total grid losses and these are reduced by a staggering 28%
compared to the uncoordinated case. One drawback of this
method is that a large quadratic optimization problem must be
solved to obtain a planning for the EV charging. As a result,
their method is less suitable for re-planning and operational
control where very fast solution methods are required.

III. PROFILE STEERING APPROACH WITH
MULTI-COMMODITY SUPPORT

Within this work, we extend an existing energy management
approach called profile steering (see [2]) with support for
multiple commodities. We first briefly introduce the profile
steering algorithm for the single commodity case and then
extend it to support multiple commodities.

A. Profile steering heuristic

Profile steering aims to flatten load profiles by sending an
explicit desired profile from one higher-level controller (or
fleet controller) on, e.g., the neighbourhood level, to multiple
lower level controllers or devices on, e.g., the residential level.
These profiles express exactly what the higher-level control
wants the low-level controllers or devices to achieve. The
objective for a low-level controller is to follow this steering
signal by minimizing the distance between this desired profile
and the aggregated power profile ~x = [x1, . . . , xN ]T of the
fleet of devices, with N being the number of time intervals,
according to some vector norm. In our case, we use the
Euclidean distance (i.e., minimize ||~x−~p||2). A desired profile
~p = [p1, . . . , pN ]T could for instance be a zero-profile (i.e.
[0, . . . , 0]T ) which expresses that a balance of production and
consumption of energy is desired.

Initially, each device m receives this desired profile ~p
and is asked to minimize the distance between this desired
profile and its own power profile ~xm = [xm,1, . . . , xm,N ]T .
The higher level controller receives all power profiles from
connected devices or controllers, resulting in an aggregated
power profile ~x =

∑M
m=1 ~xm, with M being the number of

devices. Then, in an iterative manner, the controller sends out
a difference profile ~d = ~x − ~p. The devices or lower-level
device controllers obtain a local desired profile ~pm = ~xm − ~d
and respond with a new optimized candidate power profile
~̂xm that minimizes ||~xm− ~pm||2. Subsequently, the controller
selects the device m with the largest improvement em in the
objective. The chosen device m commits its own candidate
profile (i.e., ~xm := ~̂xm) and communicates its changes, such
that the fleet controller can update ~x. Subsequently, a new
difference profile ~d is obtained to repeat the process until no
significant improvement is possible or the maximum number
of iterations is reached. The result of the algorithm is a
schedule ~xm = [xm,1, . . . , xm,N ]T for each device m. We
refer the reader to [2] for more background on profile steering.

B. Multi-commodity extension

The method described above only considers one commodity
over a given planning horizon. We observe that we can eas-
ily extend this approach by communicating multiple profiles
simultaneously, where each profile represents a commodity.
To keep the algorithm generic, we denote the number of
commodities with C and the set of commodities with C =
{c1, . . . , cC}. Any profile vector for an individual commodity
c ∈ C is indicated by a superscript, e.g., ~xc = [xc1, . . . , x

c
N ]

T

and ~xcm = [xcm,1, . . . , x
c
m,N ]

T . In essence, this means that
the original profile vectors from [2] are replaced by profile
matrices. Hence, for sake of clarity, we change the previously



defined notation for the profiles into capitals, e.g. ~x becomes
~X and ~xm becomes ~Xm. Herein, the rows represent the time
intervals and the columns represent commodities, e.g.,

~X =


xc11 xc21 . . . xcC1
xc12 xc22 . . . xcC2

...
...

. . .
...

xc1N xc2N . . . xcCN

 , ~Xm =


xc1m,1 . . . xcCm,1

xc1m,2 . . . xcCm,2
...

. . .
...

xc1m,N . . . xcCm,N

 .
Instead of minimizing the Euclidean distance between a

power profile vector and the desired profile vector, we now
need to do this over all commodities c ∈ C. Hereby, in
certain scenarios, the final profile of one commodity may
be more important than the profile of other commodities.
Therefore, we introduce weights W = {w1, . . . , wC}, where
wi expresses the preference of the ith commodity. This results
in the following general objective:

min

C∑
c=1

wc · ||~xc − ~pc||2. (1)

We note that also other optimization objectives are possible
for multiple commodities as we will show in Section IV.

Except for the switch from vectors to matrices, nothing
significantly changes for the fleet controller. This is due to
the fact that the fleet controller only coordinates and does
the overall bookkeeping of the profiles, whereas the devices
perform the actual optimization. It is likely that each device
m can only consume/produce energy for a subset Cm ⊆ C of
the commodities, hence other commodities can be neglected.

