
The Effects of Modularity on Effective Communication
and Collaboration

Full Paper

Chintan Amrit
IEBIS Department

University of Twente
The Netherlands

c.amrit@utwente.nl

Elody Hutten
APG Asset Management

Amsterdam
The Netherlands

elody.hutten@gmail.com

ABSTRACT
In this article we explore the consequences associated with a
lack of coordination between the requirements engineering
process and the development process. We conduct a detailed
case study of an ICT department of a large European bank that
develops software using the agile software development method.
Our current study reveals that the application of a modular
organizational design in a dynamic agile environment has a
negative effect on the communication and coordination between
members of different modules. More specifically, the modular
design creates both a semantic and a pragmatic boundary among
members of different modules, which is primarily caused by the
fact that modules have differentiated tasks and often misaligned
interests.

CCS CONCEPTS
•Software and its engineering~Agile software
development • Software and its engineering~Programming
teams • Software and its engineering~Agile software
development

KEYWORDS
Agile Software Development, Modular organization, knowledge
sharing boundaries

1 INTRODUCTION
Conway’s law states that “organizations which design systems
are constrained to produce designs which are copies of the
communication structures of these organizations” [1]. This
organization pattern [2, 3] implies that the interface structure of
an information system will mirror the social structure of the
organization that designed it [4-6]. The importance of

coordination between the requirement engineering process and
the development process has also been demonstrated [7]. Frank
and Hartel (2009) [8] conducted a study with respect to the
application of a modular organizational design within an agile
software development context and found that a reintegration of
different modules resulted in an increase in both team morale
and team performance. These findings could indicate that
splitting a tightly coupled system (e.g. a development team) into
autonomous modules within an agile software development
environment reduces the performance of such a system. An
explanation for these observations could be the fact that modules
have their own goals which might cause two different modules
to become highly differentiated. This is clearly evident in the
study by Frank and Hartel (2009) [8, 9], one of the modules was
responsible for writing user stories while the other module was
responsible for actually developing the software. A consequence
of these differentiated roles could be that the development of
shared mental models, which is the overlapping of the cognitive
representation of the external reality between team members [9],
is inhibited, due to a semantic boundary between the modules,
interpretive differences despite a common lexicon [10]. Another
consequence of the differentiated roles modules could have, is
that it creates a pragmatic boundary, which could inhibit
effective communication. Finally, the separation of a tightly
coupled system into different modules could result in a decrease
of relational capital between members of different modules.
These hypotheses suggest that applying a modular design in an
agile software development context might lead to a decrease in
coordination between the different modules which, as reasoned
above, is crucial in software development and especially in agile
software development. It is therefore questionable whether a
modular organization design can be applied effectively within an
agile software development context. This leads to the following
research question: Can a modular organizational design be
applied in an agile software development context?The current
study will investigate the role of a modular organizational design
with respect to its effect on communication and coordination
between modules composed from a tightly coupled system
within an agile software development context.

2 Literature Background

The framework of Carlile (2004) [10] provides an understanding
of communication and boundaries affecting effective
communication. Carlile (2004) constructed a framework
regarding knowledge sharing within organizations. He proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SIGMIS-CPR '17, June 21-23, 2017, Bangalore, India
© 2017 Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5037-2/17/06…$15.00
http://dx.doi.org/10.1145/3084381.3084413

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

33

three boundaries of knowledge sharing with increasing
complexity due to increasing novelty, specialized (domain-
specific) knowledge and dependency: syntactic, semantic and
pragmatic with the corresponding capabilities: transfer,
translation and transformation see figure 1. The first boundary,
the syntactic knowledge boundary, is concerned with the lack of
a common lexicon, which prevents knowledge from being
processed across a (functional) boundary. A shared, stable syntax
could serve as a boundary object and enable the transfer of
knowledge (boundary spanning). The second boundary is the
semantic boundary which is concerned with interpretive
differences despite a common lexicon that decreases effective
collaboration and coordination. It is necessary to consider tacit,
context-specific knowledge in order to be able to span the
semantic boundary and really understand the meaning of
knowledge that is being transferred (called translation). Purpose
of semantic boundary spanning is, thus, the development of a
shared meaning. The final boundary is the pragmatic boundary
which refers to conflicts that arise due to consequential
interaction in the presence of conflicting interests. The purpose
of pragmatic boundary spanning is to achieve a common
interest.

