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CHAPTER 1

Introduction

1.1 Photonics

Light transcends all barriers, including those of geography, gender, age, culture,
and racial origin [1]. It is a fundamental necessity for the existence of life on
earth via photosynthesis. From the first ray of the sun shining into our eyes in the
morning to the lamps eradicating the darkness at night, light is omnipresent [2, 3].
Light has been the cynosure of scientific research for centuries. Sir Isaac Newton
discovered in the 17th century that white light actually consists of many colors
of light [4] (e.g., colors of the rainbow). To quote the Swiss painter Johannes
Itten: Color is life; for a world without color appears to us as dead. Colors are
primordial ideas, the children of light.

In the 20th century, Max Planck [5] and later Albert Einstein [6] proposed a
theory for light with the dual nature of an electromagnetic wave as well as of a
particle, which raised numerous eyebrows over how light can have two totally dis-
tinct characters simultaneously! This dual nature of light has been many times
confirmed with experiments. The elementary particles of light are called “pho-
tons” and hence the science of light is known as Photonics. Photonics comprises
the generation, control, and detection of light waves and photons. Photonics
explores a wider variety of wavelengths from gamma rays to radio waves, called
the electromagnetic spectrum, which includes X-rays, ultraviolet, visible light,
infrared, and microwaves. Today, photonics is indispensable [1]: from electron-
ics (barcode scanners, DVD players, television remote control, optical integrated
circuits) to modern telecommunications (optical fibers for fast internet), to the
health sector [7] (eye surgeries and medical instruments), to the manufacturing
sector (laser cutting and 3D printing), to security (infrared camera and remote
sensing), to entertainment (holography and laser show), and the list goes on.

1.2 Nanophotonics

Light propagation inside a homogeneous medium with a constant refractive index,
such as in air or in a silicon wafer is described using the principles of geometrical
optics, where light follows a rectilinear plane wave propagation [8]. However, an
ensemble of microscopic pieces broken of a silicon wafer has a spatially rapidly
changing refractive index and hence the light propagation strongly deviates from
the rectilinear propagation due to optical interference [9]. The optical proper-
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ties of these composite materials are now immensely different to those of the
separate constituents. Composite dielectric optical materials, which have a spa-
tially varying refractive index on length scales comparable to the wavelength of
light, are known as complex or nanophotonic media [10-12]. Nanophotonic media
uniquely define light propagation and control light-matter interactions because
of their unique dispersion characteristics [13-18].

Two broad classifications of nanophotonic media distinguish disordered nanopho-
tonic media, i.e., a random arrangement of the constituent materials, from or-
dered nanophotonic media, i.e., a periodic arrangement of the constituent mate-
rials. For daily household devices, disordered materials [19, 20] are used as the
textured optical sheets in solar cells [21], phosphor plates in a white LED [22],
or the diffuser glass window in bathroom.

Light propagation in ordered nanophotonic systems bears a strong resemblance
to the wave propagation of a conducting electron in a crystalline solid [23-25].
Photonic crystals are a class of ordered nanophotonic structures and an optical
analogue of semiconductors [25]. In photonic crystals, the refractive index varies
spatially with a periodicity on length scales comparable to the wavelength of
light. A careful selection of geometry, topology, and high-index backbone di-
electric materials determines the optical properties of photonic crystals. Due to
the long-range periodic order, the photonic dispersion relations are organized in
bands, analogous to electron bands in a semiconductor [24]. When there is suf-
ficient contrast between the refractive indices of the constituent materials in a
photonic crystal and minimal absorption, then the interference of light from dif-
ferent interfaces can exhibit a similar phenomenon for photons (light modes) that
the atomic potential produces for electrons [25]. For an infinite photonic crystal,
light cannot propagate in a certain direction when the frequency is in a stop gap,
as a result of Bragg diffraction [24]. Of prime significance to infinite photonic
crystals is the emergence of a photonic band gap, a frequency range for which
light is forbidden for all wave vectors and all polarizations [16, 17, 25]. There is
a worldwide interest in three-dimensional (3D) photonic crystals that radically
control both the propagation and emission of light [13, 16-18, 25, 27-29]. The
application of 3D photonic crystals with a 3D photonic band gap includes con-
trolling spontaneous emission of embedded quantum emitters [30-33] and cavity
quantum electrodynamics (QED) [34, 35], controlling thermal emission [36, 37],
realizing efficient miniature lasers [38], efficient photoelectric conversion in solar
cells [39, 40], and cloaking [41].

1.3 3D inverse woodpile photonic crystals

Our research group fabricates and experimentally studies an important class
of photonic crystals called 3D inverse woodpile photonic crystals, which have
fascinated the nanophotonics community on account of their theoretically broad
photonic band gap [42-44] typical of diamond structures. Such a broad 3D band
gap is robust to disorder and fabrication imperfections, and the structure allows
for conceptually convenient fabrication [45-52]. A 3D inverse woodpile crystal
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Figure 1.1: (A) Schematic illustration of the 2x 2x 2 supercell of a 3D inverse woodpile
photonic crystal with the XY Z coordinate axes. Two 2D arrays of identical pores with
radius 7 are parallel to the X and Z axes. The lattice parameters for a tetragonal
primitive unit cell are ¢ and a. The lattice parameters have a ratio ¢ = V2 and the
pore radius is 7 = 0.245. The blue color indicates the high-index backbone of the crystal
and the white color represents air. (B) Scanning electron microscopy (SEM) image of
a 3D inverse woodpile photonic crystal fabricated in silicon. The typical radius of the
pore is 7 = 160 nm and the lattice constant is ¢ = 680 nm. The scale bar is shown in

the image. SEM image courtesy of Cock Harteveld.
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structure consists of two 2D arrays of identical pores with radius r, running in
two orthogonal directions X and Z [42], as illustrated in the crystal design in
Fig. 1.1 (A) and the real fabricated crystal in Fig. 1.1 (B). Each 2D array has
a centered-rectangular lattice with lattice parameters ¢ and a corresponding to
{hkl = 110} lattice planes in the conventional diamond structure [24]. When
the lattice parameters have a ratio % = \/57 the diamondlike structure is cubic.
A cubic silicon inverse woodpile crystal with a high-index backbone having a
dielectric permittivity e = 12.1, typical for silicon in the near infrared and telecom
ranges [44, 53], has a broad maximum band gap width Aw/w. = 25.3% relative to
the central band gap frequency w, for pores with a relative radius = = 0.245 [43,
49]. Consequently, inverse woodpiles can potentially act as a broadband back
reflector in a solar cell to enhance the distance light travels through internal
reflections [54].

For a cubic inverse woodpile with lattice parameters ¢ and a, Fig. 1.2 (i) shows
the tetragonal primitive unit cell for the pore radius “> = 0.245. This unit cell is
periodic in all three directions X, Y, and Z. However, Fig. 1.2 (ii) reveals subtle
“crescents” appearing at the front and the back interfaces in the XY view of the
unit cell for the pore radius “1 = 0.275. Once the pore radius exceeds = > 0.245,
the adjacent pores intersect with each other and hence these crescents are needed
to preserve the periodicity of the unit cell.

Figure 1.2 (bottom) shows the calculated volume fraction of air (and silicon)
in the inverse woodpile crystal versus the relative pore radius ~. We employ a
volume integration routine of the finite element method [55] for the numerical
calculation. To preserve periodicity of the numerically approximated unit cell,
we consider the primitive unit cell in (i) for a pore radius between - = 0 and
Z = 0.245 and the modified unit cell in (ii) for a pore radius between L =
0.245 and = = 0.30. Our numerical calculation agrees within ~ 1075% with the
analytical calculation for all pore radii. Therefore, our numerically approximated
unit cell, employed for all calculations in this thesis, converges to the analytically
designed unit cell. Since an inverse woodpile crystal consists of nearly 80% air
by volume fraction at the optimal pore radius - = 0.245, it is an extremely light-
weight candidate for photovoltaic applications, when compared to a bulk silicon

of comparable thickness .

A resonant cavity, formed by intentionally embedding a point defect in an
infinite 3D photonic band gap crystal, provides an ultimate confinement of light.
Since there is no leakage of light in any dimension, the cavity acts as a “3D
cage” or a “nanobox” of light [25, 56]. For an array of resonant cavities inside
a 3D photonic band gap crystal, light can either remain confined in multiple 3D
cages or “hop” from one cavity to another in a radical contrast with the Bloch
wave propagation of light [57], as illustrated in the artistic impression in Fig. 1.3
(A). Therefore, an array of cavities inside a 3D photonic band gap crystal, as
shown in the real fabricated crystal in Fig. 1.3 (B), is a photonic analogue of
the Nobel prize winning ” Anderson model” that portrays electronic and spin
excitations [58].
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Figure 1.2: Top: (i) The tetragonal primitive unit cell of the cubic inverse woodpile
photonic crystal structure along the Z axis with lattice parameters ¢ and a and the pore
radius "2 = 0.245, (ii) unit cell adapted to a large pore radius 2 = 0.275. The blue
and black colors in (i) and (ii), respectively, indicate the high-index backbone of the
crystal. The white color represents air. Bottom: Volume fraction of air in the 3D inverse
woodpile photonic crystal versus the relative pore radius ~. The blue dashed-dotted
curve indicates the numerical result for a pore radius between - = 0 and _ = 0.245
using the primitive unit cell in (i). The black dashed curve indicates the numerical
result for a pore radius between = = 0.245 and ~ = 0.30 using the modified unit cell in
(ii). The red solid curve represents unpublished analytical results by Femius Koenderink
(2001).
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Figure 1.3: (A) Artistic impression of an array of cavities inside a 3D photonic band
gap crystal. The point defect acting as a cavity is formed in the proximal region of two
orthogonal pores with a radius that is smaller (green) from the ones in the bulk of the
crystal. Bright lines represent the exotic hopping transport of light from one cavity to
another in a radical contrast with the Bloch wave propagation of light. (B) SEM image
of an array of 3 x 3 x 3 cavities in a 3D inverse woodpile photonic crystal fabricated in
silicon. Smaller pores, which are marked with orange circles, form cavities inside the
structure. The scale bar is shown in the image. SEM image courtesy of Cock Harteveld.
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1.4 Numerical simulations for disrupted symmetries:
a bridge between theory and experiments

The ubiquitous laws of nature are expressed in terms of equations that cannot be
solved analytically for nanophotonic systems [59]. Therefore, one has to postulate
a theory that provides a description of these systems using approximations like
infinite extension and perfect symmetry. As the French scientist Blaise Pascal
said: Symmetry is what we see at a glance.

In order to validate these approximate theories, we compare them directly
with experiments on real systems. However, real systems have disrupted sym-
metries [60]. For 3D periodic photonic nanostructures, we distinguish two kinds
of symmetry-disruption: (i) unintentional symmetry-disruption, e.g., finite size,
material absorption, tapered pores, monoclinic deformation, and surface rough-
ness, and (ii) intentional symmetry-disruption, e.g., a point defect acting as a
resonant cavity, and a photonic crystal waveguide. Therefore, theory for infinite
perfect crystals can not predict the complete outcome of experiments on real
systems. Up to date, theories for finite crystals are limited and address only few
properties, e.g., densities of states [61, 62]. Here, numerical simulations act as an
optimal experiment designed to test the predictions of theories and improve its
approximations. Hence, a simulation can show that a particular theoretical model
captures the essential physics that is needed to reproduce a given phenomenon in
an experiment [26]. Thus, numerical simulations act as a bridge between theory
and experiments. Significantly, exact results from a known analytical model are
an essential tool to test whether a particular numerical simulation works cor-
rectly: if simulation results disagree with an exact theoretical result, then the
simulation is imprecise [59].

Experimental research in the field of nanophotonics is rapidly accelerating due
to improvements in sophisticated fabrication methods and novel characteriza-
tion tools. However, these experiments are very challenging, costly, and endure
physical limitations. Hence, numerical simulations play a pivotal role to support
experiments [26, 59]. Numerical simulations are frequently used to predict the
material properties under certain optimal conditions that are difficult to achieve
in controlled experiments (e.g., very high temperatures or pressures). Moreover,
numerical simulations act as a purely exploratory tool by predicting apriori the
properties of materials even before physically fabricating them [63]. Therefore,
numerical simulations support the planning of a research project by finding ap-
propriate systems and geometries and thereafter performing proofs of concepts
without being constrained by physical limitations [26]. After fabrication of these
systems, numerical simulations are employed to ascertain the quality of fabrica-
tion and to optimize the system parameters for the performance enhancement.
Since a simulation can perform independent investigation of various physical
effects and assess quantities inaccessible in experiments, it simplifies the inter-
pretation of the underlying physics. This acts as a feedback for future designs of
the systems.

In order to maintain the numerical-simulation bridge between theory and ex-
periments, numerical scientists should follow the simulation etiquette: by em-
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ploying well defined reduced units and providing a convenient conversion to the
experimentally employed units [63]. It is important to note that the numerical
solution itself offers no more understanding of the system rather than some num-
bers. Therefore, it is essential to understand the underlying physics behind the
numerical findings and then relate with experiments.

1.5 Overview of this thesis

This thesis describes three ways in which the symmetry of a 3D photonic band
gap crystal is disrupted. We investigate the unintentionally disrupted symmetry
due to (i) finite size and (ii) material absorption as well as the intentionally dis-
rupted symmetry due to (iii) a point defect acting as a resonant cavity. Each
symmetry-disruption forms the basis of an extensive study to understand the
physics of light propagation in certain nanophotonic media and hence investi-
gate its significance in reality. We validate our numerical models with respect to
analytical models and interpret our numerical findings using fundamental theo-
ries of physics. We present all our results in well defined reduced units as well
as their corresponding experimentally employed units. Finally, we describe the
mathematics of a cutting-edge computational tool to accurately model the light
propagation at nanoscale for complex photonic systems. This thesis has the
following arrangement:

In Chapter 2, we study numerically the reflectivity of 3D photonic band gap
crystals with finite support. We assess previously invoked experimental limita-
tions to the reflectivity, such as crystal thickness, angle of incidence, and Bragg
attenuation length. We observe that the stop band hardly changes with incident
angle, which supports the experimental notion that strong reflectivity peaks mea-
sured with a large numerical aperture gives a faithful signature of the 3D band
gap. We observe an intriguing hybridization of the Fabry-Pérot resonances and
the Brewster angle in our calculations, which seems a characteristic property of
3D photonic band gap crystals. From the intense reflectivity peaks, we infer that
the maximum reflectivity observed in the experiments is not limited by the finite
size of the crystal. Consequently, the comparison between angle-independent nu-
merical calculations and experimental results provides an improved interpretation
of reflectivity as a signature of a complete 3D photonic band gap.

In Chapter 3, we study a 3D photonic band gap crystal with finite support as
a back reflector to a thin silicon film in the visible regime. To make our calcula-
tions relevant to experiments, we consider a dispersive (wavelength-dependent)
complex refractive index obtained from experiments. We compare the photonic
crystal back reflector to a perfect metallic back reflector and assess the absorp-
tion enhancement without the additional length of a back reflector. Our numer-
ical study reports a nearly 2.6 times enhanced frequency-, angle-, polarization-
averaged absorption between A = 680 nm and A = 890 nm compared to a thin
silicon film only. Aiming beyond just reporting a giant enhancement, we iden-
tify the responsible physical mechanisms apart from a standard back reflector to
understand the underlying physics.
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In Chapter 4, we study the reflectivity and absorption of a 3D photonic band
gap crystal with finite support and with an intentional point defect. We iden-
tify five cavity resonance troughs in reflectivity for a finite crystal and their field
patterns. We confirm the localization of these cavity resonances in real space by
verifying their angle-dependency. We find a large electric-field energy enhance-
ment due to these resonances. We study resonances existing below the 3D band
gap of a perfect crystal and investigate the effect of the resonant cavity on the
linear regime of the band structure. Our results indicate that 3D photonic band
gap crystals with resonant cavities are interesting candidates for the absorbing
medium of a solar cell in order to enhance the photovoltaic efficiency. Therefore,
our analysis provides a numerical signature of cavity resonances appearing due to
the locally disrupted lattice symmetry in a 3D inverse woodpile photonic crystal
and signifies their potential application in photovoltaics.

In Chapter 5, we investigate and implement a novel numerical method to pro-
vide an accurate model of light propagation in the nanophotonic media. Starting
with the macroscopic Maxwell equations, we provide an extensive description
of the discontinuous Galerkin finite element method (DGFEM) solver for the
time-harmonic Maxwell equations. We highlight the significance of explicitly
incorporating the divergence constraint (V- E = 0) that is often neglected. Con-
sequently, we present the k shifted eigenvalue problem formulation with an ex-
plicitly enforced divergence condition for periodic dielectric materials, which is
well equipped for efficient photonic band structure calculations.

Finally, we summarize the results of this thesis in Chapter 6 and present an
outlook for further studies.
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CHAPTER 2

Reflectivity calculated for a 3D silicon photonic
band gap crystal with finite support

2.1 Introduction

The experimental demonstration of a 3D photonic band gap remains a major
challenge. By definition, a 3D band gap corresponds to a frequency range where
the density of optical states (DOS) vanishes. To probe the DOS, spectra or
dynamics are studied of emitters positioned inside the crystal [1-4]. Such experi-
ments are difficult and require sources as well as detection methods. On the other
hand, a band gap is indicated by the overlap of stop bands for all directions of
incidence, as shown by a peak in reflectivity or a trough in transmission [5-11] for
ideally all directions. A peak in reflectivity or a trough in transmission may also
occur, however, when incident waves do not couple to a field mode inside the crys-
tal [12-14]. Thus, experimentally observed stop bands are typically interpreted
by comparing to stop gaps calculated from band structures. As band structures
pertain only to infinite and perfect crystals, features related to finite-size or to
unavoidable deviations from perfect periodicity are not considered.

Recently, several experimental studies of powerful silicon woodpile and sili-
con inverse woodpile photonic crystals were reported [10, 11, 15]. In these three
studies, a maximum reflectivity was found in the range from 40% to 60%, and
the deviations from ideal 100% were attributed to various reasons, mostly ex-
perimental ones. It was asserted that intense reflection peaks measured with a
large numerical aperture provide a faithful signature of the 3D photonic band
gap. The limited reflectivity was attributed to the limited crystal thickness in
comparison to the Bragg attenuation length and to surface roughness, although
no theoretical or numerical support was offered for these notions.

Therefore, in the present article we study numerically the reflectivity of 3D
photonic band gap crystals with disrupted symmetries due front and back in-
terfaces. We apply the finite element method to calculate reflectivity of crystals
with the cubic diamond-like inverse woodpile structure that have a broad 3D
photonic band gap [16-18]. Inverse woodpile photonic crystals have been re-
alized in several different backbone materials using various techniques [19-22].
Our research group has fabricated 3D inverse woodpile photonic crystals from

The content of this chapter has been published in: D. Devashish, S. B. Hasan, J. J. W. van
der Vegt, and W. L. Vos, Phys. Rev. B 95, 155141 (2017).
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(A) 4z

Figure 2.1: The tetragonal primitive unit cell of the cubic inverse woodpile photonic
crystal structure. (A) Perspective view of the unit cell with the XY Z coordinate system.
The two sets of pores are parallel to the X and the Z-axes. (B) View of the unit cell
along the Z-axis with the lattice parameters a and c, and the pore radius -~ = 0.19.
(C) View of the unit cell along the X-axis.

silicon using several CMOS-compatible methods [23-25]. The high-index back-
bone of the crystals has a dielectric function similar to silicon. We investigate
crystals with thicknesses up to ten unit cells. Since the crystals are surrounded
by vacuum, they have a finite support as in the experiments. We assess pre-
viously invoked limitations to the reflectivity, such as crystal thickness, angle
of incidence, and Bragg attenuation length. Consequently, our numerical study
provides an improved interpretation of reflectivity as a signature of a complete
3D photonic band gap.

2.2 Methods

The primitive unit cell of the cubic inverse woodpile photonic structure is illus-
trated in Fig. 2.1. The crystal structure consists of two 2D arrays of identical
pores with radius r running in two orthogonal directions X and Z [16]. Each 2D
array has a centered-rectangular lattice with lattice parameters ¢ and a. When
the lattice parameters have a ratio £ = V2, the diamond-like structure is cubic.
In terms of the conventional non-primitive cubic unit cell of the diamond struc-
ture, the (X,Y, Z) coordinate system shown in Fig. 2.1(A) has the X-axis unit
vector a; = %[1 0 1], the Y-axis ag = [0 1 0], and the Z-axis ag = \%[I 0 1]
in the coordinate frame of the conventional cubic unit cell [26]. Cubic inverse
woodpile photonic crystals with e = 11.68 [27]- typical of silicon - have a broad
maximum band gap width Aw/w. = 23.7 % relative to the central band gap
frequency w. for pores with a relative radius = = 0.245 [17, 18]. To compare
our calculations with experimental results [24], we choose the pore radius to be
2 = 0.19 and the lattice parameter to be @ = 677 nm [28]. To compute the disper-
sion relations for infinitely extended crystals, we employed the MPB plane-wave
expansion method [29]. Figure 2.2 (A, B) shows the band structure and the first
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Brillouin zone for an inverse-woodpile crystal with optimal pore size - = 0.245.
A broad photonic band gap with a 23.7 % relative width appears between re-
duced frequency @; = 0.52 (bounded by the 3"¢ and 4** bands) and &y = 0.66
(5!" band) [30]. The band structure shows two stop gaps in the I'Z direction.
Since the I'X stop gap is symmetry-related to the I'Z stop gap, we effectively
consider both stop gaps in the present study. The lowest-frequency narrow stop
gap appears between w = 0.421 and @ = 0.433 and closes when moving in the
ZU direction. The second stop gap between & = 0.52 and © = 0.70 is part of the
complete 3D photonic band gap and has a broad 29.5 % relative bandwidth. In
the low-frequency limit w — 0, we derive from the slope of the bands the effective
refractive index of the crystal to be n, = 1.68.

To accurately model the reflectivity and transmission spectra of photonic band
gap crystals with finite support, we employ the commercial COMSOL finite-
element (FEM) solver to solve for the time-harmonic Maxwell equations [31].
Figure 3.2(A) illustrates the computational cell along the X direction. The in-
cident fields emanate from a plane at the left that is separated from the crystal
by an air layer. The plane rather represents a boundary condition than a true
current source since it also absorbs the reflected waves [32]. The incident plane
waves have either s polarization (electric field normal to the plane of incidence)
or p polarization (magnetic field normal to the plane of incidence), and have an
angle of incidence between 0° and 80°. To mimic infinite space by minimizing
the back reflections, absorbing boundaries are employed in the —Z and 47 di-
rections, where the crystal is finite in size. We employ Bloch-Floquet periodic
boundaries in the +X and the +Y directions to describe a crystal slab [12].
Figure 3.2(B) illustrates the finite element mesh used to subdivide the 3D com-
putational cell. We used tetrahedra as basic elements in our finite element mesh.
An upper limit of Al < 8’:—% is imposed to the edge length Al on any tetrahedron,
with Ag the shortest wavelength of the incident plane waves in vacuum, leading
to a finite element mesh of 27852 tetrahedra per unit cell. A refined mesh is
used at the interface between the high-index material and the low-index material
to reduce dispersion errors. For computational efficiency, we apply the MUMPS
direct solver that is fast, multi-core capable, and cluster capable. For a single
frequency and a single angle of incidence, the computational time is 35 s on a
Intel Core i7 machine with a single processor of 4 cores. We found that the com-
putational time increases sub-linearly with respect to the number of frequency
steps and the number of angle of incidence steps.

2.3 Results

2.3.1 Angle- and frequency-resolved reflectivity

Figure 2.4 shows the angle-resolved and frequency-resolved reflectivity spectra
for an inverse-woodpile crystal with a thickness L = 4c for angles of incidence up
to 80° off normal and for optimal pore radius = = 0.245. Near w = 0.6 we observe
broad stop bands with nearly 100% reflectivity for both polarizations. The stop
bands agree very well with the stop gaps for the infinite crystal (see Fig. 2.2(A)).
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Figure 2.2: (A) Photonic band structure for the 3D inverse woodpile photonic crystal
with T = 0.245 and es; = 11.68. The reduced frequency [30] & is expressed in units
of (a/)), with a the lattice parameter. The wave vector is expressed as k' = (ka/27).
The red bar marks the 3D photonic band gap, and the yellow bars mark stop gaps in
the I'X and I'Z directions. (B) First Brillouin zone showing the high symmetry points
and the origin at I'.

We observe that the frequency range of the stop bands hardly changes with
angle of incidence, which is plausible since the stop bands are part of the 3D
band gap. This result supports the experimental notion that intense reflectivity



Results 29

<

) AN AV

Absorbing 33
boundary ~—

Aiepunoq
Bulgiosqy
N

@

Incident plane waves
€ = 1 (coarser mesh of tetrahedrons)

€ = 11.68 (refined mesh of tetrahedrons)

Photonic crystal

X

Figure 2.3: Illustration of the computational cell for a photonic crystal with thickness
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absorbing boundaries at —Z and +Z, and by periodic boundary conditions on +X and
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function similar to silicon. (B) Perspective view of the computational cell.
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Figure 2.4: Calculated angle- and frequency- resolved reflectivity spectra in the I'Z
direction for a crystal with thickness L = 4c for (A) s polarization and (B) p polariza-
tion. The dark blue color represents high reflectivity that occurs in the stop band at all
angles. The white color represents near 0% reflectivity that occurs in the Fabry-Pérot
fringes, at the Brewster angle, and in their hybridization in the range 54° < 6 < 61°.
The brown double arrow represents the stop gap in the I'Z direction (from Fig. 2.2).
The black box indicates the region of high-resolution results shown in Fig. 2.5.
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Figure 2.5: Hybridization of the Fabry-Pérot resonances and the Brewster angle,
shown by angle- and frequency- resolved calculated reflectivity spectra in I'Z direc-
tion for p polarization. The black dashed line is a guide to the eye that connects the

mid-points (circles) of the bends in the fringes. The white dotted line indicates the
Brewster angle 0p.

peaks collected with an objective with a large numerical aperture give a bona fide
signature of the 3D band gap [15].

