
An architectural perspective on service adoption: A platform
design and the case of pluggable cross-border trade compliance in
e-commerce
Fabian Aulkemeier, Maria-Eugenia Iacob , and Jos van Hillegersberg

Centre for Telematics and Information Technology, University of Twente, Enschede, The Netherlands

ABSTRACT
Current e-commerce architectures rely on a small number of monolithic
application systems. The adoption of innovative IT functionality within
these architectures is a tedious and complex task. The purpose of this
article is to present a design for a novel platform architecture to improve
the pluggability of e-commerce services. More precisely, the pluggability of
services in current architectures is described, a platform architecture is
introduced, and its effect on pluggability is evaluated by means of a
prototype. The enablers for this architecture are the recent innovations of
web programming interfaces, delegated resource access, and client-side
web application frameworks. Those technologies are common in social
media and their potential in enterprise computing is revealed in this
work, based on the example of a trade compliance service for cross-border
retail. The results of this study suggest that the architectural design has
merits as it improves the pluggability of e-commerce services. Hence,
e-commerce companies should consider a paradigm shift and move from
using self-contained application components to a platform-based adoption
of complementary services.

KEYWORDS
Cloud platform; e-commerce
services; enterprise
architecture design;
microservices; pluggability

1. Introduction

E-commerce is becoming an increasingly important channel for retailers of any size and sector. By
using specialized information technology (IT) solutions, retailers can improve service quality and
information quality, two of the main drivers for trust and customer loyalty (Yoon and Kim 2009).
Furthermore, the domain is characterized by the criticality of interorganizational collaboration with
suppliers, partners, and customers, which must be projected onto the IT architecture. Cloud-based
services are a promising approach to adopt specific functionality and to build an IT landscape with
increased interoperability capabilities (Dhar 2012).

Despite the potential benefits of the service-based approach, the adoption of new services can be
cumbersome. As Kephart and Chess (2003) state, the complexity of a system is higher than the
complexity of the entirety of services. Thus, system complexity depends on the ability of the services
to manage their own operation within the system and to reduce the requirements for system
integrators to handle the complexity, originating from a growing amount of services. Today’s
cloud-based services are a step forward to an easy adoption of individual pieces of functionality.
However, as Martens, Walterbusch, and Teuteberg (2012) point out, the required resources for
adopting cloud services are often underestimated as the need for evaluation, implementation,
configuration, and integration gets neglected.

CONTACT Fabian Aulkemeier f.m.aulkemeier@utwente.nl Centre for Telematics and Information Technology, University
of Twente, CTIT, P.O. Box 217, 7500 AE Enschede, The Netherlands.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hoce.
© 2017 2017 Fabian Aulkemeier, Maria-Eugenia Iacob, and Jos van Hillegersberg. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE
2017, VOL. 27, NO. 4, 325–341
https://doi.org/10.1080/10919392.2017.1363588

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 

http://orcid.org/0000-0002-4004-0117
http://www.tandfonline.com/hoce
https://crossmark.crossref.org/dialog/?doi=10.1080/10919392.2017.1363588&domain=pdf&date_stamp=2017-09-07


The concept of pluggability focuses on the capabilities of a service to facilitate its own adoption
within a system (Aulkemeier, Iacob, and van Hillegersberg 2015). It is defined as a quality char-
acteristic of software services and is to be assessed from a user perspective. It reflects the criteria
affecting the need for technical skills and labor to consume a service. More precisely, investigating
pluggability means breaking down the use of a service into various phases, such as deployment or
integration, and to consider the required time and expertise during each phase. To cope with the
increased number of IT systems, service providers should aim for a high pluggability for their
products. Otherwise, the ownership of a multitude of services would generate too much overhead,
thus leading to an inflexible infrastructure.

Platforms have been promoted as a means to increase the quick connect capability within a
network (Heck and Vervest 2007). The provisioning of services through a platform means bundling
the reoccurring resources and features across application components, and making them accessible
for reuse. Following this principle, the platform contains the stable components and supports the
variability and evolvability of the other services by constraining their linkages (Baldwin and
Woodard 2009). Eventually, it can help retailers decrease efforts related to service adoption, and
allows service providers to offer services that are easier to consume.

The research question we answer in this work is, how can a platform architecture for e-commerce
increase the pluggability of services. Existing research on platform architectures focuses merely on
facilitating specific phases of service development or service consumption. Platforms for service
provisioning include Software-as-a-Service (SaaS) marketplaces (Giovanoli, Pulikal, and Grivas 2014)
or service directories (Maximilien, Ranabahu, and Gomadam 2008). Another category of platforms is
dedicated to the integration of services. These act as intermediaries between services, and manage the
access to web services or application programming interfaces (APIs) of the underlying software
components (Weerawarana et al. 2005). Recent work on Platform-as-a-Service is mostly oriented
toward software development and operation and favors the needs of service implementers (Paraiso
et al. 2012). Other platforms exist that allow implementation services based on open data models, but
are not applicable for private data in an e-commerce context (Pedrinaci et al. 2010). In contrast to
the existing work within the broad body of research in software platforms, we focus on the use of
platforms in a business information system context. More specifically, we present a software service
platform that facilitates the adoption of e-commerce services for online retail.