Originally, the improvement em by device m was given by
the amount it can reduce the distance (||d||2) when offering
the load profile ~xm instead of ~̂xm. In the multi-commodity
case, we decompose the overall improvement into multiple
improvements ecm for each commodity c ∈ C, that already
include the corresponding weight wc. The fleet controller
selects the device with the largest overall improvement em =∑C

c=1 e
c
m. To reduce the data communication, the selected

device m should communicate only the candidate profiles
of the commodities in Cm. The details of the algorithm are
presented in Algorithm 1. Note that this algorithm reduces to
the algorithm presented in [2] when C = 1 and W = {1} are
used.

Since the devices determine and communicate the optimal
profile themselves, they can directly incorporate local con-
straints on the dependencies between commodities. Hence,
there is no need to communicate these dependencies in contrast
to an auction-based approach as presented in [7]. Although
local device optimization problems might become harder when
multiple commodities are involved and therefore less efficient,
the resulting optimization heuristic scales linearly with the
number of commodities. So for C commodities, we have at
most C times as much data to be communicated per iteration.
Furthermore, the original profile steering approach is already
scalable by the usage of a hierarchical tree of controllers,
which is also the case for the presented extension.

Algorithm 1 Multi-commodity profile steering algorithm.
Request each device m ∈ {1, . . . ,M} to minimize∑

c∈Cm wc · ||~xcm − ~pc||2 {Or other distance metric}
~X :=

∑M
m=1

~Xm {Total fleet consumption}
repeat
~D := ~X − ~P {Difference matrix}
for m ∈ {1, . . . ,M} do
~Pm = ~Xm − ~D

Find a planning ~̂
Xm for device m that minimizes∑

c∈Cm wc · ||~xc − ~pc||2 {Or another objective}
em := 0
for c ∈ Cm do
ecm = wc ·

(
||~xcm − ~pcm||2 − ||~̂xcm − ~pcm||2

)
em := em + ecm {Relevant flexibility of m}

end for
end for
Find the device m with the highest contribution em
for c ∈ Cm do
~xc := ~xc− ~xcm + ~̂xcm {Update the total consumption}
~xcm := ~̂xcm {Update the profile of device m}

end for
until em < ε {Repeat if there is sufficient progress}

IV. EV SCHEDULING WITH MULTIPLE PHASES

As a proof of concept, and to show the effectiveness of
our approach, we apply multi-commodity profile steering to
balance the three-phase system within a LV grid by charging
a fleet of EVs. This means that the EVs charge such that
they restore the balance and the negative effects of unbalance
as outlined in Section II are minimized. In this context, we
model each phase as an individual commodity.

An important objective in the context of EV charging is to
flatten the overall load profile of a house or neighbourhood
as this minimizes distribution losses, voltage fluctuations and
reduces the peak loads in the grid. Therefore, we use this ob-
jective next to phase balancing. Note that these two objectives
do not necessarily coincide, especially when the network itself
is already unbalanced. For example, if there is much unbalance
between phases in a certain time interval due to a peak load in
one phase, then much charging could be scheduled on the other
two phases to minimize this unbalance. However, this implies
that the resulting total load in this interval will be very high
compared to other intervals for which the uncontrollable load
on the phases is already balanced and no charging is added
for balancing. On the other hand, peak-shaving could lead
to large unbalance between phases when the distribution of
uncontrollable load amongst phases is not taken into account
in this objective.

To study the impact of different types of EV chargers
(i.e., single-phase chargers and three-phase chargers) and
the two aforementioned objectives of phase balancing and
peak-shaving, we study three cases where we apply the
profile steering approach with multi-commodity support that
we introduced in the previous section:



• Case MC-1. In this case, we have a single phase charger
that can select one of the phases through a controller,
for example by using three relays. The controller decides
which phase is selected for charging the whole required
charging volume. The objective in this case is peak-
shaving for this particular phase, i.e., to flatten the profile
of this phase.

• Case MC-3a. In this case, all EV charging stations
are equipped with three single-phase inverters with a
common DC bus, such that the charger can spread the
load asymmetrical over the phases. The objective in this
case is phase balancing.

• Case MC-3b. This case is similar to the case MC-3a,
but with a different objective, namely peak-shaving. As
for peak-shaving the distribution of the EV load over
phases does not matter, we first apply peak-shaving and
subsequently balance the phases for each time interval,
given the load that was optimal according to the peak-
shaving objective.

We discuss the underlying optimization problem of each case
later in this section.

A fleet controller coordinates the optimization process of
multiple EVs to the global objective using the presented profile
steering approach. The EV schedules are created individually
for each device. Therefore, in the remainder of this section, we
restrict ourselves to the planning of a single EV. For this, we
introduce some more specific notation. The set C = {1, 2, 3}
corresponds to the three phases and, for each c ∈ C, xcn denotes
the amount that is charged on phase c in time interval n (this
corresponds to the device profile in the previous section).
Furthermore, let R be the required charging volume, x̄ the
maximum charging power of the EV per phase and ∆ the
length of each time interval.