The spectra in Fig. 2.4 ((A), (B)) reveal Fabry-Pérot fringes at frequencies
below the band gap that correspond to standing waves in the finite crystal slab.
For p polarization, Fig. 2.4 reveals an intriguing hybridization of the resonance
condition (R = 0) of the Fabry-Pérot fringes and of the Brewster angle, which
has not yet been observed in experiments. Moreover, reflectivity inside the p-stop
band is not affected by the Brewster angle, unlike a 1D Bragg stack as shown in
Ref. 33. In order to characterize this feature, we calculated reflectivity spectra
using a higher resolution in frequency and angle of incidence, shown in Fig. 2.5.
We note that the Fabry-Pérot fringes have a constant frequency for angles of
incidence up to 8 = 54° before bending. Beyond 8 = 61°, the fringes have shifted
down in frequency to nearly the frequency of the lower order one at § < 54°, e.g.,
the n = 2 fringe at @ = 0.24 (0 < 54°) shifts to & = 0.15 (6 > 61°), which is close
to the frequency of the n = 1 fringe at 0 < 54°. From the effective refractive
index (n. = 1.68), we derive the Brewster angle 65 = 59.2°, which matches
the range (54° < 6 < 61°) of the hybridization. Therefore, we conclude that
the hybridization occurs between the Fabry-Pérot resonances and the Brewster
angle.

Figure 2.5 shows that the midpoint of each bend in a fringe increases with
increasing frequency and fringe order. We surmise that this shift is the result
of an increasing effective index with frequency as a result of increasing band
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Figure 2.6: Calculated reflectivity spectra for a Si inverse woodpile photonic band gap
crystal along the I'Z high symmetry direction in wave vector space. The red curve in
panel (i) and the green curve in panel (iii) are reflectivity spectra calculated for s and
p polarization, respectively. The corresponding band structure for the I'Z direction
is shown in panel (ii), where the 3D band gap is shown in orange. The wave vector
is expressed as k' = (ka/2m). The polarization character of bands near the gap is
assigned in Fig. 2.7. The frequency ranges of the s- and p-stop bands agree excellently
with corresponding stop gaps in the photonic band structure.

flattening in the approach of a stop gap or band gap, see Fig. 2.2. We note that
at the lowest frequency the midpoint occurs at a smaller angle than 6z obtained
from n, in the limit w — 0. This difference is currently puzzling, since both angles
are expected at the same angle at low frequency where no band bending occurs.
We speculate that the hybridization probes another effective index than the one
derived from the bands at w — 0. The radius of curvature of a bend increases
while approaching the stop band. A possible cause may be the approach of the
3D photonic band gap that prevents light from entering at a Brewster angle.

For comparison, we have analytically computed the angle- and frequency-
resolved reflectivity spectra of a thin film for p polarization (see Appendix 2.B).
We find that the Brewster angle is constant with frequency. We also observe
that the Fabry-Pérot fringes have a constant frequency at all angles and do not
bend near the Brewster angle. These observations on a thin film also pertain to
a 1D Bragg stack as shown in Ref. 34. Therefore, the hybridization between the
Fabry-Pérot resonances and the Brewster angle appears to be a characteristic
property of the 3D photonic crystal that remains to be observed experimentally.



Results

33

Frequency (cm™) @ a = 677 nm
5500

6500 7500

100

| ()

kl

(B)

0.45 0.50
Reduced frequency o

Frequency (cm™) @ a = 677 nm

5500 6500 7500
A1OO"(i)' ; I'.,____.__,__.___\. T
ST VoA
\_8/ F . "' I' p_pOI “ :‘l
o ol N g rS

Z:~~~ + IV/"////' —t i:,’:’;\: :.:
SR N V//% N

L

0.35 0.40 0.45 0.50

Reduced frequency o

0.55

Figure 2.7: Reflectivity near the stop band for (A) s- and (B) p-polarized light for Si
inverse woodpile crystals. In panels (i), red dashed-dotted and green dashed curves are
calculated results, as in Fig. 2.6. Panels (ii) show the band structures for (A) s- and
(B) p-polarized light, where the 3D band gap is shown in orange. The wave vector is
expressed as k' = (ka/2m). The vertical black dashed lines indicate the edges of the
stop band (i) and the matching stop gap edges (ii). Near the stop gap edges, we identify
s bands (red dashed-dotted curves) and p bands (green dashed curves).
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2.3.2 Frequency-resolved reflectivity at normal incidence

We have performed an extensive set of polarization-resolved (s or p) reflectivity
calculations at normal incidence to the photonic crystal slab that corresponds to a
typical experimental geometry [6-9, 11, 15, 35, 36] and since this high-symmetry
geometry facilitates data interpretation. Since similar inverse woodpile structures
were studied in our group [15], we tuned the parameters to this study, namely a
smaller pore radius (£ = 0.19) and a dielectric permittivity e = 12.1, typical for
silicon in the near infrared and telecom ranges [15, 18]. Figure 2.6 shows spectra
for a thin crystal with a thickness L = 4c¢. Fabry-Pérot fringes are visible for
both polarizations in Fig. 2.6 ((i), (iii)) corresponding to standing waves in the
finite crystal. The strong reflectivity peaks near w = 0.45 indicate stop bands
for both s and p polarizations. The stop bands at normal incidence appear
at a lower frequency than in Fig. 2.4 since the air fraction is less and hence
the average index of the crystal is greater. The p-stop band appears between
@ = 0.395 and @ = 0.488 with a broad relative bandwidth 21 %. The s-stop band
appears between w = 0.385 and @ = 0.526 and it is about 1.5%x broader (relative
bandwidth 31 %) than the p-stop band. At frequencies beyond @ = 0.55 several
bands of high reflectivity appear. In these frequency bands the band structures
reveal extremely complex couplings of multiple Bragg conditions [37] that lead to
complex band structures that are sometimes also referred to as ” spaghetti-like”
behavior. Thus these apparent stop bands can be caused by the uncoupled modes
of plane waves outside crystals, or by modes whose dispersion relation restricts
impedance matching to waves outside the crystal.

The frequency ranges of the s- and the p-stop bands agree very well with
corresponding stop gaps in the photonic band structure. Such a comparison
allows us to assign the polarization character without need to compute eigen
functions. Since the 37¢ photonic band at the lower stop gap edge (near & =
0.385) agrees with the lower boundary of the s-stop band, we conclude that this
band has dominantly s character. Furthermore, the 4** band is located inside
the s-stop band and agrees with the lower edge of the p-stop band at @ = 0.395.
Therefore, we conclude that this band must have dominantly p character. Near
the upper gap edge, the 7*" band near & = 0.526 agrees with the upper s-stop
band edge and is thus likely an s band. The 5" and 6! bands between & = 0.49
and @ = 0.526 are situated well inside the s-stop band and can therefore only have
p character; indeed, these bands lie outside the p-stop band. This assignment of
bands 5, 6, and 7 is further supported by the observation that band 7 crosses
bands 5 and 6 at @ = 0.526, without revealing avoided crossings.

2.3.3 Frequency-resolved reflectivity through a numerical
aperture

A recent experimental study by our group reported the signature of a 3D pho-
tonic band gap in silicon inverse woodpile crystals [15]. The signature consists of
observing overlapping stop bands for a large solid angle of (1.76 £+ 0.18)7. The
experiments were performed on crystals with an extent of L? = 123 unit cells on
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Figure 2.8: Comparison between numerical calculations and experimental results for
the reflectivity peaks near the stop band for (A) s- and (B) p-polarized light for Si inverse
woodpile crystals. Panels (i) show the calculated results, where red dashed-dotted and
green dashed curves are reflectivity spectra for angles of incidence from 6° to 40° off
normal in the I'Z direction as well as in the equivalent I'X direction. In panels (ii),
blue squares are measurements from Ref. 15 in the I'Z direction, and magenta circles
in the equivalent I'X direction. The top ordinate shows the frequency in wavenumbers
(em™?') for a lattice parameter a = 677 nm as in the experiments.
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top of bulk silicon. Polarization-resolved reflectivity spectra were measured using
a reflecting objective with NA = 0.65 and Obscuration = 13.3%. Thus, the inci-
dent light has an angular spread from about 6° to 40° off normal. To accurately
mimic the NA of a microscopic objective in an experiment, calculations should
be performed for all wave vectors within the solid angle of the conical incident
beam. Moreover, one should calculate fields and add these coherently to mimic
the focusing by the objective, before taking the absolute square to obtain the in-
tensity as in the experiments [15]. Since this procedure is currently prohibitively
computer expensive, we approximate this angular spread of the incident and col-
lected light without an attempt to average. We calculated reflectivity spectra for
angles of incidence from 6° to 40° off normal in the Y Z plane for each polariza-
tion, see Fig. 2.8. We observe strong angle-dependent reflectivity variations near
the lower and the upper edges of the stop band. The intense angle-independent
reflectivity peaks near @ = 0.45 indicate the stop bands for both s and p polar-
izations. A comparison between the angle-independent high reflectivity ranges
(Fig. 2.8) and the angle-resolved reflectivity spectra centered at 0° (Fig. 2.7)
shows that there are shifts and changes in stop band widths. For s polarization,
the stop band edge at half height shifts from @ = 0.385 to 0.383 (lower edge)
and from @ = 0.526 to 0.48 (upper edge), hence the stop band center shifts down
from @ = 0.455 to 0.432, and the width narrows from A& = 0.141 to 0.097.

We now compare the measured spectra for the stop bands in the I'’X and the
I'Z directions with the angle-independent calculated intense reflectivity peak,
as shown in Fig. 2.8. In particular, we discuss the central frequency, the band
width, and the maximum reflectivity. In the I'X and the I'Z directions, the
central frequencies for s polarization and p polarization in the calculation and in
the experiment agree well to nearly within both error bars [38]. From the Bragg
diffraction condition [26], the central frequency w,. in terms of the effective index
is

1 mme
We = —

ne L’

(2.1)

with m the integer diffraction order. From the good agreement of the central
frequencies, we deduce from Eq. 2.1 that n. in the calculations (n, = 2.28)
is close to the one in the experiments. Therefore, we conclude that the total
volume fraction of the high-index material (Si) in the calculations matches with
the experimental one.

Figure 2.8 (A) shows that for s polarization, the bandwidths in the calculation
and in the experiment in the I'’X direction agree well to nearly within both error
bars. The comparison of the band widths in the calculation and in the experiment
in the I'Z direction exhibits a small difference for s polarization, which is outside
the specified error bars [39]. Figure 2.8 (B) shows that for p polarization, in
the I'X direction the calculated band width agrees well to the measured band
width to nearly within both error bars. In the I'Z direction, the comparison of
bandwidths in the calculation and in the experiment a exhibits small difference
for p polarization, outside the specified error bars [40]. Therefore, the calculated
band width and the measured band width agree in I'’X direction, but disagree in
I'Z direction for both polarizations. The experimental results in Fig. 2.8 show
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that the band width for the I'Z direction is smaller than the band width for the
I'X direction. The band width for 3D silicon inverse woodpile photonic crystals
increases with increasing pore radius to a maximum at pore radius . = 0.245
in the gap map in Ref. 15. Therefore, the band width for the I'Z direction can
be smaller than the band width for the I'X direction if the pore radius in the
I'Z direction is smaller than the one in the I'X direction for these crystals. The
fabrication process could result in different pore radii - in the I'Z and the I'X

directions. We surmise that the -2 ratio is smaller than - = 0.19, whereas the

*LX ratio is larger than - = 0.19, but smaller than optimal optimal pore size
” =0.245 [15]. Simultaneously, the total volume fraction is apparently constant
in view of the central frequencies above. Therefore, we hypothesize that the
difference in measured reflectivity spectra for two symmetry-related directions
I'X and I'Z is due to the fabrication process resulting in different pore radii for
these directions. Hence, our calculations reveal that an angle-independent strong
reflectivity spectrum over an angular spread of the incident light for a certain
experiment provides an improved interpretation of the reflectivity measurements
and an insight in the crystal structure.

Figure 2.8 shows marked differences between the maximum reflectivity in cal-
culations and in experiments. In the experimental work, the limited maximum
reflectivity (67%) was attributed to the finite thickness of the crystal, to angle
of incidence, and to surface roughness, although no theoretical or numerical sup-
port was offered for these notions. In reflectivity spectra shown in Fig. 2.6 and
Fig. 2.9 (explained below in section 2.3.4), we observe strong reflectivity peaks
even for thin crystals. This implies that the finite size is not a critical limiting
factor for reflectivity. Fig. 2.4(A) and Fig. 2.4(B) show that the observed stop
bands hardly change with angle of incidence. This observation supports the ex-
perimental assertion that intense reflectivity peaks measured with an objective
with a large numerical aperture provide a faithful signature of the 3D photonic
band gap. Extensive numerical studies are called for in order to ascertain the
impact of roughness of the crystal-air interface, as well as roughness inside the
pores.

2.3.4 Finite-size effects: Bragg attenuation length

To investigate the effect of finite thickness of the crystal, we calculated the trans-
mission for thicknesses between L = 1c to 10c. Figure 2.9 shows that for a given
frequency inside the stop gap, the transmission decays exponentially for both
s and p polarizations. For frequencies below or above the stop gap, the trans-
mission is nearly constant, with some small variations with crystal thickness as a
result of the Fabry-Pérot fringes that vary with crystal thickness, as is well-known
for 1D Bragg stacks [33, 41].

Inside a stop gap the complex wave vector k has a nonzero imaginary compo-
nent Im(k) since the waves are damped by Bragg diffraction interference [8, 33,
42]. Thus, we write the transmission 7" in a stop band as [43-45]

T(w,L) = exp < LBL(W)) , (2.2)
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with Lp the Bragg attenuation length equal to

1

Le(w) = s

(2.3)

that gives the distance covered by incident light until it has exponentially decayed
to a fraction 1/e. Figure 2.9 reveals that even inside the stop band the trans-
mission shows modulations, as was previously identified in 1D stacks [33, 41].
The reason is that transmission also contains the effects of both front and back
crystal surfaces.

The Bragg attenuation length is usually expressed in terms of the distance
between lattice planes dpy;. Therefore, we reduce the Bragg length to the
{hkl = 220} lattice spacing dagg that equals degy = ¢/2. The s-polarized data
in Fig. 2.9 agree well with Eq. (2.2) with a slope that yields a Bragg attenua-
tion length Lp = 0.74ds99. For the p-polarized data in Fig. 2.9, we obtain a
Bragg attenuation length Lp = 1.21ds9¢ at the gap center, which is about 1.5x
larger than for s polarization at the gap center. This observation agrees quan-
titatively with the reflectivity spectrum where the s-polarized stop band is also
1.5x broader than the p-polarized stop band (see Fig. 2.6). This behavior can
be understood as follows: The Bragg attenuation length at the center frequency
of a stop gap of a Bragg stack satisfies [46]

a2
™S T om Aw’

Ly = (2.4)

The photonic interaction strength S is defined as the polarizability per volume
of a unit cell [47, 48] and is estimated from the relative frequency band width
of the stop band for a dominant reciprocal lattice vector as S ~ % [46]. We
find that the Bragg lengths are shorter by a factor 6 to 9 than the carlier exper-
imental estimate in Ref. 15 that was derived from the width of the stop bands.
Hence, crystals with a thickness of 12 unit cells studied in these experiments
are effectlvely in the thick crystal limit since T = 5 to 8. Regarding the rea-
son why the Bragg length obtained from the stop band width (Eq. (2.4)) differs
from the Bragg length determined from the thickness-dependent transmission
(Eq. (2.2)), we speculate that Eq. (2.4) pertains to a simple stop gap typical
of a Bragg stack with only one band below and one band above the gap whose
Bloch-state repulsion yields a gap at wave vectors equal to the Brillouin zone
boundary,[26] in notable absence of multiple Bragg diffraction [50]. In contrast,
Figure 2.7(A,B) show that the dominant stop gap is bounded by multiple Bragg
behavior, as is apparent from the pertinent elevated Miller indices (see section
2.4.1), and since the gap is bounded by bands at wave vectors inside the Brillouin
zone (not the zone boundary). Since multiple Bragg diffraction is known to lead
to frequency and wave vector shifts of gaps, as well as changes of gap widths, it
is quite conceivable that in this situation Eq. (2.4) is not equivalent anymore to

Eq. (2.2).
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Figure 2.9: Transmission versus thickness for a silicon inverse woodpile photonic crys-
tal in the I'Z direction for s (top) and p polarizations (bottom). Red squares, black
circles and blue triangles pertain to frequencies below, inside, and above the stop gap,
respectively. The green dashed lines are the exponential decay of transmission with
crystal thickness at frequencies in the stop gap (Eq. (2.2)). The black dashed line is a
guide to the eye that shows modulations in the stop band.

2.4 Discussion

2.4.1 Role of geometrical structure factor

The polarization-resolved reflectivity spectra for the cubic diamond-like inverse
woodpile structure in Fig. 2.6 reveal Fabry-Pérot fringes that correspond to
standing waves in the periodically layered finite crystal. There are three corol-
laries based on theory for a periodic layered Bragg reflector with a thickness of
N unit cells [33]. First, a reflectivity peak occurs at the center of the stop gap.
Second, between any two stop gaps there are exactly (N — 1) troughs in the
reflectivity spectra. Third, there are exactly (/N — 2) side lobes to the reflectivity
peak.

The band structure in Fig. 2.6 (ii) shows two stop gaps in the I'Z direction.
A narrow stop gap appears near @ = 0.311 and the broad stop gap appears near
@ = 0.39. We now interpret the spectra in Fig. 2.6 (i), (iii) for N = 4 unit
cells in terms of the 3 corollaries above. For s polarization reflectivity in Fig. 2.6
(i), we observe a peak near & = 0.45, at the center of the second stop gap.
Surprisingly, there is no peak near the center of the first stop gap at variance
with the 1% corollary. This spectrum reveals 4 troughs between zero frequency
and the first stop gap, the 5" trough near the center of the first stop gap and
2 troughs between the first and second order stop gap; which seems mutually
inconsistent and at variance with the 2"¢ corollary. For p-polarized reflectivity in
Fig. 2.6 (iii), we observe a reflectivity peak near the @ = 0.45, which corresponds
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to the center of the second stop gap. Also, no reflectivity peak appears near the
center of the first stop gap, at variance with the 1%¢ corollary. In this spectrum,
there are 4 troughs between zero frequency and the first stop gap, and 3 troughs
between the first and second order stop gap; which seems mutually inconsistent
and at variance with the 2"¢ corollary. Therefore, the above observations for
p-polarization do not agree with the observations for s-polarization.

To remedy this seeming disagreement, we consider the geometrical structure
factor Sk that indicates the degree to which interference of waves scattered from
identical ions within the crystal basis inside the unit cell affect the intensity of a
Bragg peak associated with reciprocal lattice vector K [26]. Since the intensity
of the Bragg peak is proportional to the square of the absolute value of Sk, the
Bragg peak vanishes when Sk vanishes. For a conventional cubic unit cell of the
monatomic diamond structure, S = 0 if the sum of Miller indices equals twice
an odd number n: h+ k + 1 = 2n. In Fig. 2.6, the stop gap near w = 0.31 in
I'Z direction corresponds to a first-order stop gap for {hkl = 110} lattice planes
in the conventional diamond structure [26]. Since the sum of Miller indices in
{110} is twice the odd number 1, the first-order stop gap in the cubic inverse
woodpile photonic structure has zero geometrical structure factor (Sx = 0) and
hence zero associated Bragg reflection. If the sum of Miller indices (h+ k +1) is
twice an even number, Sk is maximum and equals Sk = 2. The stop gap near
@ = 0.4 in Fig. 2.6 is a second-order stop gap for {hkl = 110} and corresponds
to {hkl = 220} defined using X-ray diffraction in a conventional cubic diamond
structure [26]. Since the sum of Miller indices in {220} equals twice an even
number, the second-order stop gap has Sk # 0. Therefore, the second-order
stop gap has a maximal structure factor. Hence, only the second-order stop
gap in a cubic diamond-like inverse woodpile structure reveals appreciable Bragg
reflection and should therefore be considered for the analysis of the observed
Fabry-Pérot fringes in the reflectivity spectra.

The distance between lattice planes equals dagy = ¢/2 for the dominant
second-order stop gap with Miller indices {hkl = 220}. Therefore, the L = 4c
crystal thickness used in the computational cell in Fig. 2.6 corresponds to a
thickness L = Ndaog = 8dag in terms of a periodic layered medium (a Bragg
stack) [33]. In Fig. 2.6, we observe reflectivity peaks near w = 0.45 for s and
p polarizations, which are at the center of the s- and p-stop gaps. This sat-
isfies the first corollary for the periodic layered medium. Secondly, there are
exactly (N — 1) = 7 troughs in the reflectivity spectra between zero frequency
and the main stop gap corresponding to N = 8 lattice planes in the crystal, in
agreement with the second corollary above. Thirdly, there are (N — 2) = 6 side
lobes in the reflectivity spectra, again agreeing with N = 8 lattice planes by the
third corollary. These three corollaries confirm that the number of Fabry-Pérot
fringes in our reflectivity spectra agrees with the theory for a Bragg reflector [33].
Moreover, this episode reminds us that it is the number of lattice planes that is
fundamental in the thickness of a finite crystal, rather than the number of unit
cells.
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2.4.2 Comparison to other inverse woodpiles and woodpiles

The silicon inverse woodpile photonic crystal studied in Ref. 10 has a 3D structure
consisting of two interpenetrating hexagonal pore sets that corresponds to an
orthorhombic symmetry. Therefore, the first Brillouin zone is distorted compared
to the Brillouin zone of an fcc lattice. This study reported reflectivity spectra
in one high-symmetry direction using unpolarized light. The strong reflectivity
peak denotes the stop band along the z-direction. The stop band is shown to
agree with the stop gap obtained from the band structure. Since the crystal has
orthorhombic symmetry, the I'X stop gap is not symmetry related in k-space to
the I'Z stop gap. Therefore, the stop band is representative for a limited range
of solid angles. The limited reflectivity was attributed to the numerical aperture,
to surface roughness, and to roughness at the pore walls.

The silicon woodpile photonic crystals studied in Ref. 11 has lattice parame-
ters in a ratio £ = 1.15, hence the crystals are not cubic but tetragonal. This
study reports reflectivity spectra in one high symmetry direction. To mimic
the angular spread of the incident light in the experiments, reflectivity spectra
were calculated for many incident angles in the relevant range and averaged over
the obtained results. It is unknown whether this average includes the coherent
field addition and the NA-filling that is needed to compare to experiments (see
section 2.3.3). A qualitative agreement between the stop band observed in exper-
iment, the stop band identified from calculation, and the stop gap calculated from
the band structure is found. The maximum observed reflectivity is accredited to
measurement limitations, to unspecified deviations from perfect periodicity and
to surface roughness. Since the crystal is not cubic, the I'X stop gap is not
symmetry-related to the I'Z stop gap. Therefore, the stop band is representative
for a limited range of solid angles. The polarization of the light used in the cal-
culation of reflectivity spectra is unspecified, so polarization character cannot be
attributed to the bands by comparing reflectivity spectra with the band struc-
ture. Nevertheless, the calculated reflectivity spectra reveal Fabry-Pérot fringes
at wavelengths above the stop band that correspond to standing waves in the
finite-sized crystal, as also seen in Fig. 2.4. The number of unit cells in the
structure is unspecified, so it is not feasible to verify the theory for a periodic
layered Bragg reflector for the number of Fabry-Pérot fringes. The calculations
were reported for a fixed crystal thickness, so the Bragg attenuation length was
not deduced. Since the calculated reflectivity spectra are angle averaged, a pos-
sible Brewster angle is not visible. Our calculations have shown that the finite
size deviation from the perfect periodicity is not responsible for the limited max-
imum reflectivity. Thus, we conclude that the the maximum observed reflectivity
is likely limited by the invoked measurement limitations and surface roughness.

2.4.3 Back reflector for solar cells

The efficiency of silicon photovoltaic cells critically depends on efficient ways to
trap and absorb light [51, 52]. It remains a challenge to have thin film c¢-Si solar
cells trap a significant part of solar energy [12]. Increasing wafer thickness results
in longer diffusion lengths, but increases costs. Traditionally, light trapping in
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solar cells rest on controlling light ray paths using geometrical optics, e.g., by
scattering incident light via surface texturing and back reflection into the solar
cells via a reflector. In practice, perfect scattering and reflection are difficult
to obtain, which limits the attainable efficiency and power generation of solar
cells. Recently, it has been shown that the light trapping approaches based on
wave optics outperform all geometrical optics approaches for a certain range of
frequencies [53]. One can employ specially nanodesigned structures, such as 3D
photonic crystals, notably those with a complete 3D photonic band gap.

The results in Fig. 2.9 reveal that a reflectivity in excess of R > 99 % (hence
T < 1 %) is found inside the stop band already for thin 3D silicon photonic band
gap crystals, with a thickness as small as L > 2¢ for s polarization, and L > 3c¢ for
p polarization. In addition, by combining Figs. 2.4(A) and 2.4(B), we note that
an angle- and polarization-independent range of high reflectivity appears between
@ = 0.4962 and @ = 0.6379 with a broad 25% relative bandwidth, much more
than is predicted for (even thicker) 1D Bragg stacks [33]. Hence, our calculations
support the assertion that a 3D silicon photonic crystal could serve as an efficient
back reflector in a solar cell in order to enhance the efficiency.

2.5 Conclusions

We have studied by numerical simulation the reflectivity of 3D photonic crystals
with a 3D complete photonic band gap, to interpret recent experiments. We
employed the finite element method to study crystals with the cubic diamond-
like inverse woodpile structure, with a dielectric function similar to silicon. The
crystals are surrounded by vacuum, and thus have a finite support as in the ex-
periments. We observe that the stop band hardly changes with incident angle,
which supports the experimental notion that strong reflectivity peaks measured
with large numerical aperture gives a faithful signature of the 3D band gap.
We observe an intriguing hybridization of the Fabry-Pérot resonances and the
Brewster angle in our calculations, which seems a characteristic property of 3D
photonic band gap crystals. From the intense reflectivity peaks, we infer that
the maximum reflectivity observed in the experiments is not limited by finite
size of the crystal. Our calculated polarization-resolved reflectivity spectra show
that the frequency ranges of the s- and p- stop bands agree well with the cor-
responding stop gaps in the photonic band structure. From the comparison we
assign bands in the band structure near these stop bands to have dominantly s or
pcharacter. The comparison between angle-independent numerical calculations
and experimental results provides an improved interpretation of the reflectivity
measurements and a new insight in the crystal structure (unequal pore sizes in
different directions). We find that the Bragg attenuation lengths in the stop
bands are smaller than the earlier estimates based on the width of the stop band
by a factor of 6 to 9. Our results indicate that 3D silicon photonic band gap
crystals merit study as possible candidates for back reflectors in a solar cell in
order to enhance the photovoltaic efficiency.
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Figure 2.10: Analytical calculation versus numerical computation for reflection and
transmission spectra of semi-infinite dielectric medium for p polarization. The medium
has dielectric permittivity e = 12.1. The analytically calculated reflectivity (Ra) and
transmission (74) are shown in green and black lines, respectively. Blue circles and red
diamonds represent the numerically computed reflectivity (Ry) and transmission (Tn),
respectively. Op denotes the Brewster angle.