In this research, we follow the design science research methodology (DSRM) by Peffers et al.
(2007), which provides a framework for producing and presenting design artifacts in the field of
information systems. It prescribes five phases, namely 1) motivation, 2) objective definition, 3)
design, 4) demonstration, and 5) evaluation. The design artifact and the main contribution of this
paper are a platform architecture to facilitate pluggable e-commerce services. The architecture is
represented by means of an ArchiMate model (The Open Group 2016). Its objective is to solve the
problem of low pluggability of current e-commerce services. It draws upon recent technologies and
protocols originating from the social media and mobile service industry, and applies them in an
enterprise information system context.

To evaluate the design artifact, we consider the business case of an e-commerce company that
plans to get involved in cross-border selling to reach a larger customer base. A key hindrance for
cross-border e-commerce lies in the diversity of national legal regulations (Lendle et al. 2012). Based
on a prototypical implementation of the platform, we present a solution for a pluggable service that
ensures trade compliance in cross-border retail. More precisely, the service helps retailers correctly
calculate the foreign tax and customs during a sales transaction. The evaluation of the architecture is
carried out through the comparison, in terms of pluggability, of an existing reference solution with
the platform-based service.

The paper is structured according to the DSRM. In the next section, we present the business case
by means of an existing reference architecture for a cross-border trade compliance service, originat-
ing from a service provider in the field (Section 2.1). We then assess the reference architecture with
regard to the six phases of service adoption. The findings are discussed in Section 2.2 and provide a

326 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



motivation for a novel platform-based solution. In Section 2.3, we elaborate on the concept of
pluggability as the main objective for the design. In Section 3, we present the platform architecture
and describe how it improves pluggability. The prototypical implementation of the architecture and
the pluggable trade compliance service are presented and evaluated in Section 4.

2. Adoption of e-commerce services

The purpose of this section is to specify the problems related to service adoption and to motivate the
need for an architecture that facilitates the provisioning of services for e-commerce in a pluggable
manner.

2.1. The trade compliance case

For a better understanding of the problems related to service adoption, and the capabilities of our
design, we consider a trade compliance service that helps online retailers expand their e-commerce
business cross-border. The functional capabilities of common e-commerce solutions do not allow
online shops to manage legal regulations for cross-border selling in a straightforward manner
(Aulkemeier et al. 2016b). By addressing this challenge through a pluggable service, we can
demonstrate the advantages of the architecture regarding the adoption of services, and its benefits
in embracing novel business opportunities.

The objective of the service is to provide real-time updates of orders with costs for international
shipment, customs, and value added taxes (VAT). In this way, the buyer gets accurate information
on the total costs of his/her online purchases from foreign retailers. To date, those costs are often
claimed by tax authorities during the transit. Figure 1 illustrates the anticipated solution.

The customer can receive information about all of the costs related to the cross-border transac-
tion. Furthermore, from a retailer perspective, the correct application of tax regulations often
depends not only on a single transaction, but also on the total value of goods sold to a specific

Figure 1. Checkout with tax and customs information.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 327

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



country within the fiscal period (Agrawal and Fox 2016). Thus, the service must keep track of all
cross-border transactions per country, and apply the correct regulations.

The case study is based on an existing web service that was made available for our research by a
global trade compliance consultancy firm. The web service encapsulates the logic required for
calculating trade costs, such as foreign VAT and customs, which need to be declared when selling
cross-border. To obtain a cost calculation, the corresponding product needs to be published to the
service beforehand. The service provides a web application that allows maintaining the product
information, and getting an overview of all processed cross-border transactions. The reference
architecture proposed by the trade compliance service provider is shown in Figure 2. The model
makes use of the ArchiMate modeling notation for enterprise architecture (The Open Group 2016).
We apply the notation throughout this work as it allows us to model both business and IT-layer
concepts as well as their relationships.

The model illustrates the use of the service within a common e-commerce architecture. The core
component of a state-of-the-art e-commerce architecture is a packaged e-commerce solution that
encompasses product information management (PIM), customer management, and a storefront. To
integrate the trade compliance solution into this architecture, a custom trade cost calculation compo-
nent is proposed. According to the reference architecture, this is implemented as a customization of the
e-commerce package. The customization passes new products onto the service. Furthermore, it carries
out the trade cost calculation in real time for incoming orders using the web service.

2.2. IT service adoption

The adoption of IT services often follows the same pattern, consisting of the lifecycle shown in
Figure 3. It contains six phases, which occur in nearly every change process that concerns the
introduction, update, or replacement of IT services (Aulkemeier, Iacob, and van Hillegersberg

Figure 2. Original reference architecture for the tax compliance service.

328 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



2015). The adoption lifecycle is used as a framework to assess the pluggability of a software
component.

Current e-commerce architectures consist of a small set of large systems. More precisely, in most
cases, they contain a shop front-end, an enterprise resource planning system for back-office tasks,
and a warehouse management system for fulfillment logistics (Aulkemeier et al. 2016a). Each of
these application systems covers a large amount of functionality. Such monolithic systems are closely
tied to the operational processes of the companies owning them, which makes it hard to detach them
(Mandal and Gunasekaran 2003). Furthermore, those systems operate as a whole, thus consisting of
tightly coupled modules that are difficult to replace with atomic pieces of functionality encapsulated
in other services (Gattiker and Goodhue 2004).

In the following, we assess the reference architecture for the trade compliance service with regard
to the six phases. Subsequently, we discuss the shortcomings in the pluggability of current IT
services, which emerge from the required resources during each phase of service adoption. The
discussion paves the way for an innovative design that embraces these factors.