Figure 1, Integrated framework regarding knowledge sharing
[10]. There are three levels of boundaries and corresponding
required capabilities.

A study by Hsu, Chu, Lin, And Lo (2014) [11] investigated the
integrated framework regarding knowledge sharing by Carlile
(2004) [10] in an agile software development context. More
specifically, they tested an extension of the model which
included three aspects of intellectual capital and their influence
on effective boundary spanning and the influence of effective
boundary spanning on information system performance

Ernst (2006) [12] conducted a study with respect to the limits of
modularity. He hypothesizes that modularity has been taken too
far and that the limits to modularity are not taken into account
appropriately. The conclusion that he draws from his research in
the chip industry is that inter-firm collaboration requires more
coordination through corporate management when codification
does not reduce the complexity.

The application of a modular design in software development in
an agile environment has been observed in a case study by [7].
Besides studying the consequences of lacking customer
involvement, they also report on how organizations dealt with
this issue. One of the strategies they found was the use of a
definition of READY. This means that the requirements provided
by the customer (or representatives or surrogates for that
matter) need to conform to a certain standard (the definition of
READY) before the developers are prepared to work on it [7].

Frank and Hartel (2009) [8] conducted a study in a company that
used a modular organizational design by creating a requirement
engineering model (READY) and a development module (DONE).
Originally, separate teams were responsible for constructing user
stories (READY) and development teams (DONE) who were
responsible for building the actual software. Frank and Hartel
(2009) concluded that the increased collaboration between the
READY and DONE part increased team morale and more
predictable results while maintaining a constant velocity. This
study, thus, questions the application of a very modular design
in an agile software development context [8].

Currently, a new conceptual framework with respect to software
development is emerging: DevOps. DevOps extends agile
methodologies and principles outside of the field of development
in order to integrate two departments: development and
operations[13]. DevOps clearly views the different aspects of an
information system as interdependent which is an indication
that these are not loosely coupled systems. The fact that the
emerging conceptual framework in IS research, DevOps,
advocates more integration and collaboration could be seen as
another indication that a modular organizational design might
be less appropriate in an agile software development
environment.

As mentioned above, a modular organization design can be
inappropriate in an Agile development environment, as parts of
an organization are not loosely coupled systems with weak
interdependency. Moreover, customer involvement is highly
important in requirements engineering, which implies that the
READY and DONE part are highly dependent, and thus tightly
coupled [7]. So, creating modules out of a tightly coupled system
can lead to a decrease in the effectiveness of the modularity. So,
from an organizational design perspective, the results obtained
by Frank and Hartel (2009) can be explained by the fact that
modules are created from a tightly coupled system (scrum team)
which results in a decrease in coordination and, consequently, a
decrease in performance [8].

Our research question will be answered using a case study
approach within a program concerned with agile software
development. Data were primarily collected using qualitative
interviews.

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

34

3. Case Study
Our case study setting is at a bank in Europe, referred to as
‘European bank’ in this paper. The ICT group of European bank
have adopted agile software development practices based on the
scaled agile framework (SAFe) [14]. Just as in many agile
projects, this case followed a modular organizational design [8].
Two modules were created from the scrum teams, a READY part
which is responsible for getting user stories “READY” and a
DONE part which is responsible for getting the user stories
“DONE”. One of the core reasons for implementing the agile
model was to remove project management from the
development part. This was achieved by dividing the original
scrum teams in both a READY and a DONE team whereby the
project manager was included in the READY team. It was
thought that, by decoupling the DONE teams from a certain
project and thus single project manager, teams would become
more stable since they do not have to be abrogated after a
project has finished, but the DONE teams can now be assigned to
another project, or used for different projects at the same time.
Another benefit was that the DONE teams would now be
coordinated by one person who would become responsible for
the continuity of these teams and, thus, the HR. It was therefore
hypothesized that the program would be able to add more value
by being able to give priority to features and stories at program
level instead of giving priority to user stories within projects.
Another consequence of this arrangement was supposed to be
improved scalability, the teams could become more able to
respond to changes. When a higher demand for developers
occurs, new teams could be created and when demand drops,
teams could be send home.