2.A Analytical validation of the numerical scheme
with a semi-infinite homogeneous medium

To validate our numerical scheme, we calculate reflectivity spectra of a system
that can be analytically analyzed using Fresnel’s equations, namely a homoge-
neous dielectric medium [54]. We consider p-polarized plane waves at a single
frequency with a range of angles of incidence. We replace the photonic crystal
and the air layer on the right in Fig 3.2 (A) with a medium with dielectric
permittivity € = 12.1. This results in a semi-infinite homogeneous medium that
is separated from the source by an air layer. The finite element mesh used in
the numerical calculation consists of 18732 tetrahedra per crystal unit cell (unit
cell defined in terms of the lattice parameter ¢), somewhat less than the number
of tetrahedra in the finite element mesh used for the 3D photonic crystal. The
angular resolution is 2°.

In Fig. 2.10, we show the calculated reflectivity and transmission spectra of
a semi-infinite homogeneous medium for the above defined computational cell.
We note that the numerical calculation agrees very well with the analytical cal-
culation. We observe the Brewster angle at p = 74°, which matches the value
obtained from an analytical calculation [54]. To calculate the relative error 075
between the numerical calculation and the analytical result, we employ the defi-
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Figure 2.11: Analytically calculated angle- and frequency-resolved reflectivity spectra
of a thin dielectric film for p polarization. The film has a dielectric permittivity e = 12.1.
The Brewster angle at §p = 73° is constant with frequency.
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with (TN ;, Rn,;) the numerical transmission and reflectivity, and (T4 ;, Ra ;) the
analytical transmission and reflectivity. For the solution shown in Fig. 2.10, the
error is only about §7}..; = 6 x 10™%, hence we consider the calculation to be
converged.

2.B Brewster angle for a thin film

To find the dependence of the Brewster angle on frequency, we have analytically
calculated the angle-resolved and frequency-resolved spectra for a thin film [55].
We consider p-polarized incident waves for angles of incidence up to 89° off the
normal. Figure 2.11 shows Fabry-Pérot fringes corresponding to the standing
waves in the thin dielectric film. We note that the Fabry-Pérot fringes have a
nearly constant frequency for all angles of incidence. We observe a Brewster angle
at g = 73° that is independent of frequency, as expected for a dispersionless
film.
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Figure 2.12: Reflectivity spectra for a 3D inverse woodpile photonic band gap crystal
with one set pores in the X direction and a second set of pores at an angle 6 off
the normal in the Z direction. Black squares in panel (i) and blue circles in (iii) are
calculated at normal incidence for p polarization for # = 5° and 6 = 15°, respectively.
Green dashed curves in (i) and (iii) are reflectivity spectra calculated for an ideal crystal.
The corresponding band structure of an ideal crystal for the I'Z direction is shown in
panel (ii). The wave vector is expressed as k' = (ka/27). The polarization character of
bands near the gap is assigned in Fig. 2.7.

2.C Monoclinic deformation of a 3D inverse
woodpile photonic crystal

During the fabrication of 3D inverse woodpile photonic crystals, the second set
of pores can be angularly misaligned with respect to the already fabricated first
set of pores, e.g., due to the misaligned sample with respect to the focused ion
beam [18]. Thus, there will be two 2D arrays of non-orthogonal pores in the
crystal structure. Ref. 18 studied the influence of fabrication deviations on the
photonic band gap by calculating the band structures for periodic structures. The
long-range periodic order of the three-dimensional inverse woodpile is disrupted
for non-orthogonal pores and hence Ref. 18 could not determine the impact on
the photonic band gap.

To investigate the impact of the monoclinic deformation on a 3D inverse wood-
pile crystal with finite support, we calculate frequency-resolved p-polarized re-
flectivity spectra for a structure with one set of pores in the X direction and a
second set of pores at an angle 6 off the normal in the Z direction, which happens
to be the direction of the incident plane wave in Fig. 3.2.

Building on our calculations for ideal crystals in Section 2.3.2, we compare in
Fig. 2.12 the reflectivity spectra with and without inclination of the set of pores in
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the Z direction. We observe below w = 0.4 in the top panel of Fig. 2.12 that the
reflectivity spectrum for a photonic crystal with an inclination # = 5° matches
very well with the one for an ideal photonic crystal. However, a comparison
between the spectrum for a photonic crystal with an inclination § = 15° and for
an ideal crystal shows that there are shifts and changes in the stop band widths.
The p—stop band edge at half height shifts from & = 0.395 to 0.388 (lower edge),
the stop band center shifts down from @ = 0.442 to 0.438, and the width slightly
widens from Aw = 0.093 to 0.1. Remarkably, the upper edge of the stop band
remains invariant even with an inclination 8 = 15°. We note below w = 0.39 that
the inclination # = 15° changes amplitudes of existing Fabry-Pérot fringes and
shifts them to lower frequencies. Since the deformation in fabrication for a 3D
inverse woodpile photonic crystal typically remains below 6 = 5° [18], we surmise
that the effect of the monoclinic deformation on the stop band will be negligible.

A plane wave incident in the Z direction of a 3D inverse woodpile photonic
crystal experiences a dielectric contrast, which is major due to the pores in the
X direction and minor due to the pores in the Z direction. However, periodic
boundaries employed in —X and +X directions of our computational cell prohibit
the reflectivity calculation with pores inclined off the normal in X direction.
Therefore, we need to employ the supercell method to study the monoclinic
deformation of the pores orthogonal to incident plane wave, which remains open
for future studies.
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CHAPTER 3

Broadband, omnidirectional, and
polarization-insensitive back reflector for thin
silicon film solar cells

3.1 Introduction

The sun is the ultimate source of energy bestowed upon nature and humankind.
A major key to harness the sun’s energy is a solar cell, which employs the photo-
voltaic effect to convert light into electricity using semiconducting materials [1].
Being the most abundant and non-toxic semiconducting material available in the
earth’s crust, silicon is an ideal choice to make a solar cell [2]. The cost of a
silicon solar cell largely depends on the volume of material used. Therefore, thin-
film silicon solar cells are favorable over thick-film silicon solar cells due to cost
reduction. Also, thin-film silicon solar cells are lightweight, flexible and versa-
tile for building-integrated photovoltaics and for photovoltaic gazing material to
laminate windows.

However, these solar cells are too thin for the silicon material to effectively ab-
sorb the incident light in the high photon energy region of the solar spectrum [3—
5], adversely affecting the cost and the flexibility advantages. Crystalline silicon
(c-Si) has a band gap at 1.1 eV that causes the absorption of light in the near
infrared regime to be low, as illustrated by a long absorption length of [, = 1
mm at A = 1100 nm and l, = 10um at A = 800 nm [6]. This wavelength range
contains upto 36% of all solar photons [7] and hence thin film c-Si solar cells
will fail to capture a significant fraction of solar energy. Therefore, limited light
absorption constrains the efficiency of thin-film silicon solar cells [3, 8-11].

Efficient light trapping [5, 10] can enhance the photovoltaic efficiency of sili-
con solar cells while sustaining the advantages of the thin film. The traditional
light trapping approach controls the light paths in the solar cells using geomet-
rical optics [12, 13], e.g., by scattering incident light via surface texturing and
using a back reflector that reflects unabsorbed light back into the solar cell. In
practice, perfect scattering is impossible to achieve, which limits the attainable
efficiency [14]. An ideal back reflector reflects light incident from any angle,
known as omnidirectional reflectance, and ideally for all wavelengths, and all po-
larizations of light. Theoretically, a perfect superconducting metal gives 100%
reflectivity for all wavelengths and all polarizations and could thus be considered
an ideal back reflector. In practice, no metal has 100% reflectivity at all wave-
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Figure 3.1: Schematic illustration of a solar cell design consisting of a thin silicon film
(orange) with a 3D photonic band gap crystal (purple) as back reflector. Here, Iy and
R; represent the light incident and reflected at the front surface of the thin silicon film.
I, represents the light refracted into the thin silicon film medium and incident on the
photonic crystal. 0 corresponds to the 0" diffraction order that corresponds to specular
reflected light by the photonic crystal; —1, 1, and 2 are nonzero diffraction orders. The
red arrow on the right represents the propagation of guided resonant modes in the thin
silicon film.

lengths due to Ohmic losses [15]. The unreflected light gets absorbed in the metal
and produces heat, which limits the photovoltaic efficiency of the solar cell.

Recently, it has been shown that the light trapping approaches based on wave
optics [16-18] outperform all geometrical optics approaches for a certain range
of frequencies. One can employ specially nano-designed structures such as pho-
tonic crystals [19-25], notably crystals with a complete 3D photonic band gap, a
frequency range for which the propagation of light is rigorously forbidden for all
incident angles and all polarizations. Therefore, a 3D photonic band gap crystal
is theoretically an omnidirectional, broadband, and polarization-insensitive back
reflector for solar cells.

Figure 3.1 shows a schematic illustration of a thin silicon film (orange) with
a 3D photonic band gap crystal as a back reflector (blue). Incident light has
intensity Iy and once it is in the thin film, it has intensity I;. When the light
I has a frequency in the band gap, it is reflected by the photonic crystal [26].
The reflected beam corresponds to the zeroth diffraction order. Figure 3.1 illus-
trates non-zeroth order diffraction modes at certain discrete wavelengths, e.g.,
—1, 1, and 2 generated at the thin film-photonic crystal interface. These non-zero
diffraction modes couple into guided resonant modes and are confined inside the
thin film via total internal reflection. Hence, a 3D photonic crystal will enhance
the absorption of a thin silicon film for all incident angles and polarizations by
(i) giving perfect reflectivity inside the band gap and (ii) generating guided reso-
nances at certain discrete wavelengths. Recently, a numerical study was reported
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on the reflectivity for a realistic 3D silicon photonic band gap crystal with finite
support [27]. However, this study employed a constant, non-absorbing refractive
index of the silicon, which can thus not capture photovoltaic behavior.

We study here a 3D photonic band gap crystal [28-30] with finite support as
a back reflector in the visible regime. We use finite-element computations of
the 3D time-harmonic Maxwell equations to calculate absorption of light in a
thin-film silicon solar cell with a photonic crystal as a back reflector. The high-
index backbone of the inverse woodpile photonic crystal has a refractive index
similar to silicon. To make our calculations relevant to experimental studies, we
consider a dispersive (wavelength-dependent) complex refractive index obtained
from experiments [31]. We tailor the inverse woodpile crystal design to have a
broad photonic band gap in the visible range to improve the photovoltaic effi-
ciency of thin-film silicon. We compare the photonic crystal back reflector to
a perfect metallic back reflector. We also assess the absorption enhancement
without the additional length of a back reflector. We investigate the absorbing
layer with thicknesses varying from sub-wavelength to multiple-wavelength. As a
result, our numerical study shows nearly 2.6 times enhanced frequency-, angle-,
polarization-averaged absorption between A = 680 nm and A = 890 nm compared
to a thin silicon film only. We emphasize on understanding the physics behind
such a large enhancement by identifying the responsible physical mechanism be-
yond a standard back reflector.

3.2 Methods

The solar cell design in Fig. 3.1 consists of a thin silicon film as an absorbing
layer and a cubic inverse woodpile photonic crystal as a back reflector. The 3D
inverse woodpile crystal structure consists of two 2D arrays of identical pores
with radius r running in two orthogonal directions X and Z [28]. Each 2D
array has a centered-rectangular lattice with lattice parameters ¢ and a. When
the lattice parameters have a ratio ¢ = V2, the diamondlike structure is cubic.
Cubic inverse woodpile photonic crystals have a broad maximum band gap width
Aw/w, = 25.3% relative to the central band gap frequency w, for pores with a
relative radius £ = 0.245 [29, 30]. Our results in Ref. 27 and Chapter 2 reveal
that a reflectivity in excess of R > 99% (hence transmission T' < 1%) occurs even
for a thin inverse woodpile photonic crystal with a thickness L > 3c. Therefore,
we choose a cubic inverse-woodpile crystal with an optimal pore radius = = 0.245
and with a thickness Lsppc = 4c¢ as a back reflector for the calculation of the
absorption of light by the solar cell.

To accurately model the optical absorption of a thin silicon film solar cell, we
employ the commercial COMSOL finite-element (FEM) solver to describe the
time-harmonic Maxwell equations [32]. Figure 3.2 illustrates the computational
cell viewed in the Y Z plane. We employ Bloch-Floquet periodic boundaries in
the £X and the £Y directions to describe a thin film [26]. To mimic a solar
cell with finite support, absorbing boundaries are employed in the —Z and +Z2
directions. The incident fields start from a plane at the left that is separated
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Figure 3.2: Computational cell for the thin silicon film solar cell with a photonic crys-
tal back reflector. A thin silicon film with thickness Ls; = 8¢ is the absorbing layer.
A 3D inverse woodpile photonic crystal with a thickness Lsppc = 4c acts as a back
reflector. The computational cell is bounded by absorbing boundaries at —Z and +Z,
and by periodic boundary conditions at £X and +Y. The blue color represents the
high-index material with a dielectric function similar to silicon.

from the silicon layer by an air layer. The plane represents a boundary condition
rather than a true current source since it also absorbs the reflected waves [33]. The
incident plane waves have either s polarization (electric field normal to the plane
of incidence) or p polarization (magnetic field normal to the plane of incidence),
and have an angle of incidence between 0° and 80°. We calculate reflectivity and
transmission of the solar cell at the absorbing boundaries in the —Z and +Z2
directions, respectively. The light with a given wavelength A incident at an angle
0 is either reflected or transmitted, or absorbed by the thin film solar cell [15].
Thus, we calculate the absorption A(\, 8) for the solar cell as

AN 0) = Io — R(X,0) — T(\, 0), (3.1)

with Iy the incident light, R(A, 6) the reflectivity, and T'(), ) the transmission.

Figure 3.2 illustrates the finite element mesh that is used to subdivide the 3D
computational cell into elements. We use tetrahedra as basic elements in our
finite element method. Since the air layer and the silicon thin film are homoge-
neous media, an upper limit Al < % is imposed to the edge length Al on any
tetrahedron in these layers, with \g the shortest wavelength of the incident plane
waves in vacuum. An inverse woodpile crystal contains many sharp interfaces
between the high-index backbone and the air. To accurately mesh this complex
geometry, an upper limit Al < m is imposed to the edge length Al on any
tetrahedron in the inverse woodpile photonic crystal, with max(ng;) the maxi-
mum refractive index for the selected range of wavelengths. For computational
efficiency, we apply the MUMPS direct solver that is fast, multicore capable, and
cluster capable. We perform calculations on the “Serendipity” cluster [34] at
MACS in MESA+.

To make our calculations relevant to experimental studies, we used a wavelength-
dependent complex refractive index obtained from experiments for the thin sili-
con film and the high-index backbone of the inverse woodpile photonic crystal.
Figure 3.3 shows the wavelength dependency of the real and imaginary parts of
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Figure 3.3: Wavelength dependence of real and imaginary parts of the refractive index
of silicon in the visible regime. Red circles, Black triangles, and green squares are the
data obtained from Ref. 31, Ref. 35, and Ref. 36, respectively. The top ordinate shows
the frequency in wave numbers (cm™?).

the refractive index of silicon in the visible regime from several sources of mea-
surements. Ref. 35 presents the dielectric function of a commercially available
silicon wafer using in situ spectroscopic ellipsometry. In Ref. 36 the dielectric
function of crystalline silicon is measured using two-channel polarization modu-
lation ellipsometry, whereas Ref. 31 gives a tabulation of the optical properties of
intrinsic silicon based on many different sources, aiming at solar cell calculations.
Figure 3.3 shows that for the real part of the refractive index the data of Ref. 35,
Ref. 36, and Ref. 31 are in very good mutual agreement. For the imaginary part
of the refractive index, we observe that the results of Ref. 36 and Ref. 31 agree
well with each other between 500 nm and 750 nm and differ from the ones from
Ref. 35 for reasons unknown to us. Since Ref. 31 is based on many different
sources of data, we have decided to adopt it as the source of the refractive index
of silicon in our study.

To enhance the weak absorption of silicon in the frequency range above the
electronic band gap (corresponding to wavelengths in the range 600 nm < A\ <
1100 nm), we tailor the lattice parameter of the inverse woodpile photonic crystal
to be a = 425 nm (and hence ¢ = 300 nm), such that the band gap is in the
visible range. This choice for the lattice parameter is significantly smaller than
usually taken for photonic band gap physics at frequencies in the non-absorbing
range (37, 38](Chapter 2). Throughout this chapter, we express all thicknesses
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in terms of the lattice parameter ¢ = 300 nm.

A perfect metal is known to posses a very large imaginary value for the re-
fractive index and hence gives 100% reflectivity for all wavelengths and for all
polarizations [15]. Therefore, a perfect metal is considered as an ideal back re-
flector for a thin silicon film. In order to evaluate our proposition of using a 3D
inverse woodpile photonic crystal as a back reflector, we compare the absorption
spectra for a thin silicon film with a photonic crystal back reflector to spectra
for a thin film with a perfect metallic back reflector. To calculate the absorption
spectra of a thin silicon film with a perfect metallic back reflector, we replace the
photonic crystal and the air layer on the right in Fig. 3.2 with a homogeneous
metallic plane. We use a very large purely imaginary refractive index for the
perfect metallic plane n’ =—i-10%.

3.3 Results

3.3.1 Wavelength-resolved transmission and absorption

For the thin silicon film with a photonic crystal back reflector, we decided to break
the problem down into several steps, in order to allow the physical interpretation
of the problem at hand. First, we perform simulations of the thin film with
a photonic crystal back reflector where we only consider a zero imaginary part
of the refractive index (Im(ng;) = 0), hence we only allow dispersion but no
imaginary part of the refractive index. This fictitious situation was chosen since
it allows to build on the absorption-free results in Chapter 2. In a second step,
we consider the same solar cell structure with the full dispersive and absorbing
refractive index of silicon that was modeled according to Ref. 31.

We have performed an extensive set of polarization-resolved (s or p) trans-
mission and absorption calculations at normal incidence to the thin silicon film.
The transmission spectra for the thin silicon film in Fig. 3.4 reveal oscillations
between A = 600 nm and A\ = 1450 nm for both polarizations. We observe that
these oscillations diminish in amplitude with decreasing wavelength. The inten-
sity of a propagating wave decays exponentially due to the imaginary part of the
refractive index of the medium of propagation [39]. We note that the imaginary
part of the refractive index of silicon in Fig. 3.3 increases with decreasing wave-
length. Therefore, the incident wave strongly decays through a thin silicon film
with decreasing wavelength and hence these oscillations diminish in amplitude.
These oscillations are possibly the signature of Fabry-Pérot fringes [40] result-
ing from multiple Bragg diffractions of the propagating incident wave at the two
interfaces of the thin film.

To verify whether the oscillations are indeed Fabry-Pérot fringes, we compare
the diffraction order of the fringes in the transmission spectra to the diffraction
order obtained from the Fabry-Pérot interference condition. From the Fabry-
Pérot interference condition corresponding to standing waves in the thin film [40],
the diffraction order Am in terms of the central frequency v, of a fringe is

Am = 2Lgv.ng;(v.), (3.2)
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Figure 3.4: Transmission spectra calculated for a thin silicon film solar cell at normal
incidence. Top panel: s polarization, bottom panel: p polarization. Black dashed
curves are the transmission spectra for a thin silicon film. Green solid curves are results
for the thin silicon film with a 3D inverse woodpile photonic crystal back reflector,
with dispersion but no absorption in silicon (Im(ns;) = 0). Red dashed-dotted curves
are results for the thin silicon film with a 3D inverse woodpile photonic crystal back
reflector, including absorption (Im(ns;) # 0).

with Lg; the thickess of the silicon film and ng;(v.) the dispersive refractive index
of silicon. We describe analytically the diffraction orders Am from Eq. 3.2 for the
central frequency v, of a fringe for the thin silicon film (thickness Lg; = 8c¢) in
Fig. 3.4 and the refractive index of silicon at v, from Ref. 31. Figure 3.5 shows an
agreement within 0.3% between the analytically and the numerically calculated
diffraction orders. Therefore, the oscillations revealed in the transmission spectra
of the thin silicon film in Fig. 3.4 are indeed Fabry-Pérot fringes. We note
from Eq. 3.2 that there exists a linear relation between the transmission spectra
and the absorption spectra. Therefore, Fabry-Pérot fringes will also appear in
the absorption spectra corresponding to the central frequencies of fringes in the
transmission spectra as we will see later on.

Figure 3.4 shows that the transmission between A = 600 nm and A = 1500
nm is nearly the same for a thin film with a photonic crystal back reflector with
and without imaginary part of the silicon refractive index. We note nearly 0%
transmission between A = 600 nm and A = 900 nm. These strong transmission
troughs indicate an s—polarized stop band from A = 647 nm to A = 874 nm
and a p—polarized stop band from A = 634 nm to A = 892 nm. From the good
agreement of the stop bands with and without absorption in silicon, we deduce
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Figure 3.5: Diffraction order versus the central frequency of the fringes in the trans-
mission spectra of the thin silicon film in Fig. 3.4. Red circles are the diffraction order
of the fringes taken directly from the transmission spectra. The black line represents
the analytical diffraction order calculated from Eq. 3.2 using the dispersive refractive
index of silicon in Ref. 31.

that an inverse woodpile photonic crystal behaves as a perfect reflector in the
visible range even with full absorption. This also shows that the absorption
length of silicon is longer than the Bragg attenuation length inside the stop
bands of the 3D inverse woodpile photonic crystal. Hence, the waves incident on
the photonic crystal are reflected back before being absorbed by the high-index
backbone of the photonic crystal. Therefore, the Fabry-Pérot fringes revealed
between A = 600 nm and A = 1450 for a thin silicon film are suppressed by
the stop bands of the photonic crystal back reflector. The transmission spectra
for the thin film with a photonic crystal back reflector reveals oscillations above
A = 900 nm for both polarizations. These oscillations have nearly the same
central frequencies and bandwidths as the Fabry-Pérot fringes revealed for thin
silicon film. Therefore, we conclude that these oscillations are indeed the Fabry-
Pérot fringes. We observe oscillations below A = 600 nm in the transmission
spectra for a thin silicon film with a photonic crystal back reflector with zero
imaginary part for the silicon refractive index. The transmission spectra with a
physically realistic imaginary refractive index show nearly 0% transmission below
A = 600 nm. Since silicon is strongly absorbing at wavelengths below A = 600
nm, no light remains unabsorbed and hence there are no more fringes.

Figure 3.6 shows the absorption spectra for a thin silicon film without and with
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Figure 3.6: Absorption spectra calculated for a thin silicon film solar cell at normal
incidence. Top panel: s polarization, bottom panel: p polarization. Green solid curves
are results for a thin silicon film. Red dashed-dotted curves are results for a thin silicon
film with a 3D inverse woodpile photonic crystal back reflector. The vertical black
dashed lines indicate the edges of the s—stop band in the top panel and p—stop band
in the bottom panel. The stop bandwidths are shown with the yellow bar. These stop
bands are obtained from the transmission spectra in Fig. 3.4.

a 3D inverse woodpile photonic crystal back reflector. We consider the dispersive
and complex refractive index for the silicon film and the high-index backbone
of the photonic crystal. We observe that the absorption for thin film is nearly
0% above A = 900 nm. This shows that silicon has negligible absorption in the
near infrared regime where the imaginary part of the silicon refractive index is
very small (Im(ng;) ~ 0 as shown in Fig. 3.3). Fabry-Pérot fringes are revealed
below A = 900 nm, corresponding to standing waves in the thin silicon film.
With decreasing wavelength, the imaginary part of the silicon refractive index
increases (as shown in Fig. 3.3) and hence the absorption in silicon increases in
Fig. 3.6.

After understanding the absorption spectra of the thin silicon film, we now
study the absorption spectra of a thin film with a photonic crystal back reflector,
see Figure 3.6. We observe that above A\ = 900 nm, the absorption spectra for
both polarizations match with the corresponding absorption spectra for the thin
film only. Between A = 600 nm and A = 900 nm, the absorption spectra for a thin
film with a photonic crystal back reflector differ considerably from the absorption
spectra for a thin film without back reflector. We observe enhancements and
oscillations between A = 600 nm and A = 900 nm in the absorption spectra of
the thin film with a photonic crystal back reflector for both polarizations, which
differs from the spectra for the thin film only.

In order to characterize this difference, we zoom in on the absorption inside
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Figure 3.7: Absorption in the stop band of a 3D inverse woodpile photonic crystal.
Top panel: s—, bottom panel: p—polarized light. Green solid curves are absorption
spectra for a thin silicon film. Red dashed-dotted curves are absorption spectra for a
thin silicon film with a 3D inverse woodpile photonic crystal back reflector. The vertical
black dashed lines indicate the edges of the s—stop band in the top panel and p—stop
band in the bottom panel. The stop bandwidths are shown as the yellow bar.

the stop bands between A = 600 nm and A = 900 nm in Fig. 3.7. We note that
in the s—stop band in the top panel the fringes for a thin film with photonic
crystal back reflector are enhanced in amplitude compared to the fringes for a
standalone thin film.

In the bottom panel of Fig. 3.7, we show the absorption spectra for p polariza-
tion at higher resolution in wavelength. We observe that the fringes inside the
p—stop band are clearly increased in number compared to the thin film only. We
will try to interpret this result by first considering diffraction from the photonic
crystal surface.