2.2.1. Service provisioning
During the service provisioning phase, potential services are evaluated and compared. Instruments exist
to analyze the fits and misfits of different software packages (Wu, Shin, and Heng 2007). Accordingly, the
assessment of software packages can be divided into multiple subphases and can take a year or more. In
general, the more complex the system and the higher its impact on the business, the higher the risk and
the more critical the service provisioning becomes. On the other hand, finer-grained software compo-
nents have less impact and, thus, entail less risk, thereby making the provisioning more straightforward.
Furthermore, the amount of available information on the software component can be considered as a
crucial factor during service provisioning. The existing trade compliance service is not publicly docu-
mented beyond the high-level functional outline, and is not available in a service directory, marketplace,
or plugin directory of an existing platform. Access to the service and its detailed functionality are subject
to individual inquiry with the service provider. Thus, an unbiased assessment and comparison of the
service with similar offers on the market require an in-depth investigation. A generic demonstrator for
the service is available on-demand, but it is not customer specific. The service does not allow for self-
subscription. Technically, there is no straightforward way to assess the service in the target environment.
It requires the engineering of a proof-of-concept, including deployment, configuration, and integration.

2.2.2. Service deployment
Software deployment includes activities between the acquisition and execution of a software product
and can be a complex and long task, especially in the case of a distributed system (Dearle 2007). The
trade compliance service and the two interfaces are hosted by the service provider and do not require
allocation of hardware resources, or installation. However, the trade compliance component is
required to make the solution work. That component is not issued by the service provider.
Therefore, a custom-developed extension of the e-commerce component is required to make the
solution work. Such developments also require testing.

Service 

Provisioning

Service 

Deployment

Service 

Adaptation

Service 

Integration

Service 

Operation

Service 

Exchange

Figure 3. Lifecycle of service adoption and use.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 329

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



2.2.3. Service adaptation
In terms of service adaptation, we can distinguish between configuration and customization. While
the configuration allows a user to set up the system according to his/her needs, a customization
requires changes in the source code or scripting. In general, the ability of the system to cover a
maximum number of business scenarios through configuration decreases the need for customization
(Sun et al. 2008). This, in turn, increases the ease of adaptation. Furthermore, a SaaS solution should
aim for a high degree of configurability, because customizations are difficult to realize by the user of
an external service. The trade compliance service can be configured through the administration user
interface. Furthermore, the service must implement the trade compliance component within the
e-commerce component, which allows the user to design and adopt the component according to his/
her functional requirements.

2.2.4. Service integration
The trade compliance web service consists of two interfaces, one for product registration and
another for customs and tax calculation. The product registration interface is used to pass product
information onto the service, which will be used for the determination of product-related duties.
Users of the trade compliance service must implement the integration between the e-commerce
platform (or any other system where product master data is maintained) by themselves.
Furthermore, the maintenance and monitoring of that integration artifact must be maintained and
monitored by the service user. The same applies for the second web service interface, which is used
to initiate the customs and tax calculation during a transaction.

2.2.5. Service operation
The service operation phase encompasses all of the long-term activities that the use of software
requires. These can be a major cost factor, as they require permanent human resources in a
traditional, non-cloud setting. These activities are multilevel support, including a service desk, and
the maintenance of a knowledge base. Furthermore, maintenance of the system is required to
improve the service in terms of problem-solving and new features concerning functional or security
issues. Major updates might be necessary at the end of the support cycle for a software release, and
can have a high impact and require repetitive testing, as well as reengineering of customizations. In
the case of the trade compliance service, issues related to service operation occur mainly for the
custom-developed component.

2.2.6. Service exchange
At the end of the service adoption lifecycle, the discontinuation or replacement of a service takes
place. A critical factor during this phase is whether other services rely on the data or functionality of
the retired service. In such cases, data migration, reengineering of other services, and retesting are
potential necessities. In the case of the trade compliance service, the trade compliance component
within the e-commerce component should be removed. This includes the repeated testing of the
e-commerce component. The reference architecture does not contain any dependencies with other
services. Thus, canceling the service subscription will not lead to any other side effects.

2.3. Pluggability

From the brief analysis of the IT service adoption lifecycle in Section 2.2, using the example of the trade
compliance service, we can conclude that the adoption of specialized services for e-commerce is a
resource-intensive endeavor in terms of time, expertise, and cost. Hence, such services can be character-
ized as having a low pluggability. As a consequence, online retailers that want to adopt new features in
order to keep pace with competitors have to accept high investments or wait until their software vendor
introduces a similar feature in a future release. In the following, we elaborate on the concept of
pluggability. Improving the pluggability of a service is the main design objective of this work.

330 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



The concept of pluggability reflects the software quality criteria that drive the ease of adopting
new software services (Aulkemeier, Iacob, and van Hillegersberg 2015). It is defined as a quality
characteristic to assess software services from a user perspective. It entails factors that have an impact
on the need for technical skills and labor to consume the service. Improving the pluggability of a
service means giving the service user the possibility to adopt, upgrade, and exchange services with
little effort. The goal is to achieve a flexible and fast adoption of services in response to market
changes and with the aim of increasing the customer service levels by adopting the latest innovation.
Figure 4 shows the quality model with the six criteria that positively impact the pluggability of a
software component and that are based on the lifecycle of service adoption.