The design of the Agile model occurred using working groups,
consisting of all the people that were interested. In total, there
were six themes and six working groups. These themes were:
communication, process decisions, governance, team/aligned
functions, environments and scrum of scrums. Each working
group thus worked on how the new model should address the
issues related to their theme. After approximately one year, the
design of the Agile model was finished and the new agile process
model was made definite and implemented. The actual
implementation consisted of a presentation to inform the people
of the program about the new model.

The scrum teams (also called “DONE teams”) were responsible
for building the software and consists of a scrum master, product
owner and developers and tester. There were approximately 18
DONE teams. All members of the DONE teams were externals
and both European and Indian nationalities were present in
(some) of the teams, although no DONE team were entirely
made up of people from India. Most of the DONE teams were
collocated, with the exception of teams including Indian
developers or tester since these team members were often
located in India. Contact with these globally distributed team
members was established via telephone, email, chat and
videoconferencing. In principle, the Indian team members
participated in all scrum rituals.

The READY teams were responsible for transforming business
requirements (from different projects) into user stories that
could be built by DONE teams. These teams consisted of a
product manager, project manager, application engineer, test
manager, interaction designer and a business analyst. These
READY teams were organized among six themes: financial
insight, cross-channel functionalities (one theme is concerned
with banking related functionalities and the other theme with
the remaining functionalities), content interaction and design,
cross-channel marketing, integration of the client’s world and
cross-channel contact. The exact composition of the READY
teams was not rigid and varied per theme.

The current study uses semi-structured interviews using the
framework provided by Myers and Newman (2007) to conduct
semi-structured or unstructured interviews in an information
systems context. We use the interview method to gain a better
and more in depth understanding of the effect of a modular
organizational design on the knowledge sharing in an Agile
development enviroment. We engaged both a “maximum
variation” and a “snowball” sampling strategy in line with the
typologies provided by Miles and Huberman (1994). The aim of a
maximum variation strategy is to compose a sample that is
heterogeneous. The logic behind this is that the results of the
extremes will aggregate to a result that is representative for the
entire population. After each interview, the researcher asked the
interviewee who would also be interesting to interview, hence
the snowballing. These strategies and the quota of at least one
informant per function resulted in a total sample of 21 different
informants. More detailed information with respect to the
composition of the sample can be found in Appendix A (table 1).

All interviews were face-to-face and took place in a familiar
location for the interviewee. With permission of the interviewee,
the entire interview was recorded with a laptop and no notes
were made in order to contribute to the feeling of a natural
conversation. Afterwards, transcripts were made of the
interviews. The script used during the interview can be found in
Appendix B.

The data analysis process occurred according to Miles and
Huberman (1994)[15]. All codes were assigned using the
software “Atlas TI”. The coding process resulted in 58 unique
codes (see Appendix C). Coding occurred by assigning anything
from words to short sentences to meaningful pieces of transcript.
Despite the fact that the sample size was predominantly
determined by quota sampling, it was checked whether
saturation of the codes had occurred after all interviews were
conducted. The saturation process is illustrated by Figure 2.

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

35

Figure 2. The saturation process.

Figure 2 illustrates that saturation of the codes occurred
relatively early in the process. The dip that can be observed from
the second respondent until the fifth can be explained by the fact
that these interviews were conducted with line management.
Their interviews contained relatively large amounts of context
information because they are further removed from the actual
process in comparison to members of both modules and the data
they provided was more concerned with how they expected the
agile process to work, compared to how it actually worked in
practice.

After all transcripts had been coded, all codes thematically
related were clustered and, if necessary, refined (Figure 3). From
these clusters of codes, categories with respect to the research
question were constructed.

Figure 3 Number of codes per category. Categories from left to right:
ready process, implementation process, knowledge management,
ready/done collaboration and context.