In Ref. 37, 38 and Chapter 2, the light is incident on the photonic crystal surface
from air. In contrast, the solar cell design in Fig. 3.1 shows that the light first
resides in a silicon medium, before it is incident on the photonic crystal surface.
Therefore, the wavelength A of the incident light reduces to A/ng;(\) inside the
silicon layer. Firstly, for the entire stop bands (both s and p) the wavelength
A/ngi(A) between A = 600 nm and A = 900 nm is considerably smaller than the
lattice parameter ¢ = 300 nm of the 3D inverse woodpile photonic crystal along
the I'Z direction in wave vector space. Secondly, a 3D inverse woodpile photonic
crystal introduces a periodic refractive index contrast at the interface with a thin
silicon film. Due to these two reasons, nonzero diffraction modes [25, 26] are
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generated from the photonic crystal-thin film interface at specific wavelengths
inside the stop bands, giving rise to a finite number of additional reflected waves.

The silicon film thickness Lg; = 8c is larger than half of the wavelength
A/nsi(N) inside the absorbing layer for the stop bands between A = 600 nm
and A = 900 nm. This satisfies the condition for a photonic crystal-thin film
interface to couple the reflected waves into the guided resonant modes [15, 22]
that propagate inside the film and are confined within the film via total inter-
nal reflection. The absorption on guided resonant modes can be very high [22],
sometimes approaching values as large as 100%, e.g., at A = 700 nm and 720 nm
in the bottom panel of Fig. 3.7. Therefore, the physical mechanism responsible
for the additional number of fringes is non-zero diffraction modes coupled into
guided resonant modes due to the photonic crystal back reflector. We note that
the perfect reflectivity of a 3D inverse woodpile photonic crystal extends over the
entire stop bands, whereas nonzero order diffraction modes and guided resonant
modes are limited to certain specific wavelengths. Later on in Section 3.3.7, we
investigate this topic further by decreasing the thickness of the film, such that
no guided resonant modes are allowed.

3.3.2 Comparison to a perfect metal

The top panel of Fig. 3.8 shows the comparison between the numerically and
the analytically calculated absorption spectra for a thin silicon film, also see
Appendix 3.B. The Fabry-Pérot fringes revealed in the top panel in the absorption
spectra of the thin film decay in amplitude with increasing wavelength, which is
in agreement with the observation made in Section 3.3.1.

Theoretically, a perfect metallic back reflector [15] is considered as an ideal
back reflector for a thin film solar cell for all wavelengths and for all polariza-
tions. Therefore, we compare the photonic crystal back reflector to an ideal back
reflector. The middle panel of Fig. 3.8 shows the absorption spectra for a thin
film with a perfect metallic back reflector, calculated using the method described
in Section 3.2. Fabry-Pérot fringes are revealed in the middle panel. The Fabry-
Pérot fringes at A = 700 nm, 720 nm, and 750 nm in the top panel are spaced by
20 nm and 30 nm. Similar spaced fringes in the middle panel are at A = 710 nm,
730 nm, and 760 nm. We note that the fringes in the middle panel are shifted
in wavelength with respect to the fringes in top panel. According to the Fresnel
equations [15, 39], when an incident wave in a low-index medium is reflected from
a medium with a higher refractive index it gets a phase shift of 180°. A perfect
metal has a very high refractive index compared to silicon, whereas a photonic
crystal has a lower effective index (as calculated in Section 3.2 of Chapter 2).
Therefore, the light reflected from the perfect metallic back reflector gets a phase
shift of 180°, and hence the fringes in the middle panel are shifted by half a free
spectral range with respect to the fringes in top panel. We also observe that the
fringes in the middle panel are enhanced in amplitude compared to the fringes
in the top panel. Since a perfect metal reflects all incident light, the distance
travelled by the light inside the absorbing silicon layer increases and hence the
overall absorption in the thin film increases.
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Figure 3.8: Calculated absorption spectra for a thin silicon film solar cell for
p—polarized light. Top panel: The analytically calculated absorption for a thin sili-
con film is shown in black solid curve. Blue circles represent the numerically computed
absorption for the thin silicon film. Middle panel: Blue dashed curve is the absorption
spectrum for a thin silicon film with a perfect metallic back reflector. Bottom panel:
Red dashed-dotted curve is the absorption spectrum for a thin silicon film with a 3D
inverse woodpile photonic crystal back reflector. The p—stop band is shown as the
yellow bar.

The bottom panel of Fig. 3.8 shows the absorption spectra for a thin film with
a photonic crystal back reflector. The Fabry-Pérot fringes inside the p—stop band
between A = 647 nm and A = 874 nm are enhanced in amplitude and numerous
compared to the Fabry-Pérot fringes in the top panel, in agreement with the
observation made in Section 3.3.1.

For the overall comparison of the fringes revealed in the absorption spectra
in all three panels of Fig. 3.8, we calculated the diffraction order for each fringe
using the Fabry-Pérot interference condition of Eq. 3.2. Figure 3.9 shows the
diffraction order of a fringe in Fig. 3.8 as a function of the central frequency of
a fringe and the corresponding refractive index of silicon. We note that between
any two diffraction orders for a thin film, there is only one diffraction order of a
thin film with a perfect metallic back reflector. The shift in the diffraction orders
for a thin film compared to the diffraction orders for a thin film with a perfect
metallic back reflector confirms the phase shift of 180° introduced by the perfect
metal. Thus, a perfect metal back reflector causes a phase shift in the existing
fringe, while the total number of fringes remain constant. Figure 3.9 reveals that
there is always more than one diffraction orders of a thin film with a photonic
crystal back reflector between two consecutive diffraction orders of a thin film.
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Figure 3.9: Diffraction order versus the central frequency for the Fabry-Pérot fringes
revealed in the absorption spectra in Fig. 3.8. Green circles represent fringes for a thin
silicon film. Blue triangles represent fringes for a thin silicon film with a perfect metallic
back reflector. Red squares represent fringes for a thin silicon film with a 3D inverse
woodpile photonic crystal back reflector.

In other words, a photonic crystal back reflector increases the number of fringes
for a thin film. We derive from the slope in Fig. 3.9 that the effective refractive
index of the silicon remains unchanged by the addition of either a perfect metallic
back reflector or a photonic crystal back reflector. Thus, we conclude that the
addition of a back reflector increases the effective path length for an absorbing
layer and hence enhances the overall absorption, without changing the effective
refractive index of the absorbing medium.

3.3.3 Absorption enhancement of a thin silicon film

To quantify a 3D inverse woodpile photonic crystal as a back reflector in the
visible regime, we calculate the absorption enhancement 7,45 of the thin silicon
film solar cell shown in Fig 3.2 as

A(si+3DPC)

abs = , 3.3
Nab A, (3.3)

with A(s;43pcy the absorption in a thin silicon film with a photonic crystal
back reflector and Ag; the absorption in a silicon film of thickness equal to the
absorbing layer Lg; of a solar cell.
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Figure 3.10: Absorption enhancement spectra for a thin silicon film. Top panel: s—,
bottom panel: p—polarized light. D1 indicates the thin silicon film volume and D2 in-
dicates the combined volume of a thin silicon film and a 3D inverse woodpile photonic
crystal back reflector. The green solid and the red dashed-dotted curves are enhance-
ment spectra in the D1 and D2 domains, respectively. The vertical black dashed lines
indicate the edges of the s—stop band in the top panel and the p—stop band in the
bottom panel. The stop bands are shown as the yellow bar. The violet solid lines
denote the frequency-averaged absorption enhancements over the stop band calculated
using Eq. 3.4.

Figure 3.10 shows the absorption enhancement 7,5 for a thin film with a
photonic crystal back reflector at the normal incidence for both polarizations.
The absorption enhancement oscillates between 1 and 9 inside the stop bands
between A = 640 nm and A = 900 nm. To average the enhancement over a
frequency range such as the stop band, we employ the definition

k
i=1 Vi
< nabs >= Z kl ’ (34)

Dim1 Vi
with &k the number of discrete frequencies considered. The frequency-averaged
absorption enhancement is nearly 74, = 2.45 for the s—stop band and nearly
Nabs = 2.78 for the p—stop band.

A perfect back reflector gives 100% specular reflectivity as the 0* order of
diffraction. Hence, the absorption enhancement 7,5 for a thin film with a perfect
back reflector is always less than 7,,s < 2. For specific wavelengths, a photonic
crystal back reflector generates non-zero order diffraction modes, which couples
light into guided resonant modes and confines the light inside the thin film via
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total internal reflection, as discussed in Section 3.3.1. Since the effective optical
path length travelled by a non-zero diffraction mode is longer than the one trav-
elled by a zero order diffraction mode, therefore a photonic crystal back reflector
gives an absorption enhancement greater than 7,5 > 2 for specific wavelengths,
as observed in Fig. 3.10. This observation strengthens our assertion that a 3D
inverse woodpile photonic crystal enhances the absorption of a thin silicon film
by (i) behaving as a perfect reflector, exhibiting nearly 100% reflectivity in the
stop bands, as well as (ii) generating guided resonant modes at many discrete
wavelengths.

Since the high-index backbone of the 3D inverse woodpile photonic crystal
is silicon, the addition of a 3D inverse woodpile photonic crystal back reflector
effectively increases the total amount of silicon in the solar cell. To investigate
whether the absorption is enhanced due to the additional silicon material, we
calculated the absorption enhancement within the volume of the absorbing layer
Lg; of the solar cell (see Fig. 3.2) using the volume integral of the total power
dissipation density from Ref. 32. Figure 3.10 shows the comparison between
absorption enhancement spectra for the absorbing layer Lg; of the solar cell and
for the complete solar cell. We observe that the absorption enhancement spectra
for the absorbing layer of the solar cell agree very well with the spectra for the
complete solar cell in the stop bands between A = 640 nm and A = 900 nm.
Therefore, the absorption in the high-index backbone of a 3D inverse woodpile
photonic crystal is negligible inside the stop bands, even in the visible regime.
This also shows that the Bragg attenuation length inside the stop bands for a 3D
inverse woodpile photonic crystal is indeed smaller than the absorption depth for
silicon in the visible regime.

3.3.4 Angle- and wavelength-resolved absorption

As an extension of the transmission and absorption spectra at normal incidence
in Sec 3.3.1, we also consider transmission and absorption for angles of incidence
up to 80° off normal. Figures 3.11(a) and 3.11(b) show transmission spectra maps
for a thin silicon film with a 3D inverse woodpile photonic crystal back reflec-
tor. We observe that an angle-independent (omnidirectional) and polarization-
independent range of nearly 0% transmission appears between A = 680 nm and
A = 880 nm. We refer to the wavelength range from A = 680 nm to A = 880
nm as the omnidirectional stop band [26]. Therefore, a photonic crystal acts as a
perfect reflector in the omnidirectional stop band for all incident angles and for
all polarizations, even with full absorption in the refractive index. This shows
that the Bragg attenuation length for the 3D inverse woodpile photonic crystal
is smaller than the absorption length of silicon for all incident angles for the
omnidirectional stop band.

To investigate the effect of the incident angle on the absorption enhancement
of a 3D inverse woodpile photonic crystal back reflector in the visible regime,
we performed calculations for angles of incidence up to 80° off normal. Figures
3.12(a) and 3.12(b) show the absorption enhancement maps for both polarizations
for the omnidirectional stop band obtained from Fig. 3.11(a) and 3.11(b). To
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Figure 3.11: Calculated angle- and wavelength-resolved transmission spectra for a thin
silicon film solar cell with a 3D inverse woodpile photonic crystal back reflector for
(a) s polarization and (b) p polarization. The dark blue color represents nearly 0%
transmission that occurs in the stop band at all incident angles. The white dashed box
indicates an angle- and polarization-independent range with nearly 0% transmission.
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Figure 3.12: Absorption enhancement factor for a thin silicon film solar cell with a 3D
inverse woodpile photonic crystal back reflector for (¢) s— and (d) p—polarized light.
The white dashed box indicates the angle- and polarization-independent wavelength
range obtained from Fig. 3.11. The dark blue color represents an enhancement ratio
less than or equal to 1. Absorption enhancement n;bs is calculated using the Eq. 3.3.
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calculate the angle-averaged and frequency-averaged absorption enhancement,
we employ the definition

4 1< Zkfl Vi
< laps >= > cos(0;) = (3.5)

k
i=1 dic1 Vi

with n the number of incident angles and k the number of frequencies and.

Therefore, the angle- and frequency-averaged absorption enhancement for s
polarization is 77;175 = 2.38 and for p polarization is n;bs = 2.87, which exceeds
the maximum absorption enhancement feasible for a perfect reflector. These
enhancements are possible only if a photonic crystal back reflector generates
non-zeroth order diffraction modes at certain discrete wavelengths for all inci-
dent angles. Once these non-zero diffraction modes couple into guided resonant
modes and are confined inside the thin film via total internal reflection, the ef-
fective optical path length travelled is longer than the one travelled by a zero
order diffraction mode. Therefore, a 3D inverse woodpile crystal enhances the
absorption of a thin silicon film for all incident angles and polarizations by (i)
giving perfect reflectivity inside the omnidirectional stop band and (ii) generating
guided resonances for specific wavelengths.

3.3.5 Absorption enhancement without the additional length of
a back reflector

At this point in our discussion, one could hypothesize that an additional back
reflector increases the total length of a thin silicon film solar cell especially since
we propose the back reflector to be a photonic crystal that is made of silicon, just
like the thin film. One possible design is that we position a 3D inverse woodpile
photonic crystal at the back end of a thin silicon film. This design will keep
the length of the solar cell unchanged as well as make the thin film solar cell
lighter, given that the 3D inverse woodpile photonic crystal consists of nearly
80% volume fraction of air, as shown in Fig. 1.2 of Chapter 1.

To investigate this design, we break the problem down into three steps, in order
to understand the physics behind the thickness of the thin film solar cell. First,
we perform simulations of a thin silicon film of thickness Lg; = 8c. Second, we
consider a photonic crystal back reflector of thickness Lg; = 4c connected to a
thin silicon film of thickness Lg; = 8c. Third, we perform simulations for a thin
silicon film of thickness Lg; = 12¢, which equals the combined thickness of a thin
film and a photonic crystal back reflector in the second step. Finally, we compare
the transmission and absorption spectra calculated in these three steps.

Figure 3.13 shows Fabry-Pérot fringes between A = 500 nm and A = 1500 nm
in the transmission spectra for a thin silicon film with thicknesses Lg; = 8c and
Lg; = 12c. We deduce from Eq. 3.2 that the diffraction order of Fabry-Pérot
fringes increases linearly with the increasing film thickness. Therefore, the num-
ber of Fabry-Pérot fringes in the transmission spectra for a thin film with thick-
ness Lg; = 12c is greater than in the film with thickness Lg; = 8. The amplitude
of these Fabry-Pérot fringes decreases with the decreasing wavelength due to the
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Figure 3.13: Calculated transmission spectra for a thin silicon film solar cell. Top
panel: s—, bottom panel: p—polarized light. Green solid and the blue dotted curves are
the results for a thin silicon film with thicknesses Ls; = 8c and Lg; = 12¢, respectively.
Red dashed-dotted curves are results for a solar cell with a thin silicon film thickness
Lsi; = 4c and a 3D inverse woodpile photonic crystal back reflector thickness Lsppc =
4c. The vertical black dashed lines indicate the edges of the s—stop band in the top
panel and p—stop band in the bottom panel. The stop bands are shown as the yellow
bar.

increase in the imaginary part of the silicon refractive index, as discussed before
in Section 3.3.1. The volume of silicon for the film thickness Lg; = 12c¢ is larger
than for the film thickness Lg; = 8c. Therefore, the Fabry-Pérot fringes in the
transmission spectra for the film thickness Lg; = 12¢ decay faster by absorption
than for the film thickness Lg; = 8c.

Figure 3.13 shows the transmission spectra for a thin silicon film with thick-
ness Lg; = 8¢ and a photonic crystal back reflector with thickness Lsppc = 4c.
We note that inside the stop bands between A = 600 nm and A = 900 nm the
transmission for a thin film with a photonic crystal back reflector is considerably
lower than for a thin film only with thicknesses Lg; = 8c and Lg; = 12¢. There-
fore, even if we convert the part of the thin silicon film in a 3D inverse woodpile
photonic crystal, the overall unabsorbed light transmitting through the solar cell
diminishes to nearly 0% inside the stop bands. Thus, the transmission inside
the broad stop bands would correspond to an effective thin film with an infinite
thickness.

To investigate the stop band effect on absorption, we zoom in on the absorption
spectra inside the stop bands in Fig. 3.7. Figure 3.14 shows the Fabry-Pérot
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Figure 3.14: Absorption spectra in the stop band of a 3D inverse woodpile photonic
crystal. Top panel: s—, bottom panel: p—polarized light. Green solid and the blue
dotted curves are the results for a thin silicon film with thicknesses Lg; = 8c and
Lsi; = 12¢, respectively. Red dashed-dotted curves are results for a solar cell with
a thin silicon film thickness Ls; = 4c¢ and a photonic crystal back reflector thickness
Lsppc = 4c. The vertical black dashed lines indicate the edges of the s—stop band in
the top panel and p—stop band in the bottom panel. The stop bands are shown as the
yellow bar.

fringes between A = 640 nm and A = 900 nm for a thin film with thicknesses
Lg; = 8c and Lg; = 12c. We note that the number of Fabry-Pérot fringes in
the absorption spectra increases with increasing film thickness, as is evident from
the Fabry-Pérot condition in Eq. 3.2. The thin film with thickness Lg; = 12¢
has a larger silicon volume and hence has a slightly higher amplitude for the
Fabry-Pérot fringes in the absorption spectra compared to the fringes for film
thickness Lg; = 8c. Between A = 600 nm and A = 900 nm, Fig. 3.14 reveals that
inside stop bands the amplitude of fringes in the absorption spectra for a thin film
Lg; = 8c with a photonic crystal back reflector Lsppc = 4c is significantly higher
than for a thin film of total thickness Lg; = 12¢. Using Eq. 3.4, the frequency-
averaged absorption enhancement due to a photonic crystal back reflector is
nearly ngps = 1.92 for the s—stop band and nearly 7,5 = 2.1 for the p—stop
band compared to a thin film with thickness Lg; = 12¢. Therefore, fabricating a
3D inverse woodpile photonic crystal in a part of the thin silicon film increases
the overall absorption of the solar cell inside the stop bands, even though the
silicon volume in the solar cell reduces. To obtain maximum efficiency for a given
range of wavelengths keeping a constant thickness of a solar cell, one can find the
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Figure 3.15: Absorption versus thickness of thin silicon film for a wavelength A = 760
nm, which is inside the stop band of a 3D inverse woodpile photonic crystal for both s
and p polarizations. Top panel: s—, bottom panel: p—polarized light. Green squares
pertain to a thin silicon film. Red circles pertain to a thin silicon film with a 3D inverse
woodpile photonic crystal back reflector. Green solid and red dashed-dotted curves
are the guide to the eye showing modulations in absorption spectra. The top ordinate
shows the diffraction order calculated using the Fabry-Pérot interference condition of
Eq. 3.2.

optimized ratio between the thicknesses of a thin film and of a photonic crystal
back reflector. Regarding thin silicon film solar cells, it is a generally advised not
to etch features directly into the active region [8, 25]. Ref. 8 and Ref. 25 discuss
that etching into deposited silicon can remove a significant part of the absorbing
layer and texturing the surface of a thin-cut free-standing wafer can significantly
reduces its mechanical strength. Therefore, experimental and numerical studies
are needed to ascertain the impact of fabricating a 3D inverse woodpile photonic
crystal back reflector in a thin silicon film on the overall photovoltaic efficiency.

3.3.6 Thickness of the absorbing layer

To investigate the effect of varying the thickness of the absorbing layer of a thin
film silicon solar cell, we calculated the absorption for film thicknesses between
Lg; = c and Lg; = 8c. We studied 3D inverse woodpile photonic crystal of a
constant thickness Lyppc = 4c as back reflector. Figure 3.15 shows the absorp-
tion spectra for a wavelength inside the stop band with varying thicknesses of
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the thin film. We note that the absorption for a thin silicon film shows a mono-
tonic increase with increasing film thickness for both polarizations. Figure 3.15
shows that the absorption for a thin film with a photonic crystal back reflector
is always higher than the corresponding standalone thin silicon film. We observe
that absorption spectra of a thin film with a photonic crystal back reflector re-
veals oscillations with increasing film thicknesses for both polarizations. These
oscillations follow the diffraction order using the Fabry-Pérot interference condi-
tion of Eq. 3.2 and hence are Fabry-Pérot fringes. These Fabry-Pérot fringes are
resulting from the multiple Bragg diffractions [27, 40, 41] between air-silicon and
silicon-inverse woodpile interfaces. In order to maximize photovoltaic efficiency
for a given wavelength, the thickness of a thin film had better be chosen to the
maxima of the Fabry-Pérot fringes in Fig. 3.15.

3.3.7 Sub-wavelength thin absorbing layer

We found in Section 3.3.1 that a photonic crystal-thin film interface can couple
the diffracted waves into guided resonant modes for a film thickness more than
half of the wavelength of the incident light Lg; > m To investigate the role
of guided modes, we study in this section the impact of a back reflector on a
silicon absorbing layer with a thickness less than half of wavelength A/ng;(X) of
the incident light. We reduce the thickness of the thin silicon film illustrated in
Fig. 3.2 to Lg; = 80 nm, which does not satisfy the condition of guided resonant
modes for any wavelength higher than A = 640 nm. To accurately mesh this
complex geometry, an upper limit Al < ﬁ?nsl_) is imposed to the edge length
Al on any tetrahedron in the inverse woodpile photonic crystal and in the thin
silicon film, with max(ng;) the maximum silicon refractive index for the selected
range of wavelengths.

Figure 3.16 shows the absorption spectra for a sub-wavelength thin silicon film
solar cell for both s and p polarizations. The absorption depth of silicon between
A =600 nm and A = 900 nm is nearly 1000 nm [31], which is very large compared
to the thickness of absorbing layer Lg; = 80 nm. Therefore, the absorption for a
thin silicon film with and without a perfect metallic back reflector is nearly 0%
between A = 600 nm and A = 900 nm in Fig. 3.16. When a photonic crystal is
employed as a back reflector to the sub-wavelength thin silicon film, we observe
few sharp peaks appearing between A = 600 nm and A = 900 nm in Fig. 3.16.
There are four absorption peaks (namely S1, S2, S3, and S4) inside the s—stop
band and two absorption peaks (namely P1 and P2) inside the p—stop band.
Since the thickness of the silicon film Lg; = 80 nm does not allow for guided
resonance modes for these stop bands, the observed absorption peaks cannot be
due to the guided resonant modes.

One can argue that these fringes are the result of the absorption in the extra
silicon volume in the form of the photonic crystal back reflector. To investigate
whether the absorption peaks appeared due to the absorption in the photonic
crystal back reflector, we calculated the absorption within the volume of absorb-
ing layer of the solar cell, using the power per unit volume formulae of Ref. 32.
Figure 3.16 shows the comparison between absorption spectra for the absorbing
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Figure 3.16: Absorption spectra for a sub-wavelength thin silicon film solar cell. Top
panel: s—, bottom panel: p—polarized light. Green solid curves are absorption spec-
tra calculated for a sub-wavelength thin silicon film. Blue dashed curves are absorp-
tion spectra calculated for a sub-wavelength thin silicon film with a perfect metallic
back reflector. Red dashed-dotted curves are absorption spectra calculated for a sub-
wavelength thin silicon film with a 3D inverse woodpile photonic crystal back reflector.
Black circles represent the absorption in the silicon layer of a sub-wavelength thin sili-
con film with a photonic crystal back reflector. The vertical black dashed lines indicate
the edges of the s—stop band in the top panel and p—stop band in the bottom panel.
The stop bands are shown as the yellow bar.

layer of the solar cell and the complete solar cell. We observe that all six absorp-
tion peaks (namely S1, S2, S3, S4, P1, and P2) are also present in the absorption
spectra calculated only for the absorbing layer of the solar cell. Therefore we
conclude that the absorption in the high-index backbone of a 3D inverse wood-
pile photonic crystal back reflector is not the reason for the appearance of these
peaks.

To reason with the physics behind these intriguing peaks, we investigate the
distribution of the electric field in the computational cell at one peak for each
polarization, e.g. S3 and P1. The incident electric field for s polarization is
in the X direction and for the p polarization is in the Y direction. Therefore,
we investigate the non-incident components of the electric field. Figure 3.17
shows distribution along X axis of E, and E, electric field components for s
polarization and of FE, and E, components for p polarizations. We observe that
the high electric field is present either inside the thin film (in S3_Ey and P1_Ex)
or at the thin film-photonic crystal interface (in S3_Ez and P1_Ez).
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Figure 3.17: Distribution of the electric field components along the Z axis of the com-
putational cell illustrated in Fig. 3.2. S3 and P1 represent the absorption peaks present
in Fig 3.16. Red and blue denote the maxima and the minima of the electric field
components, respectively.

In S3_Ey and P1_Ex, the high electric field distributions show the periodic
variations in the plane of the thin film that are characteristic of guided res-
onances [18, 42]. Since the thickness of the silicon film does not satisfy the
condition of the guided resonant modes, we investigate the physics behind the
reflectivity from the photonic crystal. The incident light is completely reflected
by the photonic crystal after covering the Bragg attenuation length [40]. Chap-
ter 2 shows that the Bragg attenuation length for an inverse woodpile is frequency
dependent and is nearly Lg = 0.6¢ at the p-stop band center. Hence, the sum of
the Bragg attenuation length for an inverse woodpile and the thickness of the sili-
con film can satisfy the condition of the guided resonances at discrete frequencies
(or wavelengths) and hence these peaks appear.