SaaS solutions, in general, help with the adoption of a service (Benlian and Hess 2011). However,
the issues in service integration, operation, and exchange cannot be solved just by switching from an
on-premises application to a cloud equivalent. We argue that an improvement of service pluggability
cannot be achieved by optimizing just the service itself. In fact, a suitable architecture is also
required, which allows service providers to build services that can be consumed in a more pluggable
way. Heck and Vervest (2007) argue that a superordinate platform helps improve the capability of
services to quickly connect and act as a unit.

3. Toward a pluggable service platform for e-commerce

In the previous section, we described the distinct phases of service adoption and pointed out the low
pluggability of IT services for e-commerce in current approaches. In this section, we advance an
architecture to increase the pluggability of individual services and the overall flexibility of the IT
landscape.

3.1. Platforms for e-commerce

The basic idea of a platform is the separation of stable and evolving components in a system. The
platform plays a central role in enabling the variability and evolvability of the system (Baldwin and
Woodard 2009). That role can be to facilitate the exchange between partners as in a marketplace, to
enable transactions such as payments, or to act as a technical standard as software or hardware
platforms do (Sriram et al. 2014). A variety of service platforms exists that cover one or several of
these roles. Operating systems, such as Microsoft Windows or Google’s Android, are software
platforms that provide access to computing resources and can be reused across applications.
Modern operating systems also take the role of marketplaces through their integrated app stores
(Kimbler 2010). By comparison, e-commerce platforms often do not bundle and expose resources
but act as intermediaries only, such as business-to-business (B2B) marketplaces. Holzmüller and

 

Pluggability

Ease of service provisioning

Ease of service deployment

Ease of service adaptation

Ease of service integration

Ease of service operation

Ease of service exchange

Figure 4. Quality model of pluggability (Aulkemeier, Iacob, and van Hillegersberg 2015).

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 331

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



Schlüchter (2002) state that the benefits of such B2B marketplaces, which act only as a coordination
hub for service providers and users, do not live up to expectations in terms of reduced transaction
costs. Software packages are another form of e-commerce platform that enable the web to act as a
sales channel. Such platforms are mostly operated by the selling party. SaaS offerings for online
stores or business-to-consumer marketplaces, such as eBay, serve the same purpose. Aulkemeier
et al. (2016b) explored the architecture of online retail systems and found that such e-commerce
platforms cover only a small part of the required functionality to operate an e-commerce channel.
More precisely, they provide limited capabilities in terms of warehousing, finance, or customer
support, thus assuming the integration with other application components that provide the missing
functionality. The realization of such integration is still cumbersome, and requires the engineering
and operation of dedicated integration artifacts (Aulkemeier et al. 2016a).

3.2. The service platform model

The architectural pattern we propose in order to ease the adoption of services is the two-sided
service platform (Heck and Vervest 2007). Two-sided platforms support service providers and
service users at the same time. However, in many cases, such platforms are marginally perceived
by the users. They act as invisible engines enabling their clients to provide services (Evans, Hagiu,
and Schmalensee 2008). The model in Figure 5 illustrates the actors and relations in a two-sided
platform ecosystem (Boley and Chang 2007; Chang and West 2006).

A service provider is a client (or partner) of the platform provider (or platform sponsor) and
offers services to the users. In this work, we investigate the e-commerce services offered to retailers.
Hence, we consider the e-commerce service provider as the client and the retailer as the user of the
e-commerce platform. The e-commerce service makes use of the platform services that are imple-
mented by the platform provider. The platform provider is responsible for implementing long-term
stable components of the system that will be used across e-commerce services. In this way, the
scattering of functionality and data can be limited. Eventually, the service implementation and
evolution, adoption, and cross-service collaboration get simplified.

In other domains, IT services rely on a shared back-end that encapsulates the common compo-
nents across all services. Platforms following the described principles have been widely adopted in
many domains, such as mobile computing, navigation, or gaming (Wareham, Fox, and Cano Giner
2014). Especially the mobile industry applies this two-sided platform approach extensively (Basole
and Karla 2011). Developers of mobile applications can rely on several platforms for marketplaces,
gaming back-ends, user profiles, advertising, and geo-services. These platforms help service provi-
ders reduce implementation efforts, increase the collaboration between services, and enhance the
end-user experience. As such, platforms also provide access to shared resources and the replication

Figure 5. Roles and actors in a two-sided service platform setting.

332 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



of data is often not necessary, thus decreasing scattering of data and increasing data quality (Loser,
Legner, and Gizanis 2004). Furthermore, the platform design enables service providers to reuse
common components and concentrate on the core functionality, allowing them to offer finer-grained
services.

To understand the features of the platform architecture, it is beneficial to illustrate how prevailing
enterprise application systems are built. According to Fowler (2002), such systems typically consist of
several independently deployed layers, usually including a database, an application back-end, and an
application front-end (Figure 6). Each individual system encapsulates the data that are required for
the provided functionality. Thus, the e-commerce company ends up with many functionally distinct
systems with scattered information. The need for interoperability between applications is ignored
during their implementation and must be solved later by the user.

Considering the fact that e-commerce services share common data and business logic, the
e-commerce platform we introduce (Figure 7) encapsulates a common data model and business
rules for e-commerce (Hohpe and Woolf 2003). Furthermore, it allows the definition of rules to let
e-commerce companies control the access of diverse services to their resources on an entity level.
Finally, the application model extensions permit individual services to extend the data model. This
helps keep the common data model simple, yet versatile.

Figure 6. Common application architecture.