Figure 3 illustrates that the READY process, implementation
process and READY/DONE collaboration were mentioned
approximately equally often across all the interviews.
Knowledge management was discussed less often which could
indicate that knowledge management is less important and/or
less of an issue within the process.

4. Results

This section contains the results obtained by the current study.
As part of the results section, quotations were added. Since the
interviews were conducted in a western European language, the
quotes were translated. The results section will explain what the
interviews revealed the consequences of the modular design.

4.1 The semantic boundary
During the interview, people were asked about the
implementation of the modular design and the consequences
thereof. One of the things that popped up during the interviews
is that people perceived the implementation process of the new

modular design that was chosen to be insufficient. The
implementation consisted of a presentation that was given to all
members of the program. During the presentation, the
philosophy of the new modular agile model was discussed, as
well as the benefits it was supposed to bring in terms of
flexibility at the program level. However, the presentation did
not explain the impact of the model beyond the operational level,
in terms of changes in the different roles (like the business
analyst), the requirement engineering process and the
development process. One interviewee indicated that they had
expected a more active implementation containing change
management. The perception that the presentation was not
sufficient to cover the entire implementation process is
illustrated by quote 1.

Q1: “We were given a presentation containing the general idea of
what they were aiming for and I’ve got the feeling that it has not
sunk in, at least not sufficiently. You have to really implement it.”
(P07 – Test Manager)

An example of a concept that does not have the same meaning
across the entire department but is used by all the teams of both
modules is a “feature”. Customer demand is captured in a
business case which describes broadly what new functionality
should be able on the company’s website for example. This
business case is split up in features and from these features, user
stories are created. The three concepts are distinguishable by the
amount of time needed to realize them whereby the business
case requires the most time and the user stories the least. This
broad distinction is known across the department but exact
definitions of the different concepts are not the same. This is
illustrated by quote 2 by a Business Analyst:

Q2: “How can you, if you cannot even uniformly determine the
weight of a feature, compare features across teams? (..) It becomes
very difficult to exchange a feature from team one to team two
when team one and team two think differently.” (PO8 – Business
Analyst)

This quote illustrates the semantic boundary between members
of different teams, apparently the concepts are known across the
entire department but their meaning is different for teams and
thus also varies between both modules. These results are also in
line with the model as proposed by [11], who concluded that a
common understanding positively affected effective
communication.

An Application Engineer mentioned (quote 3) that the semantic
boundary has to be spanned using very elaborate specifications
in the modular organizational design. These specifications are
needed in order to create a common understanding and to enable
DONE teams to build software.

Q3: “The way we have it [modular organizational design] is that a
DONE team has to be able to build software without the context
that we [READY] have. Practice shows that when you conduct the

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

36

process like this [modular organizational design] is that
specifications need to be very elaborate or a DONE team will not be
able to estimate the work and execute it.” (PO 20 – Application
Engineer)

Apparently, the implementation of a modular design in the case
that was investigated has resulted in a lack of shared mental
models between the teams. The meaning attached to different
concepts as well as representations of the development process
are not necessarily similar across all the teams. In conclusion, it
appears that the modular design had created a semantic
boundary thereby causing a lack of shared mental models across
the teams. The effect of this lack of shared mental models
caused by the semantic boundary between teams, had caused a
decrease in the effective communication and coordination
between teams. The interdependencies between the teams of the
READY and DONE module created the necessity to coordinate
and communicate between them. However, effective
communication and coordination was inhibited by the lack of
shared mental models since a shared understanding has to be
reached before any coordination can occur.

4.2 The pragmatic boundary

Another topic discussed during the interview was
the split of responsibility between the READY and DONE teams.
Although both modules worked on the same product, this
common goal/responsibility was not experienced in practice.
When, for example, a new function for the mobile application
had to be developed the READY module solely felt responsible
for writing the user stories and after they had finished, their
responsibility for the application ended. The same could be
applied to the DONE module: they are merely responsible for
actually developing the application and they did not feel
responsible for the user stories.