In S3_Ez and P1_Ez, the high electric field distributions localized at the air-
film and at the film-photonic crystal interfaces decay away from the interfaces.
These field distributions are plausibly the signature of the confinement of the
surface mode [26, 43]. Hence, we visualize the structure in this section as a thin
absorbing dielectric film added on top of a photonic crystal in order to confine a
surface-defect, which causes the propagation of the incident wave via the surface
state resonances. Therefore, the intriguing peaks observed in Fig. 3.16 are the
combined effect of two physical mechanisms: (i) a guided resonance due to the
Bragg attenuation length and (ii) confinement due to a surface-defect.
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3.4 Conclusions and outlook

We have studied the absorption of light by a thin silicon film with and without a
back reflector by numerical methods. We investigated a thin 3D photonic band
gap crystal as a back reflector in the visible regime, which reflects light within
the band gap for all directions and for all polarizations. We used finite-element
computations of the 3D time-harmonic Maxwell equations to calculate absorp-
tion of a thin silicon film solar cell with a 3D inverse woodpile photonic crystal
back reflector. We tailored the finite-sized inverse woodpile crystal design to
have a broad photonic band gap in the visible range. We have used the refrac-
tive index of real silicon including dispersion and absorption, in order to make
our calculations relevant to experiments. From the comparison of the photonic
crystal back reflector to a perfect metallic back reflector, we infer that a photonic
crystal back reflector increases the number of Fabry-Pérot fringes for a thin film,
without changing the effective refractive index of silicon. We observe that a 3D
inverse woodpile photonic crystal enhances the absorption of a thin silicon film
by (i) behaving as a perfect reflector, exhibiting nearly 100% reflectivity in the
stop bands, as well as (ii) generating guided resonant modes at many discrete
wavelengths. Our absorption results show nearly 2.62 times enhanced frequency-,
angle-, polarization-averaged absorption between A = 680 nm and A = 890 nm
compared to a 2400 nm thin silicon film. We find that the photovoltaic efficiency
is enhanced by positioning an inverse woodpile back reflector at the back end of
a thin silicon film, which will keep the length of the solar cell unchanged as well
as make the thin film solar cell lighter. In order to maximize the efficiency for a
given wavelength, we show that the thickness of a thin film had better be chosen
to the maxima of the Fabry-Pérot fringes. For a sub-wavelength thin absorbing
layer with a photonic crystal back reflector, we identify and demonstrate two
physical mechanisms causing the giant enhancement at discrete wavelengths: (i)
a guided resonance due to the Bragg attenuation length and (ii) confinement due
to a surface-defect.

In order to enhance the absorption of light over a wavelength range broader
than reported here, we propose to employ an inverse woodpile crystal with the
light incident in the I'Y direction as a back reflector for a thin film. The reason is
that for a 3D silicon inverse woodpile photonic crystal, the I'Y stop gap (relative
bandwidth 39.1 %) is about 1.3x broader than the I'Z (or symmetry-related T'X)
stop gap (relative bandwidth 30.4 %) [27, 29, 30, 37]. Moreover, the stop gap of
an inverse woodpile crystal depends on the lattice parameters and gives perfect
reflectivity, provided the Bragg attenuation length of an inverse woodpile crystal
is smaller than the absorption length of silicon. Therefore, a novel back reflector
consisting of a series of inverse woodpile crystals with varying lattice parameters
and different stop gaps will enhance the absorption over a broad wavelength
range, which will be the combination of individual stop gaps.
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Figure 3.18: Analytical calculation versus numerical calculation for reflectivity of a
semi-infinite dielectric medium for p polarization at wavelength A = 752 nm, in the
visible regime. Data for the refractive index of the dielectric medium is obtained from
Ref. 31. The analytically calculated reflectivity (R.a) is shown in green line. R4 is exact
only for 6 = 0°. Blue circles represent the numerically computed reflectivity (R ).

3.A Analytical validation of the numerical scheme
with a semi-infinite homogeneous medium

To validate our numerical scheme, we calculate reflectivity spectra of a system
that can be analytically analyzed using Fresnel’s equations with absorption,
namely a homogeneous dielectric medium [15, 39]. We consider p—polarized
plane waves at a single frequency with a range of angles of incidence. We replace
the photonic crystal and the air layer on the right in Fig. 3.2 with a homogeneous
silicon medium. This results in a semi-infinite homogeneous medium that is sep-
arated from the source by an air layer and a silicon-air interface. This numerical
calculation is performed for the mesh resolution same as the one used in Section
3.2. The angular resolution is 2°.

In Fig 3.18 we show the calculated reflectivity spectra of a semi-infinite ho-
mogeneous medium for the above defined reference computational cell. We note
that the numerical calculation agrees very well with the analytical results from
the Fresnel equations using the dispersive and complex refractive index of silicon.
We observe the Brewster angle at 8 = 75.3°, which matches the value obtained
from an analytical calculation of Heavens [39]. Ref. 39 gives an exact expression
of the reflectivity only at normal incidence to the surface of a semi-infinite ab-
sorbing medium. To calculate the relative error AR,..; between the numerical
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calculation and the analytical result, we employ the definition

Ry0— Ry )
Rap

with Ry o the numerical reflectivity, and R 4 o the analytical reflectivity at normal
incidence. For the solution shown in Fig. 3.18, the error is only about AR,..; =
0.007. Therefore, the error bar on our calculated results is estimated to be 0.7%,
which is clearly sufficient to assess the role of a photonic crystal back reflector.

ARy = ( (3.6)

3.B Analytical validation of the numerical scheme
with a homogeneous thin-film

To validate our numerical scheme for two interfaces, we calculate the reflectivity
spectra of a system that can be analytically approximated using Fresnel’s equa-
tions with absorption, namely a homogeneous dielectric film [15, 39]. We consider
p—polarized plane waves. We replace the photonic crystal on the right in Fig. 3.2
with a homogeneous silicon medium. This results in a homogeneous film of sili-
con that is separated from the source by an air layer and a silicon-air interface.
This numerical calculation is performed for the same mesh resolution as the one
used in Section 3.2. Figure 3.8 shows the calculated analytical spectra of a thin
silicon film for the above defined reference computational cell. We note that the
numerical calculation agrees very well with the analytical results obtained from
the Fresnel equations using the dispersive and complex refractive index of silicon.
To calculate the relative error AR,..; between the numerical calculation and the
analytical result, we employ the definition

_ 1 " ((Tai —Tni)?  (Rai— Ryi)?
Afirel = g (Z < T2 + Ril (37)

i=1 Al

with (T, Rn,;) the numerical transmission and reflectivity, and (T4 ;, R4 ;) the
analytical transmission and reflectivity and n the number of wavelengths. For
the solution shown in Fig. 3.8, the error is only about AT;..; = 0.0035, hence we
consider the calculation to be converged.
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CHAPTER 4

Large energy enhancement at cavity resonances in
a three-dimensional photonic band gap crystal with
finite support

4.1 Introduction

Capturing light in a minuscule spatial volume is a flourishing field of nanophoton-
ics [1, 2]. Notable applications are trapping or slowing down of photons [1], sens-
ing for bio applications [3], controlled enhancement of spontaneous emission [4],
and cavity quantum electrodynamics [5-7]. Up to date, many devices have been
reported including microspheres [8, 9], micropillars [4, 10], microdisks [14], Fabry-
Pérot-type plasmon cavities [11, 12], microtoroids [13], or photonic crystal cavi-
ties [15, 16].

Among recent developments, a cavity formed by a defect embedded in a three-
dimensional photonic band gap crystal has a prime significance [17, 18], since the
confinement of light is truly three-dimensional and there is no leakage of light as
in, e.g., a pillar or a 2D photonic crystal. A defect in a photonic crystal is formed
by either the addition or the removal of the high-index backbone material [19].
The defect formed by adding the high-index backbone material is called a donor
defect and the one formed by removing the high-index backbone material is called
an acceptor defect [19-21], since in the first case the defect level derives from the
high frequency (= “conduction”) bands, whereas in the second case the level
derives from the low frequency (= “valence”) bands [22].

3D inverse woodpile photonic crystals are symmetry related to the cubic dia-
mond crystals [23] and are known for their broad band gaps [24, 25], which lead
to an optimal shielding of the embedded cavity. Ref. 26 proposed a design for a
cavity in a 3D inverse woodpile photonic crystal, where the point defect that acts
as a cavity is formed in the proximal region of two orthogonal pores with a radius
that differs from the ones in the bulk of the crystal, as illustrated in Fig. 4.1. For
an inverse woodpile crystal, Woldering et al. observed that the cavity resonances
occur only for smaller defect pores (yielding donor levels), but not for larger
ones, thus no acceptor levels appear. Moreover, they found that it takes a cer-
tain threshold in the pore radius change Ar > 0 to observe the cavity resonances.
Each of these resonances has a frequency w nearly invariable with the wave vector
k. Therefore, it is logical by Fourier transform that the resonance frequency we
is localized in real space 7~ and hence w. will be independent of the incident angle
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Figure 4.1: Schematic illustration of a cubic inverse woodpile photonic crystal with a
point defect. The structure has been cut through the center of the cavity and parallel to
the Y Z plane. The proximal region of the two defect pores, each with a radius smaller
than the bulk radius, results in a region with an excess of high-index material, indicated
by the orange ellipse.

in reflectivity. The small mode volume of order V' =~ A3(resonance wavelength
cubed) of the cavity resonances reported by Ref. 26 will lead to a large Purcell
factor [27] and ultimately a large local enhancement of the spontaneous emission
rate of an emitter [4, 28-31]. However, since the calculation performed by Ref. 26
has no surrounding vacuum, the cavity quality factor cannot be calculated and
the Purcell factor could not be studied.

Here we investigate the optical properties of photonic band gap cavities with
a design as in Ref. 26. Therefore, we study the reflectivity and absorption of
a 3D silicon inverse woodpile photonic crystal with symmetry-disruption due to
finite support and an intentional point defect. By comparing defect bands in
the band structure for an infinite crystal and troughs in the reflectivity spectra
for a finite crystal, we identify cavity resonances and their field patterns. We
verify the angle-dependency to confirm the localization of the cavity resonances
in real space. Since the photonic crystal has a finite support, we calculate the
quality factor and hence the Purcell factor for these resonances. We calculate
the accurate electric-field energy enhancement due to these resonances and assess
their potential application to enhance the photovoltaic efficiency. To investigate
the effect of the point defect on the linear regime of the band structure, we study
resonances existing below the 3D band gap of a perfect crystal. Consequently, our
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numerical analysis provides a novel insight in understanding resonances appearing
due to the locally disrupted lattice symmetry in a 3D inverse woodpile photonic
crystal and their potential application in photovoltaics.

4.2 Methods

Woldering et al. [26] calculated the photonic band structure (frequency w versus
wave vector E) of a supercell of the 3D inverse woodpile photonic crystal by
employing a plane-wave expansion method [32] that assumes the structure to
be infinitely extended. They reported that the defect pore radius ' = 0.5r
gives optimal light confinement. In order to relate to previous results, we tuned
the parameters in our calculations, namely an optimal ideal pore radius [24,
33] £ = 0.24, an optimal defect pore radius [26] % = 0.12, and a dielectric
permittivity [25, 34] e = 12.1, typical for silicon in the near infrared and telecom
ranges.

To investigate features related to the finite size or to unavoidable deviations
from perfect periodicity, we study the reflectivity spectra for the complex system
of the photonic crystal with finite support and with a point defect. We employ the
commercial COMSOL finite-element method (FEM) [35] solver to solve the time-
harmonic Maxwell equations. We employ Bloch-Floquet periodic boundaries in
the £X and the +Y directions to describe a thin slab [22]. We use incident
plane waves with either s polarization (the electric field perpendicular to the
plane of incidence) or p polarization (the magnetic field normal to the plane of
incidence), and with an angle of incidence that we discretely varied between 0°
and 80°. To compute the reflectivity spectra for a crystal with finite support,
absorbing boundaries are employed in the —Z and +Z directions. Therefore,
there is only one point defect in the direction of propagation of the incident
plane wave. The incident field starts from a plane in the —Z direction that is
separated from the crystal by an air layer. The plane represents a boundary
condition rather than a true current source since it also absorbs the reflected
waves [36]. Since our results in Chapter 2 and Ref. 37 revealed that a thickness
L > 3c (c is the lattice parameter for an inverse woodpile crystal) is sufficient to
show the band gap property of a perfect 3D inverse woodpile crystal, we select
3 x 3 x 3 as the dimension of the super cell, as illustrated in Fig. 4.1.

We investigate the symmetry-disruption effect of the crystal interfaces by com-
paring the reflectivity spectra for a thin slab to the corresponding photonic band
structure for an infinitely extended crystal. In order to eliminate the possi-
ble deviation arising due to differences in the numerical methods or the dielec-
tric permittivity distributions, we employ the eigenvalue solver of the COMSOL
finite-element method (FEM) [35] to compute the photonic band structure. Since
a photonic band structure pertains only to an infinitely extended crystal, we al-
ter our finite reflectivity computational cell by employing Bloch-Floquet periodic
boundaries in all three directions £X, Y, and £Z directions [22]. Therefore,
this supercell is replicated infinitely and a point defect occurs once every three
unit cells in each dimension. Furthermore, we highlight the contrast between the
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band structures obtained from the plane-wave expansion method and the finite
element method in Appendix 4.A.

We use tetrahedra as basic elements in our finite element mesh to subdivide
the 3D computational cell into elements. To accurately Inesh sharp interfaces
in a 3D inverse woodpile crystal, an upper limit of Al < g \/7 is imposed to
the edge length Al on any tetrahedron in the inverse woodpile, with €., the
maximum dielectric permittivity for the selected range of frequencies. We show
an extensive analysis of the mesh convergence in Appendix 4.B. To detect all
possible reflectivity troughs, we use a frequency resolution of o = 0.0005 for the
calculations in the 3D band gap and 6@ = 0.001 below the 3D band gap [38]. We
perform the frequency convergence analysis in Appendix 4.C. All calculations are
performed on the “Serendipity” cluster [39] at MACS in MESA+.

In order to simplify the physical interpretation of the point defect in a 3D
inverse woodpile photonic crystal, we decided to consider the 3D photonic band
gap of a perfect inverse woodpile as the reference, where the band gap exists
between w = 0.51 and @ = 0.646 as shown in Fig. 4.2. So we subdivide the
frequency range into two parts: the range below the 3D band gap and the range
consisting of defect bands in the 3D band gap.

4.3 Results

4.3.1 Cavity resonances within the 3D band gap

The middle panel of Fig. 4.2 shows the polarization-resolved band structure for
a 3 x 3 x 3 supercell of the 3D inverse woodpile photonic crystal with a point
defect. With increasing frequency starting from the bottom of the band gap at
@ = 0.51, we observe that there is one isolated s-polarized defect band S1 at
@ = 0.5144 and four isolated p-polarized defect bands P1, P2, P3, and P4 at
@ = 0.5140,0.5213,0.5376, and 0.5441, respectively. Ref. 26 also reported five
isolated defect bands without mentioning the polarization states and at frequen-
cies nearly Aw = 0.007 higher than our calculations. This frequency shift is
attributed to different spatial resolutions and numerical methods employed to
calculate the band structures (see Appendix 4.A for the detailed comparison).
There are numerous s— and p—defect bands beyond @w = 0.55, but they are nei-
ther isolated nor dispersionless. Therefore, we disregard them as potential cavity
resonances, similar to Ref. 26.

Since a defect band in the band structure corresponds to a frequency at which
incident light can couple to a Bloch mode in the photonic crystal, it is expected
that there is a trough in the reflectivity spectra corresponding to each of the five
isolated defect bands. In order to identify these resonance troughs, we calculate
reflectivity inside the 3D band gap at normal incidence for a 3 x 3 x 3 supercell
of the 3D inverse woodpile photonic crystal with a point defect. The top and
bottom panels of Fig. 4.2 show the reflectivity spectra for s and p polarizations,
respectively. We observe a multitude of troughs between @ = 0.50 and @ = 0.55
for both polarizations.
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Figure 4.2: Reflectivity spectra in the 3D band gap calculated for a 3D inverse wood-
pile photonic crystal with a point defect at normal incidence in the I'Z direction. In
the top and bottom panels, red dashed-dotted and green dashed curves are reflectivity
spectra for s and p polarizations, respectively. The middle panel shows the band struc-
ture for the I'Z direction, where the 3D band gap of the perfect crystal is shown with
the yellow bar. The wave vector is expressed as k= (ka/2m). Red dashed-dotted lines
indicate the s—polarized bands and green dashed lines indicate p—polarized bands.

To match a defect band for an infinite crystal to a corresponding reflectiv-
ity trough for a finite crystal, we cross-correlate the spatial distribution of the
electric-field |E| (7, @;) of a defect band @w; with a field |E| (¥,&) calculated at a
frequency @ in the reflectivity spectra. We take the cross section through the
center of the cavity and parallel to the Y Z plane (see Fig. 4.1). To calculate the
normalized cross-correlation C'(Ar,@,&;) of the field pattern |E| (7, &;) at a ref-
erence point rg and |F| (7, @) at position (rg+ Ar), we employ the definition [40]:

Le(|E ro, @) |E| (ro + Ar, @) ) dr
N (1B1 (ro, @) 1Bl (ro + Ar,@)) .

Sy U (ro,@0))2dr [y (1B (ro + Ar,@))2dr |

N

where Ar is the translation from the reference position ry and L; is the trans-
verse length until which the electric field is matched. Fig. 4.3 shows the cross-
correlation C(@,®;) for a Ar at which C(Ar,®,®;) is maximum.

A reflectivity resonance with a field that cross-correlates to 1 at its central
frequency w,. will correspond to a defect band @;. We further confirm the cavity
resonance by the visual inspection of the cross sections of the electric-field dis-
tribution. In order to verify the 3D band gap confinement of light, we check the
angular dependence of a cavity resonance.
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Figure 4.3: Normalized cross-correlation between the cross sections of the electric-
field distribution (| E|) at the defect bands @; in the bandstructure and fields at discrete
frequencies @ in the reflectivity spectra for a finite 3D inverse woodpile photonic crystal
with a point defect. The 3D band gap of the perfect crystal is shown with the yellow bar.
S1 indicates the single s-polarized cavity resonance inside the 3D band gap. Similarly,
P1, P2, P3, and P4 indicate the four p-polarized cavity resonances inside the 3D band

gap.

We will now apply our cross-correlation method to identify the five defect bands
with corresponding resonances in reflectivity. Simultaneously, we will identify
the spatial field distributions of each resonance. From the five resonances S1, P1,
P2, P3, and P4, it appears that P1, P2, and P4 show relatively straightforward
behavior, therefore we first discuss these three resonances, before analyzing the
more complex behavior of S1 and P3 resonances.

If we cross-correlate the field of the P1 defect band at &; = 0.5140 with the
finite crystal fields as a function of frequency w, we see in Fig. 4.3 that the cross
correlation equals about 0.6 everywhere, with a marked peak at @ = 0.5140.
This cross correlation peak with C' = 1 corresponds to a tiny resonance trough
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Figure 4.4: Reflectivity near the bottom of the 3D band gap for (a) s— and (b)
p—polarized light for a 3D inverse woodpile photonic crystal with a point defect. In
panels (i), red dashed-dotted and green dashed curves are calculated results at normal
incidence, as in Fig. 4.2. Blue solid and black curves in panels (i) are reflectivity spectra
for angles of incidence 40° and 80°, respectively, off normal in the I'Z direction. Panels
(ii) show the band structures for (a) s— and (b) p—polarized light. The wave vector
is expressed as K = (ka/2m). The 3D band gap of a perfect crystal is shown with the
yellow bar. S17, S11, P1, P2, P3~, P37, and P4 are reflectivity resonances. Angle-
dependent reflectivity troughs are speckles, plausibly due to calculations for finite sized
crystals.
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Figure 4.5: The central frequency of a resonance trough versus angle of incidence.
S17, S1t, P1, P2, P3~, P3", and P4 are reflectivity resonances in the spectra in
Fig. 4.4. The 3D band gap of a perfect crystal is shown with the yellow bar.

in reflectivity (Rpmin =~ 99%) at normal incidence. Upon varying the angle of
incidence of light on the finite structure, see Fig. 4.4 (b), we observe firstly
that the reflectivity resonance becomes slightly more prominent (Rin ~ 95%)
and secondly that the reflectivity resonance frequency is independent on angle,
as shown in Fig. 4.5. Last but not least, Fig. 4.6 shows that the spatial Y Z
field distribution for the defect band in the infinite photonic band gap crystal
matches very well with the field pattern in the finite photonic band gap crystal
slab. Therefore, from all three main observations (correlation, angle-independent
reflectivity resonance, and spatial field distribution) we firmly identify the P1
defect band to occur at @; = 0.5140 with a field distribution shown in Fig. 4.6.

The P2 defect band at @; = 0.5213 in the infinite crystal (Fig. 4.2) shows in
cross correlation (Fig. 4.3) with the finite crystal field distributions a constant
correlation of about C' = 0.4. At @ = 0.522, the cross correlation has a maxi-
mum of C' = 1 that agrees well with a weak reflectivity resonance at @ = 0.522 at
normal incidence (see Fig. 4.4 (b)). With increasing angle of incidence the reflec-
tivity resonance deepens eventually to R, =~ 30%. The reflectivity resonance
is independent of incident angle (Fig. 4.5) as expected for a cavity resonance in
a 3D band gap. Fig. 4.6 shows that the spatial field distribution in the infinite
crystal defect band agrees very well with the field distribution in the finite crystal
slab. We note on comparing that the P2 field distribution has some qualitative
similarity with the P1 field distribution, which explains the occurrence of a sec-
ondary cross-correlation peak at @ = 0.514 in Fig. 4.3. Therefore, we identify
the P2 defect band to occur at w; = 0.522 with a field distribution as shown in
Fig. 4.6.
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Figure 4.6: Y Z cross sections of the electric-field distribution (| E|) of the P1, P2, P37,
P3*, and P4 resonances in the 3 x 3 x 3 super cell of a 3D inverse woodpile photonic
crystal with a point defect for p—polarized light at normal incidence.
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Figure 4.7: Y Z cross sections of the magnetic-field distribution (|H|) of the P3~ and
P37 resonance in the 3 x 3 x 3 super cell of a 3D inverse woodpile photonic crystal with
a point defect for p—polarized light at normal incidence.

The cross correlation of the P4 defect band at w; = 0.5441 in the infinite crystal
(Fig. 4.2 (b)) with the finite crystal field distributions is a constant correlation
of about C' = 0.3 (Fig. 4.3). At @ = 0.5445, the cross correlation has a maxima
at C' = 1 that agrees well with a strong reflectivity (R,;n =~ 0%) resonance at
@ = 0.5445 at normal incidence (see Fig. 4.4 (b)). However, with increasing angle
of incidence the reflectivity resonance changes to Ryin =~ 70%,20%. Moreover,
the reflectivity resonance is independent of incident angle (Fig. 4.5), which is
expected for a cavity resonance in a 3D band gap. Finally, Fig. 4.6 shows that
the spatial field distribution in the infinite crystal defect band agrees very well
with the field distribution in the finite crystal slab. The comparison shows that P4
field distribution has some qualitative similarity with the P3 field distribution and
hence a secondary cross-correlation peak appears at @ = 0.537 and @ = 0.5385
in Fig. 4.3. Therefore, we identify the P4 defect band to occur at @; = 0.5445
with a field distribution as shown in Fig. 4.6.

The P3 defect band at @; = 0.5376 in the infinite crystal reveals a double cross
correlation peak at @w_ = 0.537 and &, = 0.5385 (see Fig. 4.3). In reflectivity
(Fig. 4.4 (b)) we observe two resonance troughs at &_ = 0.537 and @4 = 0.5385.
Both troughs develop deep minima (R, ~ 20%) versus angle of incidence, but
their resonance frequencies are independent of angle (Fig. 4.5), typical of photonic
band gap cavity resonances. Moreover, we observe that these two troughs are
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Figure 4.8: YZ cross sections of the electric-field distribution (|E|) of the S17 and
S1T resonance in 3 x 3 x 3 super cell of a 3D inverse woodpile photonic crystal with a
point defect for s—polarized light at normal incidence.

symmetrically located on either sides of the defect band ; = 0.537.

Fig. 4.6 shows that the spatial electric-field distribution of the P3 defect band
matches very well with both field distributions at the lower (w_ = 0.537) and
upper (04 = 0.5385) reflectivity resonances. Since the magnetic field is orthog-
onally related to the electric field for an electromagnetic wave [41], we compare
their magnetic-field distributions and Fig. 4.7 shows that both field distributions
at the reflectivity resonances match very well with the magnetic field of the P3
defect band, which confirms that both finite-size resonances derive from one and
the same resonance in the infinite crystal.

Since the double reflectivity resonance is likely the result of a (currently) un-
known coupling, it is uncertain whether the widths of either resonance can be
attributed to a true resonance width and thus a quality factor. Nevertheless, we
derive the bandwidths of P3~ and P reflectivity resonances as A&_ = 0.00053
and Aw, = 0.0005.

The S1 defect band at @w; = 0.5144 in the infinite crystal also reveals a double
cross correlation peak with C' =1 at @w_ = 0.505 and @4 = 0.5190 (the latter
being remarkably broad). In reflectivity (Fig. 4.2 (a)) we observe two resonances
at normal incidence, namely at w_ = 0.505 and @4 = 0.5190, in good agreement
with the cross correlations. With increasing angle of incidence the two resonances
reveal remarkably different behavior. The upper resonance at &4 = 0.5190 does
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not shift with angle of incidence (Fig. 4.5), as expected for a photonic band
gap cavity, even though its amplitude varies markedly. The lower resonance at
@_ = 0.505 (at § = 0°) occurs at a frequency outside the photonic band gap,
but inside the s—polarized stop band. Indeed the trough shifts with angle of
incidence, since different troughs occur at § = 40° or § = 80°. Moreover, we
observe that these two troughs are asymmetrically located on either sides of the
defect band ; = 0.5144. This dispersive behavior is typical for a cavity resonance
that is not fully confined in 3D, but lower dimensions, as in the case for instance
of a Fabry-Pérot cavity (strictly only confined in 1D). At this time we do not yet
have an explanation for the underlying physics of this remarkable behavior.

The S1 and P3 defect bands in the infinite crystal reveal more complicated
behavior because we identify them to correspond to double resonances in the
finite crystal reflectivity spectra. At this time we do not have an explanation for
this behavior, only the general hypothesis that apparently the leaking of vacuum
modes into the finite crystals seem to cause the splitting. But this statement
does not explain why there would be a resonant structure in the vacuum that
would couple to the defect bands ((instead if a broad vacuum continuum that
might induce Fano resonances [42] (see Section 4.3.3 below for Fano resonances
that appear below the band gap)).