For the case MC-1, each EV can charge at only one of
the three phases. Therefore, for each phase, we compute an
optimal charging schedule that uses only this phase. After
comparing the three resulting schedules, we choose the phase
whose schedule yields the largest improvement on the objec-
tive value. This means that for each phase c ∈ C, we minimize
(1) with wc = 1 and wc′ = 0 for c′ ∈ C\{c} subject to the
constraints

N∑
n=1

∆xcn = R

and
0 ≤ xcn ≤ x̄, n = 1, . . . N. (2)

To simplify the notation, we assume without loss of generality
that ∆ = 1 in the remainder of this section.

In the case MC-3a, we consider all phases to be a commo-
dity and we minimize (1) with equal weights wc subject to
the constraints

3∑
c=1

N∑
n=1

xcn = R (3)

and the constraints in (2) for each c ∈ C.
Finally, in case MC-3b, we first aim at peak-shaving for the

three phases combined. That is, we minimize the difference

between the total profile and the desired profile:

min

∥∥∥∥∥
3∑

c=1

(~xc − ~pc)

∥∥∥∥∥
2

subject to the resource constraint in (3) and the constraints
in (2) for each c ∈ C. Subsequently, we consider each time
interval individually and balance the phases given the total
load of the interval. This means that, given the vector ~xc, we
minimize (1) with equal weights wc for each time interval n:

min
3∑

c=1

||xcn − pcn||

subject to
3∑

c=1

xcn =
3∑

c=1

~xcn

and the constraints in (2) for c ∈ C and the given interval n.
All these optimization problems can be rewritten in a form

that can be solved using load profile flattening algorithms
such as the one in [15]. Since there exist algorithms for these
types of problems that run in linear time [16], computing the
improvements for all EVs can be done efficiently in all cases.

V. EVALUATION

We created a use case to evaluate the added value of multi-
commodity support for profile steering. The objective of the
use case is to balance the three phases in an unbalanced
LV grid that includes locally generated electricity from PV
panels by charging EVs. Herein, multi-commodity support in
the form of multi-commodity optimization of three separate
phases is the only change compared to the single-commodity
control. For both single-phase charging (MC-1) and three-
phase charging (MC-3a, MC-3b) the impact on the grid is
evaluated and compared to charging strategies using a single
commodity. The distribution losses are seen as a key perfor-
mance indicator as both large loads on the grid and unbalance
between the phases lead to more distribution losses.

A. Use case
The use case studies a residential neighbourhood with 81

households within the Netherlands. A detailed model of the
LV distribution network of this neighbourhood is available
to perform load-flow simulations that we use to evaluate the
performance of the control strategies on the physical grid. This
model contains a four-wire three-phase model of the cables
with mutual impedances. These models and the load-flow
solver are verified to accurately match the physical network
using two field tests [1], [17]. Household load profiles, both
static load and PV production, are generated using an artificial
load profile generator [18]. The baseload of each house is
connected to one of the phases, where the houses are evenly
distributed over the three phases. 42 households are equipped
with rooftop PV, of which the majority is connected to phase 2
as illustrated by the total PV power consumption per phase in
Fig. 1, resulting in unbalance. The balancing flexibility comes
from 21 EVs within this grid. Since we only aim at validating
our model, we do not use any advanced methods to predict
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when EVs are available but simply assume that each EV is
available between 8:30 and 17:30 and needs to charge 15 kWh.

In this use case, we consider two different charging strate-
gies: single-phase and three-phase charging. In case of single-
phase charging, we assume a maximum charging rate of
7360 W (= 32 A at 230 V). For the reference single-
commodity case, the selected phase is fixed and 10 of the 21
EVs are connected to phase 3, whereas phases 1 and 2 have 6
and 5 EVs respectively. This case is referred to as SC-1 and
we compare it to the multi-commodity case MC-1.

For three-phase charging we assume a maximum charging
rate of 3680 W (16 A at 230 V) per phase. For the reference
single-commodity case, a normal three-phase AC/DC inverter
is assumed that spreads its load equally over the three phases.
We refer to this case as SC-3 and compare it to the multi-
commodity cases MC-3a and MC-3b.

To evaluate the performance of the control algorithm itself,
we assume perfect information, i.e., no predictions are used
but loads are given. A single day is simulated with the interval
length set to 1 minute. The planning is done using intervals
with a length of 15 minutes. The desired profiles are a balanced
production and consumption for the single-commodity case
~p = [0, . . . , 0]T , and a balance per commodity for the multi-
commodity-case, i.e., ~pc = [0, . . . , 0]T .