Q4: “Now, they [READY] do not have the responsibility to deliver
something. That responsibility now lies solely with us [done] and
they merely prepare at the moment (…). Maybe that should be
more aligned so that the people that create the specifications also
feel responsible for the delivery.” (PO12 – Developer)

This modular design and the relatively strict division of the
responsibilities of both modules was also perceived to be very
“waterfall like” by some of the participants in line with the
observations of Frank and Hartel (2009)[8]. With this,
participants were most often referring to the tendency of both
parties to “throw it over the wall”, meaning that READY
“throws” their user stories over the wall and that DONE has to
figure out what they are supposed to build but the other way
around also occurs, DONE throws “not READY” user stories
back over the wall and READY has to fix it. This effect is
illustrated by a scrum master in quote 5.

Q5: “READY and DONE is a waterfall. You have got the
preparatory work [writing user stories] and it is just thrown over
the wall and it has to be done.” (PO 9 – Scrum master)

This finding indicates a pragmatic boundary that is negatively
affecting collaboration. Like mentioned before, Carlile (2004)
defines the pragmatic boundary as conflicts that arise due to
consequential interaction in the presence of conflicting interests
meaning that conflicts arise when their goals regarding
knowledge delivery contradict [10]. Another factor that was
used to explain the pragmatic boundary was the fact that READY
and DONE were not working in parallel but sequential. READY
first wrote user stories and after they are finished, DONE would
build them. During the development process, however, READY
was already working on something else which could decrease
their interest in the user story that DONE was working on.

It appears that both the semantic boundary and the pragmatic
boundary indeed cause a decrease in effective communication
and that the semantic boundaries occurs both within and
between modules and that the pragmatic boundary solely occurs
between modules. No evidence was found with respect to the
occurrence of a syntactic boundary based on the results of the
current study.

4.3 Intellectual capital: the state of relational
capital

Besides the “throw it over the wall” effect, the modular design
also had an impact on the relationship across members between
different modules. The results reveal that an “us and them”
feeling could be observed between the modules meaning that
members from the READY module felt little affiliation with
members from the DONE module and vice versa. This lack of
affiliation has negatively influenced the relationship between
members of both modules. Quote 6 by a business analyst
illustrates what the effect of the modular design is on the
relationship between the ready and done modules.

Q6: “I do not have a relationship with them [DONE]. I’m so far
removed from them; I just have to deliver user stories”. (PO8 –
Business Analyst)

This view is similar to another quote by a member of a DONE
team that also stresses the consequences of the decreased
relationship between both parts (quote 7).

Q7: “I do not consider them [READY] to be part of us [DONE]. The
way you look at them and approach them does differs.” (PO12 –
Developer)

The fact that the quality of their relationship has decreased due
to the fact that they have become members of different modules
has affected the way they approach and interact with each other.
One of the consequences mentioned during one of the interviews
is reluctance from both parties to initiate face-to-face contact.
This face-to-face contact is often replaced by emails which
delays the response and decreases the richness of information
thereby causing inefficiencies. This effect was illustrated by a
Developer (quote 8) who indeed felt that not knowing each other

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

37

and being located at different floors inhibits the initiation of
face-to-face contact. As a consequence, this contact was initiated
using emails whereby important nuances of the message are lost.

Q8: “At first, you do not know each other. They say that it does not
matter whether you have a development team on the second floor
and you have to take the stairs (…). But when you do not know
each other, you would rather send an email but then you will miss
the nuance.” (PO 14 – Developer)

The fact that a decrease in the quality of the relationship
between both modules has led to a decrease in effective
communication between the modules which, in turn, has caused
ineffective coordination is in line with the results obtained by
[11] who found that a decrease in relational capital negatively
affect communicational effectiveness which results in a decrease
in project efficiency.

These results further confirm the theory that the strictly
separate responsibilities of both modules causes a pragmatic
boundary and a decrease in effective communication by proving
that this decrease in effective communication does not happen
when the responsibilities are not strictly separated. The same
reasoning applies to the theory that a decrease in relational
capital results in a decrease in effective communication since the
current study found that effective communication remained
when the quality of the relationship between both modules
remained intact. This finding is also in line with the literature on
DevOps which advocates a culture of open communication and
trust in order to enhance collaboration.