We note that except S17 all other reflectivity resonances (S17, P1, P2, P3™,
P3" and P4) are inside the 3D photonic band gap for a perfect crystal and hence
will provide a three-dimensional confinement of light. Therefore, we calculate the
cavity quality factor Q [41] for these resonances using

We

Q==

(4.2)

with @, the central frequency and A& the full width at half maxima of the reflec-
tivity resonance. However, Fig. 4.4 shows that the bandwidth A& is extremely
small for the P1 and the P2 reflectivity resonances and hence report the mini-
mum bound for their quality factors by using the employed frequency resolution
5« = 0.0005. The bandwidths of reflectivity resonances S1—, S1*, P3—, P31,
and P4 are Aw = 0.0011, 0.0020, 0.00053, 0.0005, and 0.0010, respectively, which
corresponds to cavity quality factors shown in the top panel of Fig. 4.9. We
note that P1 , P2, P3~, P3™ resonance have the highest cavity quality factors
Q@ ~ 1000 and S1T resonance has the lowest quality factor Q@ ~ 250. This quality
factor appears to be about 4 times greater than for a direct woodpile crystal with
the same thickness of 12 layers [21].

4.3.2 Purcell factor and energy enhancement

Since an optical cavity creates an environment to spatially control the local den-
sity of states [43], the spontaneous emission rate of an emitter can be locally
controlled [4, 28-31]. In order to find the increase in the spontaneous emission
rate due to the cavity resonances, known as the Purcell effect [27], we calculate
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Figure 4.9: Top panel: quality factor Q, middle panel: mode volume Vjs,4e normalized
to the cubed wavelength of each reflectivity resonance j: )\?7 and bottom panel: Purcell

factor Fp normalized to (%J)3 with n the refractive index of a cavity medium. S17, S17T,
P37, P3T, and P4 are reflectivity resonances. For the frequency resolution employed in
the calculation, Q = 1000 represents the minimum bound of the quality factors for the
P1 and the P2 reflectivity resonances. Additionally, the P1 resonance has the Purcell
factor Fp = 49987(2 ).

the Purcell factor Fp given by

o 3 Q 1.2
P_47r2VM0den

(4.3)

with Q the cavity quality factor, Vj o4 the mode volume normalized to cubed
wavelength and n the refractive index of a cavity medium.

To determine the mode volume Vyso4e [26, 44] normalized to the cubed wave-
length of each reflectivity resonance j: /\39?, we employ the definition

Jy CENBEN) Y1y
maxy (e(f')(\E\ (7, )\j))2> ’

VMode = (44)

3
>‘j

with E the electric field and e the dielectric permittivity. We choose the region to
have a total volume V = ac? equal to one primitive unit cell of the cubic inverse
woodpile photonic crystal.

The middle panel of Fig. 4.9 shows that the P3~, P3", and P4 resonances have
nearly equal mode volume Vjs,q. = 0.01, as observed by Ref. 26. We observe
extremely small mode volumes for the S1~ resonance (Vasoqe = 0.0019), S17F
resonance (Vasoqe = 0.0019), P1 resonance (Vyode = 0.0016), and the P2 reso-
nance (Vpode = 0.0055), which are significantly smaller than the mode volume
Vimode = 0.69 reported by Ref. 45 for an L3 cavity in a 2D photonic crystal slab.
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According to the calculations of Ref. 26, the P2 resonance was reported to have
the smallest mode volume V4. = 0.8 that qualitatively supports our finding,
however the numerical values are different, which we explain in the Appendix 4.D.

For a strong confinement of light by an optical cavity, a large quality factor and
a small mode volume are desirable, which corresponds to a large Purcell factor.
Therefore, with a known quality factor Q and mode volume Vj .4, we calculate
the Purcell factor Fp normalized to (%)3 using Eq. 4.3. The bottom panel of
Fig. 4.9 reveals the highest Purcell factor Fp = 14506(1)? for the P2 resonance
(excluding S1~ resonance, which is outside the band gap and P1 resonance,
which does not show any reflectivity minimum at any incident angle). Hence,
the P2 reflectivity resonance with &, = 0.522 has the best potential for the
spatial confinement of light in a very small mode volume, which agrees with the
conclusion of Ref. 26 that the 3rd resonance is the best one for nanophotonic
purposes.

Considering the electric-field distributions of Fig. 4.6 and Fig. 4.8, we note that
the electric field is strongly concentrated in the proximal region of two orthogonal
pores for all cavity resonances. However, we observe that the cavity resonances
are localized in silicon as well as in air, e.g., the S17 and P1 resonances have
field maxima in silicon, whereas the P2 resonance has maxima in air as well as
in silicon. Hence, our Purcell factor calculation cannot accurately determine the
energy enhancement over the entire volume, given the strongly different refractive
indices for air and silicon [44]. Therefore, to accurately quantify the energy
enhancement 7 at a frequency w in the reflectivity spectra with respect to the
reference frequency wyef, we employ the definition

g = Jy ()| E| (7, w))*dV
- fV €<F)(|E| (7?7 wref))QdV'

(4.5)

with E the electric field, € the dielectric permittivity, and a total volume V = ac?

equal to one primitive unit cell of the cubic inverse woodpile photonic crystal.
As references, we select either the incident light in vacuum, or a low frequency
@ = 0.04, which is a frequency unperturbed by the reflectivity resonances. Fig-
ure 4.10 shows the enhancement ng between @ = 0.5 and & = 0.55 for both
polarizations. We observe significant energy enhancement at frequencies per-
taining to the reflectivity resonances, i.e., S1=, S17, P3=, P3*, and P4, which
confirms our results regarding the identification of these resonances. Moreover,
the enhancement ng for the S17 resonance is nearly equal to the one for the P2
resonance. We note that the enhancement is maximum for the P3~, P3%, and
P4 resonances.

From calculations of the Purcell factor and the energy enhancement, we con-
clude for nanophotonic purposes that the P2 resonance is ideal for the confine-
ment of light in a very small spatial volume, whereas the P3 and P4 resonances
are suitable for the large energy enhancement over a large spatial volume.



Results 97

Frequency (cm™) @ a =677 nm
7500 7700 7900 8100

1000 ———— ——
" [ s-pol. ——w.rt. incident field ]
o :S']' S1* == w.r.t. low freq. ]
+ 500 ]
c [ ]
o [
“E’2408- .
% E p-pol.
1600 F
< soo! P2
F P1
0.50 0.52 0.54

Reduced frequency o

Figure 4.10: Energy enhancement for a 3D inverse woodpile photonic crystal with a
point defect. Red dashed-dotted curves represent the enhancement with respect to a
frequency below the 3D band gap of a perfect crystal. Green solid curves represent the
enhancement with respect to the incident light. Here, S17, S17, P3™, P3", and P4 are
reflectivity resonances.

4.3.3 Fano resonances below the 3D band gap

The reflectivity spectra for a perfect 3D inverse woodpile photonic crystal reveal
Fabry-Pérot fringes below the stop band as a result of interference between the
front and back surfaces [37]. To investigate the effect of a point defect on these
Fabry-Pérot fringes, we calculate the polarization-resolved (s or p) reflectivity
below @ = 0.50 at normal incidence to the 3x 3 x 3 supercell of an inverse woodpile
photonic crystal with and without a point defect. We observe below w = 0.21 in
Fig. 4.11 that the spectra for a photonic crystal with defect matches very well
with the one for a perfect photonic crystal. Beyond @ = 0.21, several sharp peaks
appear in the spectra for a photonic crystal with a point defect. These peaks
are narrow and sometimes have a reflectivity near 100%. The band structure
in Fig. 4.11 (ii) reveals that the bands are linearly increasing till @ = 0.12 and
then linearly decreasing till @ = 0.21. Beyond @ = 0.21, the band folding occurs,
since the calculations were performed for a supercell. By comparing this band
structure to the corresponding reflectivity spectra, we note that fringes for a
photonic crystal with defect match with the fringes for a perfect crystal only till
the bands are in linear regime, i.e., below @ = 0.21. Therefore, these sharp and
narrow peaks in the fringes correspond to frequency range of the band folding.

In order to verify the localization of these peaks in real space, we investigate
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Figure 4.11: Reflectivity below the 3D band gap for a 3D inverse woodpile photonic
crystal with a point defect. The red curve in (i) and the green curve in (iii) are re-
flectivity spectra calculated at normal incidence for s and p polarizations, respectively.
The corresponding band structure for the I'Z direction is shown in (ii), which is calcu-
lated by MPB PWE solver. Panel (ii) also illustrates the band folding due to supercell
calculations. The wave vector is expressed as k' = (ka/27). Black curves in (i) and (iii)
indicate the reflectivity spectra for a perfect 3D inverse woodpile photonic crystal for
s and p polarization, respectively. Near @ = 0.21, the reflectivity spectra for a crystal
with defect starts deviating from the one for a perfect crystal.

their angle-dependency. Figure 4.12 shows the reflectivity for a photonic crystal
with a point defect between w = 0.21 and @ = 0.5 at incident angles 0° and
40°. We observe that there are peaks perturbing the Fabry-Pérot fringes for
both incident angles. However, most of these peaks vary with incident angle.
Therefore at this point, we consider that these peaks are angle-dependent, unlike
the cavity resonances in Section 4.3.1.

To understand the origin of these peaks, we simplify the problem to study a
homogeneous film. We consider a L = 3c¢ thin silicon film with two orthogonal
defect pores at the center, which is similar to the computational cell of an inverse
woodpile with a point defect. Figure 4.13 shows the reflectivity spectra for a
thin film without and with two orthogonal defect pores. We observe Fabry-Pérot
fringes below @ = 0.4, which are due to the continuum contribution from the
two interfaces of the thin film. The reflectivity spectrum for a thin film with
two orthogonal defect pores of radii r = 0.12a reveals several peaks and troughs
at discrete frequencies, e.g., a trough at @ = 0.18 and a peak at @ = 0.27. We
note that a trough always occurs near the maxima and a peak always near the
minima of a Fabry-Pérot fringe. Increasing radii of these defect pores changes
amplitudes of existing peaks and troughs and new ones appear as well. We
surmise this behavior as the electromagnetic interference of reflectivity from the
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Figure 4.12: Reflectivity below the 3D band gap for a 3D inverse woodpile photonic
crystal with a point defect for p-polarized incident light. The green dashed and blue
solid curves are the spectra for incident angles § = 0° and 6 = 40°, respectively, off the
normal in the I'Z direction.

continuum contribution of the film and from the discrete contribution of the
defect pores. This interference leads to sharp resonances, commonly referred as
Fano resonances in solid-state and atomic physics [42, 46].

After understanding the origin of Fano resonances due to two orthogonal de-
fect pores in a thin film, we now investigate these two orthogonal defect pores
in an inverse woodpile. The incident plane wave is reflected from the photonic
crystal for all frequencies and gets coupled to the resonant cavity only at discrete
frequencies [46, 47]. Therefore, the electromagnetic interference between the con-
tinuum contribution of the light reflected by the photonic crystal and the discrete
contribution of the cavity resonance gives rise to a Fano resonance [42, 47], e.g., at
w = 0.22 in the s polarization spectrum in Fig. 4.11. When the continuum contri-
bution and the discrete contribution to the interference are comparable, the Fano
resonance has a characteristic sharp asymmetrical shape, e.g., at @ = 0.315 for s
polarization and at @ = 0.365 for p polarization in Fig. 4.11. Hence, these Fano
resonances are angle-dependent and sometimes asymmetrical in shape unlike the
cavity resonances, which are angle-independent and symmetrical in shape.

4.3.4 Resonant cavities for photovoltaic efficiency enhancement

To benefit from the large energy enhancement at the reflectivity resonances, we
investigate the possibility of using a 3D silicon inverse woodpile with a resonant
cavity as an absorbing medium of a solar cell. In order to make our calcula-
tions relevant to experimental studies, we use a wavelength-dependent complex
refractive index of silicon obtained from Ref. 48, which was previously used in
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Figure 4.13: Calculated reflectivity spectra for a thin dielectric film with thickness
L = 3a for p polarization. The film has dielectric permittivity e = 12.1. The black curve
shows the reflectivity spectrum for a perfect thin film. Green dashed and blue dashed-
dotted curves represent the reflectivity spectra for a thin film with two orthogonal defect
pores of radii 7’ = 0.12a and " = 0.132a, respectively. To compare spectra for different
defect-pore radii, we use ordinate offsets of 20% and 40% in green dashed and blue
dashed-dotted curves, respectively.

Chapter 3. Chapter 3 reported that the thin silicon film absorbs weakly in the
wavelength range from 600 to 1000 nm. To enhance the absorption in this range,
we tailor the lattice parameters of the inverse woodpile to be a = 425 nm and
¢ = 300 nm (same as previously used in Chapter 3), such that the reflectivity
resonances are between A = 600 and A = 1000 nm.

To build up on the identification results of the reflectivity resonance troughs in
Section 4.3.1, we compare the reflectivity spectra in the top panels of Figs. 4.14
(a) and (b) with and without imaginary part of the silicon refractive index. We
observe between w = 0.45 and w = 0.70 in the spectra that there are more
reflectivity troughs with absorption than without absorption for both polariza-
tions, which implies that absorption gives rise to additional resonances. We also
note that only few of the troughs for spectra without absorption match with the
troughs with absorption, e.g., at @ = 0.49 and W, = 0.59 for s polarization, and
at W, = 0.52 for p polarization. To ascertain whether these troughs are indeed
reflectivity resonances, one need to follow the complete procedure depicted in
Section 4.3.1. Currently, we surmise that reflectivity resonances in the visible
regime differ in number from the ones in the infrared regime.

As a first step to investigate photovoltaic efficiency of the 3D inverse woodpile
photonic crystal, we calculate the absorption spectra, as shown in the bottom
panels of Figs. 4.14 (a) and (b). We compare the absorption by a thin inverse
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Figure 4.14: Reflectivity and absorption spectra calculated for a 3D inverse woodpile
photonic crystal with a point defect in the visible regime at normal incidence in the
I'Z direction. The high-index backbone has complex refractive index, which includes
dispersion and absorption. Top panel: Black curves are the reflectivity spectra for an
inverse woodpile photonic crystal, with dispersion but no absorption (Im(ng;) = 0).
Red curves are results for an inverse woodpile photonic crystal, with dispersion and
absorption (Im(ns;) # 0). Bottom panel: Red curves are the absorption spectra for an
inverse woodpile photonic crystal, with dispersion and absorption (Im(ns;) # 0). Blue
curves are results for a thin silicon film.
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woodpile with thickness Lsppc = 3¢ = 900 nm to the absorption by a thin silicon
film of equal thickness Lg; = 3c. We observe that at frequencies corresponding
to the troughs in the reflectivity spectra, an inverse woodpile has multiple times
higher absorption than a thin film, e.g., at @ = 0.49 for s polarization and at
w = 0.52 for p polarization. Hence, a 3D inverse woodpile photonic crystal with a
resonant cavity is an interesting candidate for the absorbing medium of a solar cell
in order to enhance the photovoltaic efficiency at multiple discrete frequencies
in the visible regime. We note that the absorption by an inverse woodpile is
significantly higher for p polarization than for s polarization.

To understand this difference, we consider the number of troughs in the reflec-
tivity spectra for both polarizations. We note that the p-polarized reflectivity
spectrum has higher number of troughs between @ = 0.60 and @ = 0.65 than the
s-polarized reflectivity spectrum. Therefore, an aggregate contribution of these
large number of reflectivity troughs significantly enhances the absorption by an
inverse woodpile in the case of p polarization.

Interestingly, a 3D inverse woodpile photonic crystal contains silicon by only
20% volume fraction (see Fig. 1.2 of Chapter 1) and hence is extremely light-
weight compared to a bulk silicon of comparable thickness. However, the pho-
tocurrent density depends on the absorption as well as the surface recombination.
Since an inverse woodpile has a large surface area per unit cell compared to a
thin film, the surface recombination factor has to be deducted before reporting
the final photovoltaic efficiency.

4.4 Conclusion

We have studied numerically the reflectivity and the absorption of a resonant
cavity in a three-dimensional photonic crystal with finite support. The point
defect acting as a cavity is formed in the proximal region of two orthogonal pores
with a radius that differs from the ones in the bulk of the crystal. We employed
the finite element method to study crystals with the cubic diamondlike inverse
woodpile structure with a high-index backbone having a dielectric function sim-
ilar to silicon. By comparing defect bands in the band structure for an infinite
crystal and troughs in the reflectivity spectra for a finite crystal, we identify cav-
ity resonances and their field patterns. Out of five observed cavity resonances,
one is s-polarized and four are p-polarized. These cavity resonances are angle-
independent, indicating a strong confinement of light in the crystal slab. The P1,
P2, and P4 resonances reveal normal behavior with single cross-correlation peaks
(between field distributions) and single reflectivity resonances. The P3 and S1
resonances in finite crystals reveal an intriguing splitting into 2 sub-resonances,
for which we have currently no explanation.

We find that the P3 resonance at @ = 0.522 is ideal for the confinement of
light in a very small spatial volume around 0.0055 cubic wavelengths. We find
large energy enhancement at cavity resonances, i.e., up to ng = 2400 times the
incident energy and up to ng = 1200 times the energy at a lower frequency.
Fano resonances are observed below the band gap due to the electromagnetic
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Figure 4.15: Comparison between the band structures in the I'Z direction calculated
using the COMSOL finite-element method (FEM) solver and the MPB plane-wave
expansion (PWE) method. The band structure pertains to a 3D silicon inverse woodpile
photonic crystal with two orthogonal defect pores with pore radius - = 0.24, defect pore
radius ' = 0.5r and eg; = 12.1, using a 3 x 3 x 3 supercell. Black lines are calculated
by the MPB PWE solver. Red dashed-dotted line and green dashed lines are calculated
by the COMSOL FEM solver. The wave vector is expressed as k = (ka/2m). Due
to higher spatial resolution, the bands calculated by FEM solver are shifted to lower
frequencies when compared to the bands calculated by the MPB solver. Upto five
isolated and nearly dispersionless bands appear within the 3D photonic band gap and
appear to confine light as cavity resonances. Thus, S1 indicates the single s-polarized
cavity resonance inside the photonic band gap. Similarly, P1, P2, P3, and P4 indicate
the four p-polarized cavity resonances inside the photonic band gap.

interference between the discrete contribution of the fundamental cavity mode
and the continuum contribution of the light scattered by the photonic crystal.
Our results indicate that 3D photonic band gap crystals with resonant cavities
are potential candidates for the absorbing medium of a solar cell in order to
enhance the photovoltaic efficiency and reduce the weight of the solar cell by
nearly 80%. Consequently, our analysis of the resonant cavity provides a novel
insight in understanding various resonances appearing due to locally disrupted
lattice symmetry in 3D periodic photonic nanostructures.

4.A Photonic band structure calculations

To compute the photonic band structure for the supercell of a 3D inverse wood-
pile photonic crystal with a point defect, Ref. 26 employs a plane-wave expan-
sion (PWE) method eigenvalue solver, whereas we employ the COMSOL finite-
element method (FEM) [35] eigenvalue solver [32]. We compute the polarization-
resolved (both s and p) band structures. Figure 4.15 shows the bands between
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Figure 4.16: Cross sections of the dielectric-permittivity distribution (€) along the Y Z
plane of the 3 x 3 x 3 super cell of a 3D inverse woodpile photonic crystal with a point
defect, using (a) COMSOL finite-element method and (b) MPB plane-wave expansion
method with a grid resolution of 24 x 34 x 24. The black color represents the high-
index backbone of the crystal having dielectric function similar to silicon. The white
color represents air. Two orthogonal defect pores result in a region with an excess of
high-index backbone, indicated by brown color ellipses.

w = 0.51 and @ = 0.56 obtained using both the FEM solver and the PWE
method. We observe that there are five isolated and nearly dispersionless bands
obtained using both methods. Out of these five bands, the FEM solver gives one
s-polarized band, namely S1, and four p-polarized bands, namely P1, P2, P3, and
P4. We note that all bands obtained using the FEM occur at lower frequencies
compared to the corresponding bands obtained using the PWE method.

In order to characterize this frequency shift between the FEM and the PWE
results, we compare cross sections of the dielectric-permittivity distribution of the
supercell structure obtained from both methods in Fig. 4.16. We take the cross
section through the center of the cavity and parallel to the Y Z plane. We observe
that the curved boundaries between the air and the high-index backbone material
are smoother in Fig. 4.16 (a) compared to Fig. 4.16 (b). This difference is more
pronounced for the sharp interface surrounding the point defect. Compared to
the PWE solver, we use a smaller element size in the FEM solver to subdivide the
computational domain and hence the sharp interfaces and the curved boundaries
are better approximated. Ref. 26 also reports in Appendix A that the resonance
bands shift to lower frequencies with a higher spatial resolution. Therefore, we
conclude that the frequency shift between the bands obtained using the two
numerical methods is due to the differences in the spatial resolution, resulting
into different dielectric-permittivity distributions.

The computational time using the FEM solver is 2 times longer than the PWE
method. In order to minimize the computational time, we subdivide the fre-
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quency regime into two ranges: below the 3D band gap and the 3D band gap.
Since there are no isolated resonance bands below the 3D band gap, we do not
need the calculation to have the FEM spatial resolution. Hence, we employ the
faster option of the PWE method to calculate the photonic band structure below
the band gap. However, we employ a spatial resolution of 24 x 34 x 24, which
is a2 X 2 x 2 times greater 3D spatial resolution than in Ref. 26. Since we ex-
plicitly aim at identifying isolated cavity resonances, we compute the photonic
band structure inside the 3D band gap using the FEM solver, which is the same
numerical method used for the reflectivity calculations.

4.B Mesh convergence
We are using tetrahedra to subdivide the 3D computational domain in the finite

element method. To determine the edge length of the tetrahedra to completely
mesh the complex geometry, we investigate the mesh convergence of the reflectiv-

ity results. We perform reflectivity calculations using upper limits of Al < 4%;2’
Al < 8’\—\%, and Al < 15\% to the edge length Al on any tetrahedra, with A\g the

shortest wavelength of the incident plane waves in vacuum. Figure 4.17 shows
the reflectivity at frequencies below, inside, and near the upper edge of the 3D
band gap. These reflectivity values change less than ~ 0.1% with the maximum
edge length. From the nearly constant results of these three mesh resolutions,
we conclude the quantitative convergence of our calculated reflectivity spectra.
These three mesh resolutions take 4301 s, 5330 s, and 11017 s on the Serendipity
cluster [39]. In order to minimize the computational time for a large number of
frequencies, while maintaining the quantitative convergence of the results, we de-
cided to choose an upper limit of Al < 2% to the edge length of any tetrahedra

ENG
used in the finite-element mesh.

4.C Frequency convergence

The reflectivity troughs corresponding to the cavity resonances have bandwidths
as narrow as A@ = 0.0005. Thus, a calculation performed for an insufficient num-
ber of discrete frequencies will not detect these reflectivity resonances. Moreover,
the calculation may not show the actual minima of a given trough due to satura-
tion. Therefore, we perform the frequency convergence analysis to determine the
appropriate frequency resolution to detect these resonance troughs. We define
the frequency resolution as the spacing between two adjacent frequencies. We
choose three frequency regimes: between w = 0.30 and @ = 0.35 below the band
gap, between @ = 0.53 and @ = 0.54 inside the band gap, and between @ = 0.58
and @w = 0.59 near the upper edge of the band gap.

Figure 4.18 (a) shows the reflectivity spectra between @ = 0.30 and @ = 0.35
below the band gap. A comparison between the spectra for a perfect inverse
woodpile and an inverse woodpile with a point defect reveals the Fano resonance
at @ = 0.335, as previously shown in Section 4.3.3. We observe that the maxima
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Figure 4.17: Mesh convergence analysis of the finite-element method for the calcu-
lation of reflectivity spectra for a 3D inverse woodpile photonic crystal with a point
defect. Tetrahedra are used as basic elements. An upper limit of Al < SA—\% is imposed
to the edge length Al on any tetrahedra, with Ao the shortest wavelength of the incident
plane waves in vacuum. Black circles and blue triangles pertain to frequencies below
and near the upper edge of the 3D band gap, respectively. Red squares denote the
frequency at the P3 cavity resonance. Black dashed, blue dashed-dotted, and red solid
curves are guides to the eye showing modulations in the reflectivity with the varying

edge length of a tetrahedron.

of this Fano resonance enhances with the frequency resolution. Also, there is a
new Fano resonance appearing at w = 0.335 at the higher frequency resolution.
Since we performed calculations using d& = 0.005 for the frequency range below
the 3D band gap, there could be more Fano resonances than the ones shown in
Fig. 4.11.

Figure 4.18 (b) shows the reflectivity spectra between @ = 0.53 and @ =
0.54 inside the band gap. We observe that P3 cavity resonance troughs with
@ = 0.536 and with @ = 0.538 are detected only at frequency resolutions é@ =
0.0005 and 0.0001. Since we employed a frequency resolution é@ = 0.0005 for all
calculations inside the 3D band gap, we have successfully detected all possible
troughs. However, we note that the minima of the trough with & = 0.536 changes
around 25% after increasing the frequency resolution by 5 times. Therefore, the
detected cavity resonances can show even lower reflectivity at a higher frequency
resolution than our calculations.

Figure 4.18 (c) shows the reflectivity spectra between @ = 0.582 and & = 0.591
near the upper edge of the band gap. We see two troughs at @ = 0.583 and
w = 0.588 for an inverse woodpile with a point defect. We observe that the
trough at @ = 0.583 is invariant with the frequency resolution, whereas the
minima value for the trough at © = 0.588 changes. We surmise that the trough
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Figure 4.18: Frequency-resolved reflectivity spectra for a 3D inverse woodpile pho-
tonic crystal with a point defect for p-polarized light at normal incidence in the I'Z
direction. (a) Fano resonance below the band gap, (b) P3 cavity resonance inside the
band gap, and (c) resonance near the upper edge of the band gap. Green dashed, blue
dashed, and purple dashed curves are results calculated for the photonic crystal with
defect for frequency resolutions d& = 0.002, 0.0005, and 0.0001, respectively. The black
solid line indicates the reflectivity for an ideal crystal.
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at @ = 0.583 is a numerical speckle due to the finite sized calculations and the
trough at @ = 0.588 corresponds to one of the resonance bands near the upper
edge of the band gap.