Figure 7. Segregation of service-specific and common resources.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 333

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



3.3. Platform architecture

Figure 8 shows the architectural model, including the roles, platform components, and processes.
The architecture includes three roles, namely the platform provider, the platform user, and the client
who offers a service through the platform. There is no preference as to which actors should take
which role. It is thus possible that an e-commerce service provider is also operating the platform.

The multiple application components of the platform rely on two types of data objects. On the
one hand, a resource set data object is assigned to each user of the platform. It contains the core
functional data for e-commerce, such as orders, customer data, and product information. On the
other hand, the metadata contains extensions to the core data, as well as the permission that allows
access to the various clients.

The platform components accommodate functionality to look up services in a marketplace, and to
handle the payment for services. Furthermore, the client can look up and manipulate the functional
data, as well as the setup of the metadata required for its service. Finally, the provisioning
component manages access to the resources, as later described in detail (Section 4.2).

The platform provides two interfaces: a web application that is used to access the marketplace and
a billing component. Furthermore, the core data can be exposed through the web application to
facilitate administration tasks on the core data. The API is used by the client to authorize access and
to access the core data.

4. A platform-based pluggable trade compliance service

In this section, we describe the implementation of a prototype based on the described platform
architecture. Its purpose is to gain insights into the feasibility of an e-commerce service, based on the
platform, and to assess its pluggability. To compare the platform approach with the common
e-commerce architecture, we reconsider the trade compliance service that has been introduced
previously.

Figure 8. E-commerce platform architecture.

334 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



4.1. Solution design

Figure 9 shows the architectural model of the platform-based solution for the pluggable trade
compliance service. This solution dissolves the monolithic reference architecture and distributes
the business logic across different pluggable services. It contains a service for the online shop that
handles the sales transactions. A PIM service allows the administration of products. Finally, the trade
compliance service automatically passes on new products to the web service, and triggers the
computation of cross-border trade costs in real time.

To adopt the numerous services in a pluggable way, services are implemented as clients of the
platform. More precisely, domain data, such as product information, is included within the resource
set of the platform user, and shared across the services. There is no requirement for using specific
services for PIM or the online store as long as they rely on the platform.

The solution supports two process flows that make use of the two interfaces of the trade
compliance service:

● The publish product flow handles the maintenance of product master data. The user only
utilizes the PIM client application to maintain product data. The trade compliance service
subscribes to subsequent changes in the product data on the resource set. To do so, the
platform provides a special type of API that is able to stream data. This technique allows
clients to act upon business events in real time. In our case, a new product in the platform

Figure 9. Proposed architecture.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 335

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



causes the trade compliance client to pick up the product information and publish changes to
the trade compliance service through its web interface.

● The order products flow makes use of the same streaming technique. The goal is to allow
foreign customers to place orders that get updated in real time with the cross-border transac-
tion cost. The crucial part of the implementation is that the additional costs need to get added
to the order during the checkout procedure. The trade compliance component picks up the
initial order creation event and publishes the additional costs as shown in Figure 1. Therefore,
the online store client must reflect changes that have been done after order creation. For that
purpose, the platform provides a mechanism that enforces individual services to reflect the
public changes of other services.

4.2. Service implementation

For the purpose of resource authorization, the platform implements the OAuth protocol (Hardt
2012). The protocol is frequently used for social media to share a common login across services.
Popular services, such as Twitter, Facebook, or LinkedIn, provide the login that other services can
reuse. Once the user chooses to subscribe to a new service, he/she is redirected to a page on the
platform that provides the client information and the required scope of resource access.
Subsequently, the user is presented with a screen, as shown in Figure 10, and can authorize the
resource access to the trade compliance service. After confirmation, the user is redirected to the
service, and the service is provided with the means to access the user’s data.

While the OAuth was originally designed for social media, we argue that the mechanism in
enterprise collaboration is the same. The only difference is the amount of the accessed resources.
While in social media a limited number of resources, such as username and e-mail, are shared with
the third-party service, the e-commerce platform has a larger amount of resources (such as order,
products, categories, customers, and returns) that can be shared. Furthermore, a distinction between
read and write access to these entities must be made. However, it is possible to reuse the available
software for the implementation.

The second challenge, in addition to the delegation of resource access, resides in the implementa-
tion of services based on the platform. The new model requires the service to access the data from
the platform, instead of a local database. Existing technologies, such as application development
frameworks, are not designed with this paradigm in mind. However, with the current trend of cloud
platforms in social media and mobile computing, an increasing number of solutions exist that
facilitate access to resources through web interfaces.

A potential drawback of the platform architecture is the impact on client performance. More
precisely, the access to the centralized data on the platform might cause delays on the client side as
the information must be transferred over multiple nodes. Nevertheless, the latest innovations in the

Figure 10. Redirect to platform endpoint for authorization of resource access to the client.

336 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



field of application development stress the importance of rich clients that leverage caching mechan-
isms and asynchronous communication with servers, thus minimizing the impact for the user. In the
prototype, we do not address these technologies. However, we think it is important to consider this
issue in the future.

Finally, it should be mentioned that the architecture results in a different setting with regard to
potential points of failure. The distributed nature of the system assumes many distinct services that
contribute to the overall processes. As the outage of a singular node may affect the execution of
processes, the overall risk for such incidents increases. Additionally, the platform creates a single
point of failure, which also bears a risk for major outages.