5. Conclusion and discussion

The aim of the current study is to investigate the degree to
which a modular organizational design can be applied effectively
in an agile software development context. More specifically, the
current study tried to explain the limits of a modular design in
an environment where technologies change fast and
unpredictably as found by Ernst (2006) [12]. In order to gain
more understanding with respect to this finding, the effects of
applying a modular design in an agile software development
context on effective communication was researched.

One of the results was that the modular design caused a
semantic boundary between members of different modules
which indicates a lack of shared understanding. It appeared that
this semantic boundary was caused primarily by the different
goals assigned to each module. Due to the fact that each module
had its own goal(s), each module had its own processes and
methodologies which were not known by heart by members
outside of the specific module. So, the different concepts and
processes applied by different modules causes a semantic
boundary between modules. Another effect of the modular
design is that, although some concepts and processes are used
across all modules, the meaning attached to these concepts and
processes differs across modules. This means that the modules

have a common lexicon but do not necessarily have a shared
meaning. This lack of shared understanding implies that the
semantic boundary caused by the modular design also inhibits
the development of shared mental models between modules. The
effect of the lack of shared mental models caused by the
semantic boundary is that a decrease of effective communication
between members of different modules can be observed. This
result is in line with the studies by [10, 11, 16]. The differentiated
roles of the different modules could explain the lack of shared
mental model development between members of different
modules.

Another result of the current study is that the modular design
resulted in a pragmatic boundary between the modules. More
specifically, the different goals of the different modules resulted
in misaligned interests thereby decreasing the incentive of
members of different modules to communicate with each other.
This effect appears to be very similar to the “throw-it-over-the-
wall” effect as observed by [17]. After each module had
completed their task, they “threw their work over the wall” to
the other module who had to figure out how to deal with it. For
example, the READY module was responsible for writing user
stories which the DONE module had to build. After the READY
module had completed their task, they presented their user story
to the DONE module which had to deal with it relatively
autonomously. Due to the fact that the formal responsibility of
the READY module ends after the user story is completed, they
lack an incentive to help and guide the DONE module during
software development. Therefore, in this case, a modular design
causes a pragmatic boundary between modules which inhibits
effective communication between members of different modules.
These results are in line with the study by [10]. Further, these
findings are also in line with the literature on DevOps, which
advocates aligned responsibilities among the parties involved in
information systems.

Finally, the results of the current study revealed that the
modular design decreases the relational capital between
members of different modules. In practice this decrease in
relational capital resulted in an “us and them” feeling between
members of the different modules. The effect of this group
thinking is that members of other modules were approached
different from members of the same module. Communication
between members of different modules with relatively low
relationship quality were often approached either through other,
better known people or via communication channels with lower
quality compared to face-to-face communication like email. The
effects of these coping strategies resulted in a decrease in
effective communication between the members of different
modules with a relatively low quality relationship. This negative
effect of a decrease in relational capital on effective
communication is in line with the results found by [11]. Again,
this finding is in line with the literature on DevOps which
stressed the importance of a culture of open communication and
trust.

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

38

In conclusion, the current study has revealed that the application
of a modular organizational design in a dynamic agile
environment is limited due to the fact that a modular design has
a negative effect on the effective communication and
coordination between members of different modules. More
specifically, the modular design creates both a semantic and a
pragmatic boundary between members of different modules
which is primarily caused by the fact that modules have
differentiated tasks and often misaligned interests. Another
consequence of modularity is a decrease in the quality of the
relationships between members of different modules which are
thought to be caused by group thinking. The effects of the
decrease in effective communication and coordination between
members of different modules are more severe for modules that
are highly interconnected.

Acknowledgements
The authors would like to acknowledge the contribution of Dr.
Michel Ehrenhard for his guidance of this research project.