4.D Mode volume

Our calculated mode volume for the P2 reflectivity resonance Vo4 = 0.0055
is nearly 145 times smaller than the mode volume V4 = 0.8 reported by
Ref. 26. In order to characterize this significant difference, we first investigate
the number of degrees of freedom employed in Ref. 26 and in our calculations.
For a 3 x 3 x 3 supercell calculation by the PWE solver in Ref. 26, the number
of degrees of freedom equals the 3D spatial resolution (36 x 51 x 36) times the
number of dependent variables (2 field components) [22, 32|, and hence Ny =
36 x 51 x 36 x 2 =132192. In our FEM results, the employed number of degrees
of freedom is Ny = 11073944, which is nearly 84 times larger than the one in
Ref. 26. Moreover, the field patterns for resonances in Fig. 4.6 and Fig. 4.8
reveal that the field maxima always occur near the sharp boundaries and the
curved boundaries, which are accurately approximated using the FEM solver
(see Fig. 4.16 and Appendix 4.A). Therefore, we conclude that these two main
observations (larger number of degrees of freedom and better approximated field
maxima) qualitatively explain the underlying numerical factor leading to different
mode volumes.

Theoretically, the mode volume calculates the spatial confinement of light in
a single cavity mode. However, the mode volume calculation in Eq. 4.4 employs
integration over a volume V', which is not precisely defined for an open system
and extending the volume over the entire space leads to the divergence of the
integral [53, 54]. Moreover, it is extreme challenging for the experimental studies
to relate with the maximum mode volume for a cavity resonance. Therefore,
we calculate the average mode volume VJ(/[ ode DOrmalized to the cubed vacuum
wavelength of each reflectivity resonance j: )\? by employing the definition

(BN A Y 1
4 ode = FENA (46)
" vy (P1BI (7 00)) (55)

with E the electric field and e the dielectric permittivity. We choose the region
to have a total volume V = ac? equal to one primitive unit cell of a cubic inverse
woodpile photonic crystal.

The middle panel of Fig. 4.19 shows that P3~, P3", and P4 resonances have
nearly equal average mode volume V](/[ode = 2.20, which is nearly 220 times big-
ger than their corresponding maximum mode volume Visoq. = 0.010 observed
in Fig. 4.9. The average mode volumes for S1~, S1*, P1, and P2 resonances
are nearly 1000 times bigger than their maximum mode volumes Vjso4.. Fur-

thermore, we calculate the Purcell factor Fp normalized to (%)3 using Eq. 4.3

for average mode volumes Vj(hde. The bottom panel of Fig. 4.19 reveals Purcell
factors Fp between 10 and 50 for all the reflectivity resonances, which are nearly
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Figure 4.19: Top panel: quality factor QQ, middle panel: Average mode volume VI(/Iode
normalized to the cubed wavelength of each reflectivity resonance j: /\2’, and bottom
panel: Purcell factor F/p normalized to (%’)3 with n the refractive index of a cavity
medium. S17, S17, P37, P3", and P4 are reflectivity resonances. For the frequency
resolution employed in the calculation, Q = 1000 represents the minimum bound of
the quality factors for the P1 and P2 reflectivity resonances.

1000 times smaller than Purcell factors observed in the bottom panel of Fig. 4.9
for the maximum mode volume. Although the average mode volume and Purcell
factor are quantitatively smaller than the corresponding maximum values, quali-
tatively they will eradicate the possibility of imprecise calculation due to integral
divergence as well as will give a fair comparison to the experimental studies.
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CHAPTER 5

Div-DGMax: a discontinuous Galerkin finite
element solver for the time-harmonic Maxwell
equations with an explicitly enforced divergence
constraint

5.1 Introduction

A wide range of numerical methods is available to model the propagation prop-
agation of light in nanophotonic systems. The choice of a numerical method is,
however, consequential for the accuracy of the results for nanophotonic struc-
tures with disrupted symmetries [1]. Several methods, e.g., the multiple mul-
tipole technique for spheroidal particles [2] and the Fourier modal method for
layered periodic structures [3, 4, 37], can only work with sufficient accuracy for
the specific applications in nanophotonics they were primarily developed for.

The most sought-after and computationally efficient general purpose numerical
method in nanophotonics is arguably the finite difference time domain (FDTD)
method [6]. The FDTD method discretizes space using the Yee scheme [7] and
works well in regions with a smooth solution. Near curved material interfaces and
boundaries, the FDTD method, however, suffers from the staircase effect. This
can be slightly alleviated using linear interpolation, but generally still results in
loss of accuracy. Also, due to the use of Taylor expansions and a regular mesh
the FDTD suffers from a loss in accuracy near singularities and is difficult to use
for complex geometries. Moreover, it is hard to perform local mesh refinement in
FDTD due to the staggered mesh. Despite several recent improvements, it is still
a difficult research question to improve the spatial accuracy of FDTD beyond the
limits of the basic algorithm [8-11].

The other notable general purpose method is the conforming finite element
method (FEM) [12-20] that in general employs Nédélec elements, which satisfy
the DeRham complex and allow for unstructured meshes. The conforming FEM is
supported by an extensive mathematical theory, which gives it a solid theoretical
basis. However, the conforming FEM requires curl-conforming finite element
spaces and hence it becomes difficult to use it for local hp-adaptation, where
h-adaptation refers to the local mesh refinement and p-adaptation to the local
adjustment of the polynomial order.

The discontinuous Galerkin finite element method (DGFEM) [21-26, 29], is
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mathematically proven to be much better suited, compared to the conforming
FEM, for hp-adaptation. Locally increasing the spatial resolution (hp-refinement)
accurately models strong, local variations in the electromagnetic fields, e.g., in
photonic crystals [30] with and without cavities. The discontinuities in the elec-
tromagnetic fields are naturally dealt with by the employed discontinuous basis
functions. Moreover, the DG method treats elements individually due to the
discontinuous basis function and hence is ideally suited for parallelization on
multiple cores [1].

Accurate eigenvalue computations, however, require that the DG discretization
satisfies the divergence constraint in the time-harmonic Maxwell equations [1, 28].
For the eigenvalue problem of the Maxwell equations, the neglect of the divergence
condition leads to a large number of zero eigenvalues, which belong to the null
space of the curl-curl operator. These zero-frequency solutions correspond to
longitudinal fields [31]. Therefore, iterative eigenvalue solvers have difficulty
to find the physical eigenvalues with the smallest frequencies due to the large
spurious null space.

In this chapter, we study an accurate and efficient discontinuous Galerkin fi-
nite element (DGFEM) solver for the time-harmonic Maxwell equations for the
periodic photonic nanostructures with disrupted symmetries. First, we provide
a short description of the Maxwell equations. We explicitly incorporate the di-
vergence constraint by introducing a new variable using a Lagrange multiplier
and derive the mixed-formulation of the Maxwell equations. Next, we derive
the DG weak formulation of the mixed-formulation, and use the Interior Penalty
flux to obtain the discontinuous Galerkin discretization. Finally, we present the
k shifted eigenvalue problem formulation with an explicitly enforced divergence
condition for periodic dielectric materials. This method is well equipped for
efficient photonic band structure calculations.

5.2 Model problem

5.2.1 Maxwell equations

The electromagnetic propagation of light is governed by the four macroscopic
Maxwell equations [30, 32]. In S.I. units, these equations are

=p (Gauss’ law), (5.1a)
3B . .
V x E+ 8— =0 (Faraday’s law of induction), (5.1b)
=0 (Gauss’ law of Magnetism), and (5.1c)
0D
V xH-— 5 = = J (Ampere’s circuit law with Maxwell’s addition),  (5.1d)

where E, H € R3, respectively, are the macroscopic electric and magnetic fields,
D, B € R3, respectively, are the displacement and magnetic induction fields, and
p € R and J € R3 are the free charge and the current density. We consider
a domain Q C R? with a mixed dielectric medium, which is a composite of
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regions of homogeneous dielectric material with the dielectric permittivity as a
function of the position vector r. The structure does not vary with time, and
there are no free charges, therefore we take p = 0 for this medium. We use
constitutive equations to relate the displacement field D to the electric field F
and the magnetic induction field B to the magnetic field H. We assume that

1. the field strengths are sufficiently small to be in the linear regime,

2. the dielectric material is macroscopic and isotropic, so that E(f,w) and
D(¥,w), with w € R the angular frequency, are related by the vacuum per-
mittivity €y times a scalar dielectric function €(¥,w), known as the relative
permittivity.

Assuming the validity of these two approximations, we obtain the following
constitutive relation

D(F) = epe(F, w)E(F). (5.2)

Using similar approximations for the magnetic induction field and the magnetic
field, we obtain the constitutive relation

B() = pop(F, w) H(¥). (5.3)

Applying these assumptions in the macroscopic Maxwell equations (5.1), we ob-
tain

V- eE(r,t) = (5.4a)
V x B(F,t) = aH(gt 28 (5.4b)
V- uH(Ft) = (5.4¢)
V x H(¥,t) = J(F,t) + %, (5.4d)
in the domain Q@ C R3, where V = (%,8%, %)T is the gradient operator,
e = €oe(F,w) is the electric permittivity, and pu = pou(f,w) is the magnetic

permeability.

We observe that ¥, H, and J are functions of both space and time. Since
we assume the linear regime of the Maxwell equations, we can separate the time
dependence from the spatial dependence by expanding the fields into a set of
harmonic modes [30]. These harmonic modes represent the field patterns that
vary sinusoidally (harmonically) with time. We employ complex-valued fields and
take the real part to obtain the physical fields. Therefore, we write a harmonic
mode as a spatial pattern (or a mode profile) times a complex exponential

E(¥,t) = E(F)e™", (5.5a)
H(E,t) = H(F)e™", (5.5b)
J(E,t) = J(F)e™?, (5.5¢)
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with ¢ = v/—1 and w the angular frequency. Using (5.5) in (5.4), we obtain

eE(F) = (5.6a)

x E(F) = —zwuH( r), (5.6b)

-uH(F) = (5.6¢)

V x H(F) = sz( r) + iweF(F). (5.6d)

When (5.6a) and (5.6¢) hold for the initial conditions and V - J = 0, (5.6b)

and (5.6d) will ensure that (5.6a) and (5.6¢) are true at all later times [30].
This shows that the two divergence conditions (5.6a) and (5.6¢) are consistency
conditions and hence should also be employed to ensure the consistency of the
numerical solution. The two curl equations (5.6b) and (5.6d) relate the electric
field E(F) to the magnetic field H(¥). To combine these two equations, we divide
by u, take the curl of (5.6b), and insert (5.6d) into (5.6b).

The resulting equation with E(r) as the free variable is the time-harmonic
Maxwell equation for the electric field

V x (u'V x E) = iw — w?eE. (5.7)
Let us write j = iw.J(x) and drop the overhead bar for simplicity, we obtain
V x (u'V x E) — w?eE = j, (5.8)

which is commonly termed as the master equation in Ref. [30]. Combined with
the divergence condition (5.6a), it gives the field profile of E(r). To calculate a
harmonic solution of (5.8) for a known current source j, we assume that the do-
main €2 has a perfectly conducting boundary. Therefore, the boundary condition
is

nx E=gat] =0Q, (5.9)

where n € R? denotes the outward normal unit vector at 952, the boundary of €,
and g € R? denotes the tangential trace of the electric field E.

We made the choice to use the F field as the free variable in the coupled
equations (5.6b) and (5.6d). The H field, if explicitly needed, can always be
retrieved using (5.6b) and the initial conditions.

5.2.2 Function spaces

We define notations and function spaces that will be used throughout this chap-
ter. For a given open domain € in R? or R?, we denote the Hilbertian Sobolev
spaces of real or complex scalar- or vector-valued functions by H*(Q)%, d = 1,2, 3,
with regularity exponent s > 0. For s = 0 we denote H*(2) as L?(2), which
has the standard inner product denoted as (-,-)o. We use || - ||s,o to represent
the norm for the space H*(Q)?, d = 1,2,3. In addition, we define the following
function spaces

HY(Q) == {v e LX(Q) : |Vu| € L3 ()}, (5.10a)
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Hy(Q):={ve H (Q):v=0at 09}, (5.10b)
H(div; Q) := {v € L*(Q)*: V -v € L*(Q)}, (5.10c)
Ho(div; Q) == {v € H(div; Q) : v-n = 0 at 9}, (5.10d)
H(div%; Q) := {v € H(div;Q): V-v=0in Q}, (5.10e)
H(curl; Q) :={v € L*(Q)* : V x v € L*(Q)*}, and (5.10f)
Ho(curl; Q) := {v € H(curk; Q) : n x v = 0 at 9Q}. (5.10g)

5.2.3 Mixed formulation of the Maxwell equations

Consider the domain  C R? with boundary I'. The electric field E € H (curl; Q)N
H(div%; Q) ® H}(Q) (see Sec. 5.2.2 for definitions of the Sobolev function spaces).
We consider the L?(2)3-orthogonal Helmholtz decomposition [14, 16, 17, 23, 26]
of the function £ = u + V¢ with u € H(curl; Q) N H(div’; Q) and ¢ € HL(Q),
where u represents the vector potential and ¢ represents the scalar potential
of the system. Since the Helmholtz decomposition is orthogonal in L2()3, it
implies that (u,V¢) = 0 for all ¢ € H}(Q),u € H(curl; Q) N H(div’; Q). We
define p := w?¢. Therefore, the wave equation (5.8) simplifies to

V x (u'V x 1) — w?eu — eVp = 0.
Similarly, the divergence equation (5.6a) simplifies to
V- (eu) +V-V¢=0.

We note that ¢ € HE () requires ¢ = 0 at 9Q. This implies that the scalar
potential ¢ is also zero in €2, since ¢ = 0 is the unique solution of

V-Vp=0in Q with ¢ =0 at T

Since ¢ € H}(Q), the perfectly conducting boundary condition given by (5.9)
reduces to

nxu=gatl.

Therefore, the modified model problem, assuming V - j = 0, is to find a pair of
(u, p), such that

V x (u'V x u) —weu — eVp = j in €, (5.11a)
V-(eu) =0 in Q, (5.11b)

nxXu=g at I, (5.11c¢)

)

p=0 at I (5.11d
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We now introduce the discontinuous Galerkin spaces, where we consider the
Nédélec elements [27, 28]. Given a finite element tessellation 7y, of the domain 2
in tetrahedral elements, we approximate the scalar- and vector-valued functions
p and u, respectively, in the discontinuous finite element spaces @, and V},, where

Qn:={qe L*(Q) : q|lx € PY(K),VK € Tp,}, (5.12)
Vi = {v e L*(Q)® :v|x € SYK),VK € Tp}, (5.13)

for an approximating order I > 1, with P/(K) denoting the space of Lagrange
polynomials of degree at most [ on K, S'(K) denoting the space of Nédélec
elements of the first family [27].

5.2.4 Discontinuous Galerkin discretization

We consider shape-regular conforming meshes 7y, that partition the domain €2 into
tetrahedra. Here h denotes the granularity of the mesh 7y, i.e., h = maxkeT, hi,
where hy = diameter(K) for all K € T;,. We assume that the meshes are aligned
with the discontinuities in the coefficients ;1 and e. The set F} represents the set
of all internal faces in 7y, and F? represents the set of all boundary faces in Ty,.
Therefore, the set of all faces is represented as Fj, = .Fi U .7-“}; .

For the piecewise smooth vector- and scalar-valued functions v € Vj, and ¢ €
Qp, we introduce the following trace operators. Let us assume F' € F} to be
an internal face shared by two elements K and K%. We define n’ as the unit
outward normal vector of element K at a face F' and n® as the unit outward
normal vector of element KT at a face F. We note that n;, = —ng. We define
the tangential jump of a vector-valued function v at F € F} by

L R

[v]]r = n® x o® +nf x v

and the normal jump by

The normal jump of a scalar-valued function ¢ is defined by
[lallx = n"q" +nfq".

Similarly, we define the averages of v and g by

(o)) = 50" +0") and {{a}} = 3 (¢" +4").

DO —

For the boundary faces F' € F;, we define for a vector-valued function v the
tangential jump [[v]]7 = n¥ x vl and the normal jump [[v]]xy = n* - ol; for a
scalar-valued function ¢ we define the normal jump [[¢]]x = n”¢”. The averages
are defined as {{v}} = v and {{¢}} = ¢.
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We also define the following lifting operators [26],

(tw.wa= 3 [ (- [wlras (5.14)

FeF}

S@wa= Y [ lulr- {uhas. (5.15)

FeFy

These operators will later on be used to eliminate the auxiliary variables in the
discontinuous Galerkin discretization. We use Vj to denote the elementwise
spatial derivative V operator.

5.2.5 Weak formulation

To obtain the discontinuous Galerkin discretization [17, 28] of the modified model
problem (5.11a - 5.11d), we introduce an auxiliary variable M, such that the wave
equation (5.11a) turns into a coupled first order system. We assume

M —p 'V xu=0in Q. (5.16)

Introducing (5.16) into (5.11a), we obtain
V x M —w?eu —eVp = j in Q. (5.17)
We assume arbitrary test functions w,v € Vj,. Multiplying (5.16) by the test

function w € V3, and (5.17) by the test function v € V},, replacing v with uj, € Vj,
and p with py € Qp, and integrating over the domain €2, we obtain

(Mp,w)o = / YV x up)) - wdz (5.18)
KeTn
and
(Jn,v)o = Z / V x M) v —w?euy, - v — eVpy - v)d (5.19)
KeTh
Using the identity
(VxA)-B=V-(AxB)+(VxB)-A (5.20)

and the divergence theorem, we obtain
(Mp,w Q—Z/VX (ptw) - uhdx+2/ (u} x p~tw) - ndS, (5.21)
KeTy KeTn

where ©* denotes the numerical flux for u. The numerical flux u* is introduced
since uy, € V3, has a multivalued trace at the element faces.
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Using (5.20), we can further transform (5.21) into

(Mp,w)q = Z /K ((V x up) - ptw — V- (up, X /flw))dx

KeTy

+ Z/ (ul x p~'w) - ndS.

Applying the divergence theorem again on the second term on right hand side
and using the fact that the test function w is zero outside element K, we get

(Mp,w)q = Z /K(V X up) - p twdx

KeTs

+ Z / (n x (u}, —up)) - p~ twdS.

(5.22)

We now introduce two mathematical identities, which will be employed several
times in this Chapter. First, for any uy, v, € V},, we have

> [ nxw)-vds= 3 [ (lnlle- ond) = [l - () )as

KeT FeF]

+ > /FHUhHT-{{vh}}dS.

FeF}
(5.23)

This relation can be easily verified by introducing the expression for the average
and the tangential jump into the right hand side of (5.23), yielding

_ Z /F((nLXuﬁ)'v;€+(nRXuR)'v§')dS+ Z /F(nxuh).vhdS

FeF] FeFy,

Since each internal face appears twice in the summation over all the faces 0K
and using n® = —n’, we immediately obtain the left hand side of (5.23). The
second relation we use to simplify to the discontinuous Galerkin discretization is
Vup € Vi, qn € Qn

> [ awnends= 30 [ (lwd - tmd} + lmlvi{)))as

KeT FeF}

+ /F[[q}lHN'{{Uh}}dS.

FeF}

(5.24)

This relation can also be easily verified by introducing the jumps and the averages
for scalar- and vector-valued functions defined in Section 5.2.4 on the right hand
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side of (5.24) and using nft = —n’. Using (5.23) in (5.22), we now obtain

(Mp,w Q—Z/ (V xup) - p~ Lwdx

KeTy,

+ 30 [ (1=l

FeF, (5.25)
— [l wllr - {{u5, — un}})ds

+ Z/ —’LLh T {{,LL w}}dS

FeF}

Introducing the lifting operators, defined in (5.14) and (5.15), into (5.25), we
obtain

(Mp,w)a = (1~ Vi X up, w)g + (u S (uj, — up),w)a — (W Luj, — up), w)a.
Since w € V}, is an arbitrary test function, we deduce the expression
My, = =V, < up + S (g — up) — p L(uf — up) (5.26)

almost everywhere in Q. Next, we consider (5.19), rewritten as

(Jn,v)a = Z/ V (M, x v) + My, - (V x v) — w?eup, - v — eVpy, - ’u)d
KeTy,

Using the divergence theorem on the first term, we obtain

(Jn,v)a = / Mh (V x v) — w?eup v — eVpy, - v)
KeTy
+ > / (n x My) - vdS,
KeTh

with M} the numerical flux for M. Now, using identity (5.23) we can express
the contribution from the element boundaries as a sum over all faces in 7},.

(jn,v)a = (Mp, Vi x v)g — (WPeun,v)q — (Viph, ev)q

= 3 [ (087 (b - e (011) a5
Fezi, (5.27)

Ly / M1l - {{v}}dS.

Ferh
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Next, we substitute the expression for M}, given by (5.26), into (5.27) and obtain

(Jn,v)a = (,rlvh X Up, Vi X 0)q — (wzeuh,v)g — (Vipn, ev)a
+ (S(up —un), 1~ Vi x 0)g = (L(uj, = un), o~ Vi X 0)a

= 3 [ (087 floh - ol (0131

FeF}

+—§jdéwmmTw&&wa

FeF}

Replacing the lifting operators with their respective definitions given by (5.14)
and (5.15), we obtain

(rsv)a = (™' Va X up, Vi X v)g — (weun, v)q — (Vipn, €v)o
+ 30 [ (0 (o) = bl {007}
FeF}
+ [0, — wnllr - {171V x v} (5.28)
= {{uj, = un}} - [V x o] )ds

+ 30 [ (0 (b} + i =l {71V )} ds.

FeFh

The Lagrange multiplier contribution can be further evaluated using integration
by parts and identity (5.24) yielding

Timeoda= 3 [ (bl - Hewh) + (eolwl (i} })ds
FE5 (5.29)

3 [ il (S - G B )

FeF}

Now, substituting relation (5.29) for (Vp,pp, ev)q into (5.28) and a second inte-
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gration by parts of the Lagrange multiplier contribution containing p gives

(jn,v)a = (0™ Vi X up, Vi x v) — (wPeup, v)o — (Viph, €v)o

p> / — pull - {ev} + [fevlln {{pi — pu}})dS

FeF}

- —pullyv - {{ev}}dS
P

= 3 [ (087 (b - e - (081 (5:30
FeF}

+ [lug, — upllr - {{p~ 'V x v}}
—{{up —up}} - [V x v]])dS

+ 3 [ (04T (00} + [~ wnlle - (G719 x 0D )as.

FeF}

In the expression (5.30) we still need to define the numerical fluxes uj, p;, M;.
There are many ways to do this. Here, we use the Interior Penalty (IP) numerical
fluxes defined in [21, 23, 26, 28, 29]. For an interior face F' € F}, we define

up o= {{un}},

M= {{u 'V xup}} — ap[up)]r,
ph = {Hpnt} — brlleun]ly

euy, = {{eun}} — crllpnlln

with ap,br,cr € RT the penalty coefficients. For a boundary face F' € ]-',{’L, we
define

n X uy = gp,
Mj o= {{u 'V xup}} + apgn — ap(un]]r,
py, =0,

eup, := {{eun}t} — cr|lpnlln

with ¢p € R the penalty coefficients and g5, € V}, the Ly approximation of the
boundary value at T'.

Introducing the Interior Penalty numerical fluxes into (5.30), using the relations
for the jumps and averages, e.g., [{{un}}]] = 0, and using [[M}]]7 - {{v}} =
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—[[vllr - {{M;}} for F € F}, gives

(™' X up, Vi x 0)g — (weun,v)a — (Vipn, €v)o

+ Y /F o)l - ({eo}}as + 3 /F bp(lev]]n[leun]]dS

FeFy FE]—‘;;
+ 5 [ (F eV < w ol - <ol i g
FeF, ' F

+ arlfunllr - [l ) ds
+ 30 [ (= arlbllr e gu g (079 x 01} )dS = G
FeF} F
The discontinuous Galerkin formulation for the divergence constraint
V- (eu) =0in Q (5.32)

can be obtained analogously. Multiplying (5.32) with arbitrary test functions
q € Qp, integrating over each element K € 7Tp, and using identity (5.24) gives

=Y [ vaende+ 3 [ (1l - i) + leuilit (o) as

e =
+ Z /F[[(JHN {{euj}}ds = 0.
FeF}

First, we introduce the Interior Penalty flux, i.e., euj = {{eur}} — cr[[pn]]n on
the faces F' € Fp. Second, we eliminate double jumps and average operators,
resulting in

~ewn, Vo + Yo [ (Hew}) - lally — crlipals - (allw)dS = 0. (533
FeF, ' F

We can now write the weak formulation of the time-harmonic mixed Maxwell
equations with the divergence condition as: Find (up,pr) € Vi X Qp, such that

V(v,q) € Vi X Qnp,
an(un,v) — (Wreun, v)q + br (v, pr) = (Jn, v)a + dn(gn, v)

by (un,q) — cn(pn,q) =0, (5.34)

with

an(un,v) = (W Vi x up, Vi, X 0)q

- /F (14a'V < wn}} - [l + (4o V x 0}} - [funlr ) S

FeFy
+ ap(lup]lr - [[V]]rdS + br[lev]]n[[eun]ndS,

(5.35)
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bu(0,p1) = —(Vapnr ev)a + 3 / lpnlln - {levh}aS,  (5.36)

FeFy,

n(pna) = Y /CF pn]ln - [lallvds, (5.37)

FeFy

dn(gn,v Z/ ap(vllr - gn —gn - {{p~ 1V><v}})d5 (5.38)

FeF}

As described in the Section 5.2.4, V}, denotes the elementwise V operator. We
note that the bilinear form aj corresponds to the interior penalty discretization
of the curl-curl operator with an additional normal jump term. The bilinear form
by, discretizes the divergence constraint in the mixed Maxwell formulation using
a discontinuous Galerkin scheme. The bilinear form ¢ is a stabilization term,
which controls the jumps in the scalar potential p. The parameters ap, b, and
cr are positive stabilization parameters, which depend on the mesh size and the
polynomial order.