The architectural models in Figures 2 and 9 illustrate that, from a user’s perspective, both
architectures share the same business layer. However, the benefit of the platform solution resides
in the adoption phase of the individual services. The use of the platform and platform-based services
by the retailer offers potential benefits in terms of pluggability and, thus, a shorter time to market. In
the next section, we elaborate on these benefits by evaluating the platform regarding the pluggability
criteria.

4.3. Evaluation

In this section, we present the evaluation of the cross-border compliance service with regard to
its pluggability. The summative evaluation of the design, based on its instantiation, is usually the
last phase in the DSRM cycle. However, as Venable, Pries-Heje, and Baskerville (2016) state,
episodes of formative evaluation can occur throughout the design process. The design of the
architecture was carried out with the criteria for pluggability in mind, and addresses short-
comings in previous design cycles. Furthermore, the summative evaluation presented in the
remainder of this section reflects both artificial and naturalistic elements. Naturalistic evaluation
entails more complexity as it embeds the design’s instantiation in a real-world setting. Our
design artifact of a trade compliance service encapsulates the real-world service that was
provided by the trade compliance consultancy firm. However, the broader purpose of the design
artifact is not the provisioning of a functional service, but its contribution to knowledge. More
precisely, the capability of the platform approach toward the pluggability of services should
become tangible. Thus, our evaluation is still artificial to a large extent and relies on the critical
assessment of the artifact in a controlled environment. Therefore, we rely on the pluggability
framework introduced in Section 2.2, which is based on the lifecycle of service adoption and use.
Each pluggability criterion is discussed individually, while referring to the corresponding service
lifecycle phase.

4.3.1. Ease of service provisioning (EOP)
The ease of service provisioning (EOP) depends on how much the service provider supports the goal
of making the capabilities of the solution transparent and allows the user to assess the fit of the
solution to the business needs. The existing tax compliance offering is only available upon request
and requires individual contact with the sales department of the service provider. It is not possible to
discover or learn details about the service unless a business relationship with the service provider is
established. Detailed information on the service capabilities is not available. The EOP of the current
tax compliance solution is, therefore, on the low end. The advantage of the cloud solution is that it
allows the service provider to issue a demonstration environment for customers to get hands-on
experience and to assess the service. The trade compliance service does not require an investment in
the beginning for licensing and deployment. As the cost for the service arises only from the
subscription fee, the investment is distributed evenly over the time of use. Furthermore, the price
of a cloud service is more predictable as it will not generate unexpected costs for product imple-
mentation and deployment.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 337

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



The platform architecture aims to facilitate the provisioning of finer-grained services compared to
the current service offerings. The trade compliance service adds a very specific functionality to the
landscape, which has a very limited impact on the overall system. Thus, there is no need for a long
cycle of product assessment that a more comprehensive service would require. The user can
experiment with the service to investigate fits and misfits. Compared to the reference architecture
of the original trade compliance service (Figure 2), this does not require laborious customizations to
the online store. Furthermore, the marketplace component of the platform provides structured
information on the service and its pricing, thereby making it easier for the potential user to evaluate
its adoption. We can conclude that platform-based solution has major advantages for the user during
the provisioning phase and thus a high EOP.

4.3.2. Ease of service deployment (EOD)
As previously mentioned, the ease of deployment (EOD) is a distinctive feature of cloud services in
general. The trade compliance service can be used without the need for additional hardware or
software artifacts. The platform facilitates subscription to the service by implementing the OAuth
protocol. The client has specified the required resource access in advance, during service imple-
mentation. As a consequence, the deployment of the service happens in three steps: the subscription
to the service, the authentication with the platform, and the authorization of the resource access. The
next task of the user is to configure the service according to his/her needs which can already be
considered as service adaptation. The EOD can, therefore, be considered as high. In comparison, the
original reference architecture requires the user to implement the required tax compliance compo-
nent, including its technical testing, which leads to a low EOD.

4.3.3. Ease of service adaptation (EOA)
Functional setup of the service and functional testing are the main tasks during service adaptation.
The support of the platform-based solution does not go beyond what the original reference
architecture offers. The administration interface of the tax compliance service allows the user to
configure the service to his needs. However, the service shares a common drawback with other cloud
services. The user will not be able to customize the system beyond the functionality anticipated by
the service implementer. Therefore, both solutions have a medium ease of adaptation. If the service
provider fails or denies implementing certain features, the user will not be able to customize the
service beyond the provided functionality, even if he/she has the technical expertise to do so.
However, to satisfy customer needs, cloud service providers are forced to improve configurability.
The platform can be a means of collecting change request from the various users. Furthermore, the
advantage of the platform architecture, in contrast to self-contained SaaS solutions, is that multiple
services of the same type can be used. For example, a user has the opportunity to maintain the
product data with different services because the underlying data is the same. This is comparable to
the use of different e-mail clients on different devices. Instead of adapting one service, the user
always has the possibility of choosing another, more suitable, service according to current needs.

4.3.4. Ease of service integration (EOI)
The most significant difference between the original and the new architecture is the way services
integrate from a user perspective. While both solutions rely on the same web service interface, the
reference architecture delegates the task of integration to the service user, resulting in a very low ease
of integration (EOI). The platform-based approach aims at a pre-built integration. With the unified
data model of the platform, the integration of services is embedded in the architecture. More
precisely, we have a separation of data and functionality, with a federated information system
(Busse et al. 1999) whereby the integration problem can be considered as implicitly solved and a
high EOI is achieved.