REFERENCES
[1] Conway, M. E. How do committees invent. Datamation, 14, 4 (1968), 28-31.
[2] Amrit, C. and Van Hillegersberg, J. Detecting coordination problems in
collaborative software development environments. Information Systems
Management, 25, 1 (2008), 57-70.
[3] Coplien, J., O. and Harrison, N., B. Organizational Patterns of Agile Software
Development. Prentice-Hall, Upper Saddle River, NJ, USA, 2004.
[4] Amrit, C. Improving coordination in software development through social and
technical network analysis. University of Twente, 2008.
[5] Herbsleb, J. D. and Grinter, R. E. Splitting the organization and integrating the
code: Conway's law revisited. ACM, City, 1999.
[6] Amrit, C., van Hillegersberg, J. and Kumar, K. Identifying coordination
problems in software development: finding mismatches between software and
project team structures. arXiv preprint arXiv:1201.4142 (2012).
[7] Hoda, R., Noble, J. and Marshall, S. The impact of inadequate customer
collaboration on self-organizing Agile teams. Information and Software Technology,
53, 5 (2011), 521-534.
[8] Frank, A. and Hartel, C. Feature teams collaboratively building products from
ready to done. IEEE, City, 2009.
[9] Klimoski, R. and Mohammed, S. Team mental model: Construct or metaphor?
Journal of management, 20, 2 (1994), 403-437.
[10] Carlile, P. R. Transferring, translating, and transforming: An integrative
framework for managing knowledge across boundaries. Organization science, 15, 5
(2004), 555-568.
[11] Hsu, J. S.-C., Chu, T.-H., Lin, T.-C. and Lo, C.-F. Coping knowledge boundaries
between information system and business disciplines: An intellectual capital
perspective. Information & Management, 51, 2 (2014), 283-295.
[12] Ernst, D. Limits to modularity: reflections on recent developments in chip
design. Industry and Innovation, 12, 3 (2005), 303-335.
[13] Erich, F., Amrit, C. and Daneva, M. Cooperation between information system
development and operations: a literature review. ACM, City, 2014.
[14] Laanti, M. Characteristics and principles of scaled agile. Springer, City, 2014.
[15] Miles, M. B. and Huberman, A. M. Qualitative data analysis: A sourcebook.
Beverly Hills: Sage Publications (1994).
[16] Espinosa, J. A., Slaughter, S. A., Kraut, R. E. and Herbsleb, J. D. Team
knowledge and coordination in geographically distributed software development.
Journal of management information systems, 24, 1 (2007), 135-169.
[17] Al-Rawas, A. and Easterbrook, S. Communication problems in requirements
engineering: a field study (1996).

Appendix A
Table 1 Overview with respect to the composition of the sample
used in the current study.

Function/role Number Percentage (%)

Line manager 3 14,3

Project manager 1 4,8

Test manager 2 9,5

Application

engineer

1 4,8

Product manager 1 4,8

Business analyst 3 14,3

Interaction

designer

1 4,8

Scrum master 3 14,3

Product owner 1 4,8

Tester 1 4,8

Developer 3 14,3

Total 21 100

Appendix B

The interview protocol:

1. Opening
a) Introduction of the interviewer and the research
b) Aim of the interview and explanation of the structure
c) Emphasis of confidentiality and permission regarding
recording was asked

2. General information interviewee
a) Interviewee was asked to introduce his/herself
b) The following topics had to be discussed:
- Number of years active in Rabobank
- Different functions the interviewee has been operating in
- Current function and responsibilities

3. Rabobank and agile
a) Implementation of the scrum process
Topics that were included are:
- Construction of user stories
- Relevant rituals
b) Issues related to the current implementation of the scrum
process

4. Definition of both READY and DONE
a) The READY/DONE process
- Goal of the division
- Implementation of the new model
- Responsibilities of both
- Formal/informal meetings
b) Issues related to the READY/DONE division

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

39

c) Solution for these issues
- Solutions within the current process
- Solutions outside of the current process

5. Ending
a) The interviewee is asked whether he or she would like to add
something to the interview
b) Check whether the interviewer knows other people that might
be interesting to interview
c) Thank the interviewee for his/her time

Appendix C

The codes and their nesting displayed in relational context. The
core concept displayed in the center, with high-level concepts.

Paper Session 1.2: Architecture of Digital Organizations SIGMIS-CPR’17, June 21-23, 2017, Bangalore, India

40