5.2.6 Eigenvalue problem formulation

Let us consider light propagation inside an infinite domain €2 without any external
current source, namely 7 = 0 on an infinite periodic domain. Therefore, (5.34)
gives us a generalized eigenvalue problem in w? as: Find (up, pr,w) € Vi xQp xC,
such that Y(v,q) € V3, x Qy,

an(un,v) + by (v, pr) = (Wieun, v)a,

br(un,q) — cn(pn,q) = 0. (5.39)

Ref. [28] presents the complete convergence theory for the eigenvalue problem
given by (5.39). In order to consider a unit cell, which is infinitely repeated in all
directions, we employ Bloch-Floquet periodic boundaries in the £ X, +Y and £2
directions for the domain €, which denotes the unit cell with infinite periodicity
to describe an infinite periodic crystal [28, 30] and introduce the Bloch mode
expansion

up(r) = eik'rﬂh(r) and pp(r) = eik'r;ﬁh(r), (5.40)

with wave vector k. Here u and p are periodic, such that the period fits in the
domain €2, i.e.,

ap(r) = Up(r + R) and pp(r) = pr(r + R) (5.41)

for all lattice vectors R. Introducing the Bloch mode expansion in (5.39), we
obtain the eigenvalue problem: Find (dp,pp,wpn) € Vi x Qp x C, such that
V(v,q) € Vi x Qn,

ak,h(ﬁha U) + bk,h(vaﬁh) = (w2€ﬂh7 ’U)Q,

5.42
br,n(Tn,q) — cn(Pr,q) =0, (5.42)
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where

kb (Gin,v) = (W Vin X Gn, Vs X 0)g

- Z/ (Ve x i) - [l

i,
+ {7V x v} - [ll)r ) ds .13

+F; / apllan)lr - [o])rdS

+F§Tﬁ / brllev]]nllein]]ndS,
bea(v.n) = ~(Tmeola+ - [ [l - {{ew})as. (5.44)

FeFy

Chn(Br @) = Y / cr([pnl]n - [la]lndsS, (5.45)
FeFy
with Vi, = V + ik. (5.42) represents the model problem to calculate a photonic
band structure. The discontinuous Galerkin discretization of (5.42) results in the
following matrices:

ak.pn(vj,v) = A j,

br,n(vi, q5) = Bij,

(g, 4i) = Cl 2
(v, €v;) —

Therefore, the generalized eigenvalue problem, in terms of above matrices, ap-

pears as:
A B Un\ 2 M 0 Up
(&) G = (5 0 G (545

which first finds the smallest eigenvalue wy,. Here, we are mainly interested in
the smaller non-zero eigenvalues related to possible bands gaps. For an efficient
computation of the photonic bandstructure, Ref. [28] reports that it is beneficial
to rewrite the generalized eigenvalue problem (5.46) as:

(1\04 8) (Z:) = (;T ?) <Z:) (5.47)

with wh = = z The main benefit of this formulation is that it is much easier to

efficiently Compute the largest eigenvalues of a matrix than the non-zero eigenval-
ues close to zero as is commonly done in photonic crystal band gap computations.
This is possible because the mixed formulation satisfies the divergence constraint
(5.32). This eliminates the large null space of the curl-curl operator and we will
only obtain non-zero eigenvalues.
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5.3 Numerical results

The implementation of the discontinuous Galerkin finite element solver for the
Maxwell equations by our research group is called DGMax. Being a first step,
the DGMax software does not yet incorporate the divergence constraint and is
implemented using C++ programming language within a software library for dis-
continuous Galerkin methods, known as hpGEM [33]. We employ open source
softwares PETSc [34] as a linear system solver and SLEPc [35] as an eigenvalue
solver. Building on the primitive code of DGMax, we are working on imple-
menting the mixed formulation of Maxwell equations in (5.42) with the name
Div-DGMax, which explicitly enforces the divergence constraint. However, we
are currently still testing a part of the Div-DGMax solver, which corresponds to
computing eigenvalues using SLEPc. Therefore, this chapter consists of results
from the DGMax solver, which is a fully working version.

In order to validate the implementation of the DGMax solver, we calculate
photonic band structures for known systems that can be accurately analyzed
by analytical or numerical methods, such as a homogenous cube and a Bragg
stack [29]. We use tetrahedra as basic elements in our finite element mesh to
subdivide the 3D computational cell into elements. To compute accurate eigen-
values, we employ a mesh with 2560 tetrahedra for a homogenous cube and a
Bragg stack. We approximate the vector-valued function u using the 1st order
of hierarchic basis functions of H(curl) conforming finite elements proposed by
Ainsworth and Coyle [36]. The DGMax solver only incorporates the vector-valued
function wu, and hence in (5.42) we use only a(u,v), but not b(u,q) and c(p, q).
We set the scalar-valued function as p = 0 and the stabilization parameters [29]
asap =64, br =0, and cp = 0. To compare with a well known numerical solver
for photonic band structure, we use the MPB plane-wave expansion method [37]
with a spatial resolution of 32 x 32 x 32 = 32768, which is nearly 12 times larger
than the mesh resolution of the DGMax solver.

Figure 5.1 (A) shows the 3D photonic band structure [38] between @ = 0 to
w = 1.25 for a homogenous cube with a constant dielectric permittivity e = 1
obtained using the analytical method (discussed in Appendix 5.A), the DGMax
solver, and the MPB solver. We note that the MPB method calculates sev-
eral non-physical eigenvalues, which are not present in the analytical solution.
These spurious eigenvalues can be removed by assuming the homogeneous cube
as a fictitious Bragg stack with e¢; = 1 and e; = 1.00001. But these spurious
eigenvalues will again show up in computation by the MPB method for higher
eigenvalues. We observe that eigenvalues computed by DGMax match very well
with the analytical solution. However, Fig. 5.1 (A) exhibits small differences near
w = 1.1 between eigenvalues computed by both the solvers and the analytically
computed eigenvalues. These differences follow a systematic trend and hence are
not statistical error. Since wavelength decreases with increasing frequency, an
eigenvalue solver need higher spatial (or mesh) resolution to approximate the
wave. Therefore, a higher spatial resolution will reduce this small systematic er-
ror. We note that DGMax computes many zero eigenvalues, since the divergence
constraint is not explicitly enforced. These zero values contribute to nearly 60%
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Figure 5.1: 3D photonic band structures for (A) a homogeneous cube and (B) a Bragg
stack with the dielectric contrast along the I' X direction in the wave vector space. The
reduced frequency [38] @ is expressed in units of (a/A), with a the lattice parameter.
The wave vector is expressed as k' = (ka/27). The grey color indicates the air with
the dielectric permittivity ¢ = 1. The blue color indicates the high-index material with
the dielectric permittivity e = 13. Black solid lines in (A) represent the analytically
computed eigenvalues. Blue square represent eigenvalues computed by the MPB plane-
wave expansion method [37]. Red circles represent eigenvalues computed by the DGMax
solver. The DGMax solver is the discontinuous Galerkin software library for solving
the Maxwell equations, where the divergence constraint is not yet explicitly enforced.
The yellow bar marks the stop gap in the I'’X direction for a Bragg stack.
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of all eigenvalues and hence cause a major waste of the computational time. Due
to these zero values, smaller eigenvalues cannot be computed accurately for com-
plex geometries by the DGMax solver using an iterative solver. We surmise that
the mixed Maxwell formulation with an explicitly enforced divergence constraint
will remove these zero eigenvalues.

In order to characterize the effect of a material interface, we calculate the 3D
photonic band structure of a Bragg stack with dielectric permittivities e; = 13
and e = 1 in the I'X direction, as shown in Fig. 5.1 (B). A stop gap appears from
w = 0.15 to @ = 0.26 in the I'X direction. We observe that the band structure
computed by the MPB method matches very well with the one computed by the
DGMax solver. However, we observe small statistical error near @ = 0.4 between
eigenvalues computed by both the solvers, which confirms that an eigenvalue
solver needs a higher spatial resolution at higher frequencies. Again, we note
that DGMax computes many zero eigenvalues, since the divergence constraint is
not explicitly enforced. Based on results for a homogeneous cube and a Bragg
stack, we consider the DGMax solver to be converged and validated. In near
future, we will present results with an explicitly enforced divergence condition.

5.4 Conclusion

We describe an accurate and efficient discontinuous Galerkin finite element solver
for the time-harmonic Maxwell equations for periodic photonic nanostructures
with disrupted symmetries. We derived the mixed-formulation of Maxwell equa-
tions by explicitly incorporating the divergence constraint using a Lagrange mul-
tiplier. We employ the Interior penalty flux to obtain the discontinuous Galerkin
discretization. We turn the k shifted eigenvalue formulation around by first com-
puting for the largest eigenvalues of wiw and subsequently the non-zero eigenval-
ues wy, close to zero. Therefore, our eigenvalue formulation is well suited for the
efficient calculation of the photonic band structures without the large null space
of the curl-curl operator.

5.A Analytical photonic band structure calculation

Let us assume a homogenous cube with a constant dielectric permittivity e = 1.
Therefore, the electric field E is constant and orthogonal to the wave vector k in
(5.8), which can be rewritten for j = 0 as an eigenvalue problem

ik x ik x E = W?E. (5.48)

(5.48) reduces to ||k||? = w?. To mimic an infinitely extended crystal, we em-
ploy Bloch-Floquet periodic boundary conditions in all three dimensions. Hence,
eigenvalues for a 3D homogeneous crystal are ||k + 27l|| = w? VI € Z3, where
1=0,1,2, and so on. Figure 5.1 (A) exhibits the analytically calculated eigen-
values for a 3D homogeneous crystal with e =1 and pu = 1.
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CHAPTER 6

Summary and outlook

In order to understand light-matter interactions in complex nanophotonic sys-
tems, it is crucial to accurately model light at the nanoscale. This thesis, there-
fore, studies light propagation in experimentally relevant 3D periodic photonic
nanostructures with several types of disrupted symmetries. We investigate unin-
tentional symmetry-disruption, such as finite size and material absorption, as well
as intentional symmetry-disruption, such as a point defect. Once our numerical
models are validated with respect to analytical models, we interpret our results
using the fundamental laws of physics. All results are presented in well-defined
reduced units and their corresponding experimentally employed units. In order
to move the computational modeling of light propagation in nanophotonic media
forward, we present our work on developing a software tool employing a novel
numerical method.

We have started with accurately computing the optical properties of a 3D pho-
tonic band gap crystal with finite support, which has two interfaces and hence
disrupted symmetries. We observe that the stop band hardly changes with in-
cident angle, which supports the experimental notion that strong reflectivity
peaks measured with a large numerical aperture gives a faithful signature of the
3D band gap. We observe an intriguing hybridization of the Fabry-Pérot reso-
nances and the Brewster angle in our calculations, which seems a characteristic
property of 3D photonic band gap crystals. We assessed previously invoked ex-
perimental limitations to reflectivity, such as crystal thickness, angle of incidence,
and Bragg attenuation length, and find that they are not very compelling. From
the intense reflectivity peaks, we infer that the maximum reflectivity observed in
the experiments is not limited by the finite size of the crystal. Our calculated
polarization-resolved reflectivity spectra show that the frequency ranges of the
s- and p-stop bands agree well with the corresponding stop gaps in the photonic
band structure. We find that the Bragg attenuation lengths in the stop bands
are smaller than earlier estimates based on the width of the stop band by a fac-
tor of 6 to 9. The comparison between angle-independent numerical calculations
and experimental results provides an improved interpretation of the reflectivity
measurements and new insight in the crystal structure (unequal pore sizes in
different directions). Consequently, our numerical study provides an improved
understanding of the experimental studies.

Building on our understanding of finite-size effects, we have investigated a 3D
photonic band gap crystal with finite support as a potential back reflector to a
thin silicon film in the visible regime. For an experimentally relevant study, we
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have implemented the refractive index of real silicon, including dispersion and
absorption. We observe that a 3D inverse woodpile photonic crystal enhances
the absorption of a thin silicon film by (i) behaving as a perfect reflector, ex-
hibiting nearly 100% reflectivity in the stop bands, as well as (ii) generating
guided resonant modes at many discrete wavelengths. For a 2400 nm thin silicon
film, our absorption results show nearly 2.6 times enhanced frequency-, angle-,
polarization-averaged absorption between A = 680 nm and A = 890 nm. We
find that the optical absorption is enhanced by positioning an inverse woodpile
back reflector at the back end of a thin silicon film, which will keep the length
of the solar cell unchanged and make the thin film solar cell lighter. For a
sub-wavelength thin absorbing layer with a photonic crystal back reflector, we
identify and demonstrate two physical mechanisms causing the giant absorption
enhancement at discrete wavelengths: (i) a guided resonance due to the Bragg
attenuation length and (ii) confinement due to a surface-defect.

To understand the impact of resonant cavities, we have modeled a point defect
inside a 3D inverse woodpile photonic band gap crystal with finite support. We
find a large electric-field energy enhancement at the cavity resonances. By com-
paring resonance bands in the band structure for an infinite crystal and troughs
in the reflectivity spectra for a finite crystal, we identify cavity resonances and
their field patterns. Out of five observed cavity resonances, one is s-polarized and
four are p-polarized. These cavity resonances are angle-independent, indicating
a strong confinement of light in the crystal slab. The P1, P2, and P4 resonances
reveal normal behavior with single cross-correlation peaks (between field distri-
butions) and single reflectivity resonances. The P3 and S1 resonances in finite
crystals reveal an intriguing splitting into 2 sub-resonances, for which we have
currently no explanation. We observe Fano resonances below the band gap due to
the electromagnetic interference between the discrete contribution of the funda-
mental cavity mode and the continuum contribution of the light scattered by the
photonic crystal. Our results indicate that 3D photonic band gap crystals with
resonant cavities are interesting candidates for the absorbing medium of a solar
cell in order to enhance the photovoltaic efficiency. Consequently, our analysis of
the resonant cavity provides a novel insight in various resonances appearing due
to locally disrupted lattice symmetry in 3D periodic photonic nanostructures.

Finally, we have developed a novel solver using the discontinuous Galerkin
finite-element method (DGFEM) for the time-harmonic Maxwell equations with
periodic dielectric materials. For accurate eigenvalue computations, we have
explicitly implemented the divergence constraint.

Based on this thesis, we present the following outlook for further studies:

1. In order to understand the frequency dependence of finite-size effects, the
Bragg attenuation length versus frequency should be calculated in the stop
bands from transmission versus crystal thickness in the limit of large thick-
ness. With these data, the known-how will advance on stop bands beyond
Bragg stacks.

2. In order to further improve the match of our numerical model with the
reflectivity experiments, one should study a crystal having finite size in all
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three dimensions. However, since such a calculation requires 1000 times
greater resources one needs to employ a memory-efficient version of the nu-
merical method, while maintaining the convergence to a correct numerical
result.

. We have observed an intriguing hybridization of Fabry-Pérot resonances
and the Brewster angle, which has not yet been observed in experiments.
As an answer to the scientific challenge of light selectivity, this hybridization
effect can be measured and employed as an optical filter for frequency- and
angle-selectivity.

. We found that positioning an inverse woodpile back reflector at the back
surface of a thin silicon film enhances the optical absorption, keeps the
length of the solar cell unchanged, and makes the thin film solar cell lighter.
However, it is a generally advised regarding thin silicon film solar cells to
not etch features directly into the active region. Therefore, experimental
and numerical studies are needed to ascertain the impact of fabricating a
3D inverse woodpile photonic crystal back reflector in a thin silicon film on
the overall photovoltaic efficiency.

. To enhance the absorption of light over a wavelength range broader than
reported in this thesis, we propose to employ a 3D inverse woodpile photonic
crystal with the light incident in the I'Y direction as a back reflector for
a thin film since the I'Y stop gap is about 1.3x broader than the I'Z or
symmetry-related I'X stop gap.

. The stop gap of an inverse woodpile crystal depends on the lattice parame-
ters and gives perfect reflectivity, provided the Bragg attenuation length of
an inverse woodpile crystal is smaller than the absorption length of silicon.
Therefore, one can investigate a novel back reflector consisting of a series
of inverse woodpile crystals with varying lattice parameters and different
stop gaps to enhance the absorption over a broad wavelength range, which
will be the combination of individual stop gaps.

. We observed that a 3D inverse woodpile photonic crystal with a resonant
cavity is a nearly 80% light-weight candidate for the absorbing medium of
a solar cell in order to enhance the photovoltaic efficiency at multiple dis-
crete frequencies in the visible regime. Since an inverse woodpile photonic
crystal has a large surface area per unit cell compared to a thin silicon
film, an efficient numerical model needs to be developed to ascertain the
surface recombination factor before predicting the photovoltaic efficiency
enhancement.

. In order to compute reflectivity spectra, the Div-DGMax code needs to be
supplemented by the implementation of absorbing boundaries.







Nederlandse samenvatting

Om de licht-materie interactie in complexe fotonische systemen te begrijpen, is
het heel belangrijk om licht nauwkeurig te modelleren op de nanoschaal. Dit
proefschrift bestudeert daarom lichtvoortplanting in experimenteel relevante 3D
periodieke fotonische nanostructuren met verstoorde symmetrieén. We onderzoe-
ken onbedoelde symmetrie verstoording, zoals eindige grootte en materiéle ab-
sorptie, als ook intentionele symmetrie verstoording, zoals een puntdefect. Nadat
onze numerieke modellen zijn gevalideerd in vergelijking tot analytische model-
len, interpreteren we onze resultaten met behulp van de fundamentele wetten
van de natuurkunde. Alle resultaten worden gepresenteerd in helder gedefini-
eerde gereduceerde eenheden en hun overeenkomstige experimentele eenheden.
Om de computationele modellering van lichtvoortplanting in nanofotonische me-
dia te verbeteren, presenteren wij ons werk omtrent het ontwikkelen van een
software-gereedschap die gebruik maakt van een nieuwe numerieke methode.

We zijn begonnen met het nauwkeurig berekenen van de optische eigenschap-
pen van een 3D fotonische band gap kristal met eindige dikte en twee grensvlak-
ken en daarom verstoorde symmetrieén. We nemen waar dat de stop band nauwe-
lijks varieert met de invalshoek, hetgeen de experimentele opvatting ondersteunt
dat sterke reflectiviteitspieken die gemeten zijn met een grote numerieke apertuur
ons een betrouwbare signatuur van de 3D band gap geven. We nemen een intri-
gerende hybridisatie waar van de Fabry-Pérot resonanties en de Brewsterhoek,
die een karakteristieke eigenschap van 3D fotonische band gap kristallen lijkt te
zijn. We hebben in het verleden genoemde beperkingen van de reflectiviteit be-
oordeeld, zoals de dikte van het kristal, de invalshoek en de Bragg verval lengte.
Uit de intense reflectiviteitspieken leiden we af dat de maximale waargenomen
reflectiviteit in de experimenten niet beperkt wordt door de eindige grootte van
het kristal. Onze berekende polarisatie-omvattende reflectiviteitsspectra laten
zien dat de frequentiebereiken van de s- en p-stop banden goed overeenkomen
met de overeenkomstige stop gaps in de fotonische bandstructuur. We vinden
dat de Bragglengten in de stop banden een factor 6 tot 9 kleiner zijn dan eerdere
schattingen gebaseerd op de breedte van de stop band. De vergelijking tussen
hoek-onafhankelijke numerieke berekeningen en experimentele resultaten geeft
een verbeterde interpretatie van de reflectiviteitsmetingen en een nieuw inzicht
in de kristalstructuur namelijk ongelijke poriegroottes in verschillende richtin-
gen. Daarom geeft ons numerieke onderzoek een nieuw en verbeterd inzicht in
de experimentele studies.

Voortbouwend op ons inzicht in eindige grootte effecten, hebben we een 3D
fotonische band gap kristal met eindige grootte onderzocht als een potentiéle
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reflector voor een dun laagje silicium in het zichtbare frequentie bereik. Om een
experimenteel relevante studie te bewerkstelligen, hebben we de brekingsindex
van echt silicium gebruikt, met inbegrip van dispersie en absorptie eigenschappen.
We nemen waar dat voor een 3D inverse woodpile fotonisch kristal de absorptie
van een dun laagje silicium verhoogd wordt door (i) zich te gedragen als een
perfecte reflector, die bijna 100% reflectie vertoont in de stop banden, alsook
(ii) geleide resonerende modes te genereren bij vele discrete golflengtes. Voor
een 2400 nm dunne laag silicium laten, onze absorptie-resultaten een bijna 2.6
maal verhoogde frequentie-, hoek- en polarisatie-gemiddelde absorptie zien tussen
A =680 nm en A = 890 nm. We vinden dat de fotovoltaische efficiéntie verhoogd
wordt door een inverse woodpile reflector te plaatsen aan de achterkant van een
dunne laag silicium, terwijl de dikte van de zonnecel gelijk blijft en de dunne-laag
zonnecel lichter maakt. Voor een sub-golflengte dunne absorberende laag met
een fotonisch kristal back-reflector, identificeren en demonstreren we twee fysieke
mechanismen die deze gigantische verhoging veroorzaken bij discrete golflengten:
(i) een geleide resonantie door de Bragg verval lengte en (ii) ruimtelijke beperking
door een oppervlakte-defect.

Om de invloed van resonerende trilholtes te begrijpen, hebben we een puntde-
fect binnen een 3D fotonische band gap kristal met eindige dikte gemodelleerd.
We vinden een grote verhoging van de elektrische-veld energie bij de trilholte-
resonanties. Door resonantiebanden in de bandstructuur voor een oneindig kristal
en de dalen in de reflectiviteitsspectra voor een eindig kristal te vergelijken, iden-
tificeren we trilholte-resonanties en hun veldpatronen. Van de vijf waargenomen
trilholte-resonanties, is er één s-gepolariseerd en zijn er vier p-gepolariseerd. Deze
trilholte-resonanties zijn hoek-onafhankelijk, hetgeen duidt op een sterke ruimte-
lijke beperking van het licht in het fotonisch kristal. De P1, P2 en P4 resonanties
laten normaal gedrag zien met enkelvoudige kruiscorrelatiepieken (tussen de veld-
verdelingen) en enkelvoudige reflectiviteitsresonanties. De P3 en S1 resonanties in
eindige kristallen laten een intrigerende splitsing zien in 2 subresonanties, waar-
voor we op dit moment geen verklaring hebben. We nemen Fano resonanties waar
onder de band gap door de elektromagnetische interferentie tussen de discrete bij-
drage van de fundamentele trilholte mode en de continuum bijdrage van het licht
dat verstrooid wordt door het kristal. Onze resultaten geven aan dat 3D fotoni-
sche band gap kristallen met resonerende trilholtes interessante kandidaten zijn
voor het absorberend medium van een zonnecel om zodoende de fotovoltaische
efficiéntie te verhogen. Onze analyse van de resonerende trilholte geeft daarom
een nieuw inzicht in de diverse resonanties die ontstaan door plaatselijk onder-
broken rooster-symmetrie in 3D periodieke fotonische nanostructuren.

Tot slot hebben we een nieuwe computerprogramma ontwikkeld dat gebruik
maakt van de discontinue Galerkin eindige-elementen methode (DGFEM) voor de
tijdharmonische Maxwell vergelijkingen met periodieke di€lektrische materialen.
Voor nauwkeurige eigenwaarde-berekeningen, hebben we expliciet de divergentie-
beperking opgelegd.

Op basis van dit proefschrift presenteren wij de volgende suggesties voor verder
onderzoek:
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. Om de frequentie-athankelijkheid van eindige-grootte effecten beter te be-
grijpen, kan men de Bragglengte berekenen ten opzichte van de frequentie in
de stop banden op basis van de transmissie in de limiet van dikke kristallen.

. Om de overeenkomst van ons numerieke model met de reflectiviteitsexpe-
rimenten verder te verbeteren, dient men een kristal te modelleren dat een
eindige grootte heeft in alle drie dimensies. Aangezien dit véél meer re-
kencapaciteit vergt, dientmen echter een geheugen-efficiénte versie van de
numerieke methode te gebruiken, waarbij de convergentie naar een juist
numeriek resultaat behouden blijft.

. We hebben een intrigerende hybridisatie van de Fabry-Pérot resonanties en
de Brewsterhoek waargenomen, die nog niet waargenomen is in experimen-
ten. Als antwoord op deze wetenschappelijke uitdaging van lichtselectiviteit
kan deze hybridisatie gemeten worden en mogelijk gebruikt worden als een
optisch filter voor frequentie- en hoeksensitiviteit.

. We hebben gevonden dat het plaatsen van een inverse woodpile back-
reflector aan de achterkant van een dunne laag silicium de fotovoltaische
efficiéntie verhoogt, de lengte van de zonnecel niet verandert, en de dunne-
laag silicium zonnecel lichter maakt. Daarentegen is het over het algemeen
niet aangeraden om voor dunne-laag silicium zonnecellen de kenmerken di-
rect in het actieve gebied te etsen. Daarom zijn experimentele en numerieke
studies nodig om te bepalen wat de invloed is van het fabriceren van een 3D
inverse woodpile fotonisch kristal back-reflector in een dunne laag silicium
op de algehele fotovoltaische efficiéntie.

. Om de absorptie van licht te verhogen over een golflengte-gebied groter dan
dat gerapporteerd is in dit proefschrift, stellen wij voor om een 3D inverse
woodpile fotonisch kristal toe te passen waarbij het licht invalt in de 'Y
richting als een back-reflector voor de een dunne laag silicium. De reden is
dat de I'Y stop gap is ongeveer 1.3 breder dan de I'Z of symmetriegerela-
teerde I'X stop gap.

. De stop gap van een inverse woodpile fotonisch kristal hangt af van de roos-
terparameters en geeft een perfecte reflectiviteit, als aangenomen wordt dat
de Bragg verval lengte van een inverse woodpile fotonisch kristal kleiner is
dan de absorptie-lengte van silicium. Daarom kan men een nieuwe reflec-
tor onderzoeken die bestaat uit een reeks van inverse woodpile fotonische
kristallen met variérende rooster parameters en verschillende stop gaps om
zodoende de absorptie over een breed golflengte-gebied te verhogen, hetgeen
een resultaat zal zijn van de combinatie van de individuele stop gaps.

. We hebben waargenomen dat een 3D inverse woodpile fotonisch kristal
met een resonerende trilholte een bijna 80% lichtere kandidaat is voor het
absorberend medium van een zonnecel om de fotovoltaische efficiéntie te
verhogen bij meerdere discrete frequenties in het zichtbare gebied. Omdat
een inverse woodpile groot oppervlak per eenheidscel heeft in vergelijking
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met een dunne laag silicium, dient er een numeriek model ontwikkeld te
worden om te bepalen wat de oppervlakte recombination factor is voordat
de fotovoltaische efficiéntie verhoging voorspeld kan worden wordst.

8. Om reflectiviteitsspectra te berekenen, heeft de Div-DGMax code de im-
plementatie van absorberende randen nodig.
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