338 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 



4.3.5. Ease of service operation (EOO)
As described in Section 2.2, there are two types of service-operation-related tasks, namely user
support and service maintenance. The maintenance of the trade compliance service, including bug
fixing and release updates, is managed by the service provider in both the reference and the
platform-based architecture. However, the required customization of the e-commerce component
must be maintained by the service user, resulting in a lower ease of operation. User support is also
provided by the trade compliance service in both cases. However, if the user relies on the platform-
based microservices for the PIM and online store, he/she will have to communicate with each service
provider individually. This is not a good practice, as IT service management (ITSM) should aim for a
single point of contact (Iqbal, Nieves, and Taylor 2007). In fact, we argue that the platform service
provider is very suitable to fulfill the role of a first-level support, coordinating tickets between users
and clients. Hence, the platform model should be extended beyond the provisioning of the technical
infrastructure and should include ITSM-related tasks.

4.3.6. Ease of service exchange (EOE)
In terms of service exchange, ending the service subscription to the trade compliance service has no
impact on the platform-based solution. In the reference architecture, the ending of service subscrip-
tion requires reengineering of the customization to avoid unwanted errors during checkout. Thus,
we obtain a higher ease of exchange with the platform-based architecture.

5. Conclusions

In this paper, we advanced a platform architecture to improve the pluggability of e-commerce
services. We found that cloud services have an advantage over traditional application components
in terms of pluggability, particularly during service deployment and operation. Furthermore, we
found that the platform approach brings additional benefits with regard to service pluggability,
which are not addressed by extant cloud computing offerings. More precisely, service integration and
exchange can be facilitated through the platform. The marketplace feature may provide additional
advantages during service provisioning for users that require a structured overview of comparable
services (Agrawal et al. 2013).

Evaluation of the design relies on critical assessment of the artifact’s capabilities based on the
prototype. The trade compliance case has been established in collaboration with a global trade com-
pliance consultancy firm, and the prototype is based on their real-world service. However, the prototype
has not been exposed in an uncontrolled organizational context. In future research, more naturalistic
types of evaluation, for example in collaboration with e-commerce companies, are desirable.
Furthermore, we identified several potential topics for further research around the platform architecture
and service implementation, namely, the impacts on service performance and latency due to the
additional node, the potential of client side caching to overcome delays, and potential issues of the
architecture with regard to service failures. Furthermore, the integration on the client side, i.e., the
support of portlets and widgets through the platform, could be another potential addition to the
platform. Other nontechnical extensions of the platform to improve the EOO include the first-level
support of the services, as well as bug tracking and change request management by the platform provider.

ORCID

Maria-Eugenia Iacob http://orcid.org/0000-0002-4004-0117

References

Agrawal, D. R., and W. F. Fox. 2016. Taxes in an E-commerce generation. International Tax and Public Finance.
USA: Springer doi:10.1007/s10797-016-9422-3.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 339

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 

http://dx.doi.org/10.1007/s10797-016-9422-3


Agrawal, M., G. Hariharan, H. R. Rao, and R. Kishore. 2013. Competition in mediation services: Modeling the role of
expertise, satisfaction, and switching costs. Journal of Organizational Computing and Electronic Commerce 23
(3):169–99. doi:10.1080/10919392.2013.807711.

Aulkemeier, F., M.-E. Iacob, and J. van Hillegersberg. 2015. Pluggable SaaS integration: Quality characteristics for
cloud based application services. In Enterprise Systems Conference (ES). Basel: IEEE.

Aulkemeier, F., M. A. Paramartha, M.-E. Iacob, and J. van Hillegersberg. 2016a. A pluggable service platform
architecture for E-commerce. Information Systems and E-Business Management 14 (3):469–89. doi:10.1007/
s10257-015-0291-6.

Aulkemeier, F., M. Schramm, M.-E. Iacob, and J. van Hillegersberg. 2016b. A service-oriented E-commerce reference
architecture. Journal of Theoretical and Applied Electronic Commerce Research 11 (1):26–45. doi:10.4067/S0718-
18762016000100003.

Baldwin, C. Y., and C. J. Woodard. 2009. The architecture of platforms: A unified view. In Platforms, markets and
innovation, ed. A. Gawer, 19–44. Cheltenham UK, and Northhampton, MA: Edward Elgar.

Basole, R. C., and J. Karla. 2011. On the evolution of mobile platform ecosystem structure and strategy. Business &
Information Systems Engineering 3 (5):313. doi:10.1007/s12599-011-0174-4.

Benlian, A., and T. Hess. 2011. Opportunities and risks of software-as-a-service: Findings from a survey of IT
executives. Decision Support Systems 52 (1):232–46. doi:10.1016/j.dss.2011.07.007.

Boley, H., and E. Chang. 2007. Digital ecosystems: Principles and semantics. In Digital ecosystems and technologies
conference, 398–403. Cairns.

Busse, S., R.-D. Kutsche, U. Leser, and H. Weber. 1999. Federated information systems: concepts, terminology and
architectures. Forschungsberichte Des Fachbereichs Informatik 99–9, Technische Universität Berlin.

Chang, E., and M. West. 2006. Digital ecosystems A next generation of the collaborative environment. Paper presented
at International Conference on Information Integration and Web-based Applications Services, Yogyakarta.