B. Results

Since the EVs are connected between 8:30 and 17:30,
flexibility is used only in this time interval and differences can
be observed in the overall power profile as depicted in Fig.
2. Table I summarizes the results of the simulations within
this time horizon. The used notation is introduced in the next
paragraph.

The multi-commodity implementation of the profile steering
heuristic outperforms its single-commodity counterpart by a
large margin. All the multi-commodity cases (MC-1, MC-3a,
MC-3b) show significant improvements on the minimum and
maximum voltage levels obtained at a node within the network

TABLE I
NUMERICAL RESULTS OF THE SIMULATIONS BETWEEN 8:30 AND 17:30

SC-1 MC-1 SC-3 MC-3a MC-3b

Obj. SC (·109) 1343 1347 1343 1357 1343
Obj. MC (·109) 220 156 201 155 157

Umin (V) 217.7 224.1 223.7 225.7 224.6
Umax (V) 245.3 241.6 244.3 241.2 241.3
UN-G,max (V) 10.4 6.2 7.3 5.4 5.4
Max. VUF (%) 1.18 0.74 1.01 0.68 0.72
Max. Util (%) 81.9 57.3 72.6 50.4 57.7
Losses (kWh) 13.07 7.96 10.78 7.16 7.41

(Umin and Umax). The closer these values are to the nominal
230 V, the better. The balancing is visible in the maximum
voltage obtained between neutral and ground (UN-G,max) which
is significantly reduced (improved) with the multi-commodity
profile steering heuristic (Fig. 3). This also results in a lower
maximum Voltage Unbalance Factor (VUF), as defined in the
EN-50160 regulations [19], as depicted in Fig. 4. However, no
power quality regulations were violated in any case.

Other grid properties also show significant improvements
with multi-commodity profile steering. The maximum load on
a cable section (Max. Util) within the LV grid is reduced from
81.9% in case SC-1 to 57.3% in case MC-1, Furthermore,
we observe a reduction of the maximally used capacity from
72.6% in case SC-3 to 50.4% in case MC-3a. The most
important overall performance indicator is the distribution
losses. Here we see a decrease of 41.2% for the single phase
charging case (from 13.07 kWh in case SC-1 to 7.96 kWh in
case MC-1). The three-phase charging case is more balanced
by default, but the decrease in losses is also significant here
with 33.6% (from 10.78 kWh in case SC-3 to 7.16 kWh in case
MC-3a). Also the current measured in the neutral conductor
at the transformer is a good indicator for the unbalance.
The multi-commodity cases show that this current is strongly
reduced and is nearly zero as is desirable (see Fig. 5).

The total power consumption ~s and power consumption per
commodity ~sc are obtained from the simulations in intervals
with one-minute length. Based on these results, we can eval-
uate how good the solutions score on the original objectives.
Herein Obj. SC is the original objective of minimizing the
Euclidean distance (min ||~s− ~p||2). For the multi-commodity
balancing (Obj. MC) we evaluate the general objective as
introduced in Section III (min

∑C
c=1 wc||~sc − ~pc||2). The

results in Table I indicate that the method in case MC-3a
performs best at the latter objective. This in contrast to MC-
3b, which first optimizes towards overall peak-shaving. As a
result, the overall single-commodity objective value for MC-
3b exactly matches that of the single-commodity approach
in SC-1 and SC-3. This results in a slightly less balanced
grid, but the differences are very small. Noteworthy is the
good performance achieved in case MC-1, which could be a
cheap solution to implement in practice (e.g., by using three
relays). It even significantly outperforms the SC-3-case, whilst
its single-commodity counterpart SC-1 is the most unbalanced
and worst performing case.
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VI. CONCLUSION

This paper presents a new multi-commodity energy manage-
ment system that scales linearly in the number of commodities
and devices. Application of our approach to phase balancing
in the LV grid yields a decrease in losses of up to 41.2%
for an unbalanced LV grid with a high penetration of EVs.
This shows the added value of multi-commodity support in
profile steering for grid balancing and that this may be done
without sacrificing performance on the overall power profile.
Our findings are consistent with previous research, e.g., of
Weckx et al. [14]. Due to the structure of our algorithm,
it is easy to incorporate different commodities and devices.
Moreover, the presented changes to profile steering are also
applicable to an event-driven variant for operational control
as presented in [3].

Future research remains in dealing with prediction errors
when predictions of future loads are used. In the context of
phase balancing, the inclusion of reactive power is left for
future work as well. Finally, the development of further spe-
cific device level optimization algorithms such as [15], which
are efficient and compatible with our method, is needed to
incorporate different devices into our approach. This especially
holds for devices that are involved with multiple commodities.
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