Dearle, A. 2007. Software deployment, past, present and future. In Future of software engineering, 269–84. Washington.
Dhar, S. 2012. From outsourcing to cloud computing: Evolution of IT services. Management Research Review 35

(8):664–75. doi:10.1108/01409171211247677.
Evans, D. S., A. Hagiu, and R. Schmalensee. 2008. Invisible engines: How software platforms drive innovation and

transform industries. Cambridge, MA: MIT Press.
Fowler, M. 2002. Patterns of enterprise application architecture. Boston, MA: Addison-Wesley.
Gattiker, T. F., and D. L. Goodhue. 2004. Understanding the local-level costs and benefits of ERP through organiza-

tional information processing theory. Information & Management 41 (4):431–43. doi:10.1016/S0378-7206(03)
00082-X.

Giovanoli, C., P. Pulikal, and S. G. Grivas. 2014. E-marketplace for cloud services. In International conference on cloud
computing, GRIDs, and virtualization, 76–83. Venice.

Hardt, D. 2012. The Oauth 2.0 authorization framework. Fremont, CA: Technical Standard, Internet Engineering Task
Force.

Heck, E. V., and P. Vervest. 2007. Smart business networks: How the network wins. Communications of the ACM 50
(6):28–37. doi:10.1145/1247001.1247002.

Hohpe, G., and B. Woolf. 2003. Enterprise integration patterns: Designing, building, and deploying messaging solutions.
Boston, MA: Addison-Wesley.

Holzmüller, H. H., and J. Schlüchter. 2002. Delphi study about the future of B2B marketplaces in germany. Electronic
Commerce Research and Applications 1 (1):2–19. doi:10.1016/S1567-4223(02)00003-0.

Iqbal, M., M. Nieves, and S. Taylor. 2007. Service strategy. ITIL. London, UK: TSO (The Stationery Office).
Kephart, J. O., and D. M. Chess. 2003. The vision of autonomic computing. Computer 36 (1):41–50. doi:10.1109/

MC.2003.1160055.
Kimbler, K. 2010. App store strategies for service providers. In International Conference on Intelligence in Next

Generation Networks. Berlin: IEEE.
Lendle, A., M. Olarreaga, S. Schropp, and P.-L. Vezina. 2012. There goes gravity: How ebay reduces trade costs. SSRN

Scholarly Paper, Social Science Research Network. Elsevier.
Loser, C., C. Legner, and D. Gizanis. 2004. Master data management for collaborative service processes. Paper

presented at International Conference on Service Systems and Service Management, Beijing.
Mandal, P., and A. Gunasekaran. 2003. Issues in implementing ERP: A case study. European Journal of Operational

Research 146 (2):274–83. doi:10.1016/S0377-2217(02)00549-0.
Martens, B., M. Walterbusch, and F. Teuteberg. 2012. Costing of cloud computing services: A total cost of ownership

approach. In Hawaii International Conference on System Science (HICSS), 1563–72. Maui.
Maximilien, E. M., A. Ranabahu, and K. Gomadam. 2008. An online platform for web APIs and service mashups. IEEE

Internet Computing 12 (5):32–43. doi:10.1109/MIC.2008.92.
The Open Group. 2016. ArchiMate 3.0 specification. Reading: The Open Group.
Paraiso, F., N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier. 2012. A federated multi-cloud PaaS infrastructure. In

International conference on cloud computing, 392–99. Honolulu.

340 F. AULKEMEIER ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 

http://dx.doi.org/10.1080/10919392.2013.807711
http://dx.doi.org/10.1007/s10257-015-0291-6
http://dx.doi.org/10.1007/s10257-015-0291-6
http://dx.doi.org/10.4067/S0718-18762016000100003
http://dx.doi.org/10.4067/S0718-18762016000100003
http://dx.doi.org/10.1007/s12599-011-0174-4
http://dx.doi.org/10.1016/j.dss.2011.07.007
http://dx.doi.org/10.1108/01409171211247677
http://dx.doi.org/10.1016/S0378-7206(03)00082-X
http://dx.doi.org/10.1016/S0378-7206(03)00082-X
http://dx.doi.org/10.1145/1247001.1247002
http://dx.doi.org/10.1016/S1567-4223(02)00003-0
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1016/S0377-2217(02)00549-0
http://dx.doi.org/10.1109/MIC.2008.92


Pedrinaci, C., D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue. 2010. IServe: A linked services
publishing platform. In Ontology repositories and editors for the semantic web workshop at the extended semantic
web conference, Heraklion. Aachen: CEUR Workshop Proceedings.

Peffers, K., T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. 2007. A design science research methodology for
information systems research. Journal of Management Information Systems 24 (3):45–77. doi:10.2753/MIS0742-
1222240302.

Sriram, S., P. Manchanda, M. E. Bravo, J. Chu, M. Liye, M. Song, S. Shriver, and U. Subramanian. 2014. Platforms: A
multiplicity of research opportunities. Marketing Letters 26 (2):141–52. doi:10.1007/s11002-014-9314-1.

Sun, W., X. Zhang, C. J. Guo, P. Sun, and H. Su. 2008. Software as a service: Configuration and customization
perspectives. In IEEE congress on services, 18–25. Beijing.

Venable, J., J. Pries-Heje, and R. Baskerville. 2016. FEDS: A framework for evaluation in design science research.
European Journal of Information Systems 25 (1):77–89. doi:10.1057/ejis.2014.36.

Wareham, J., P. B. Fox, and J. L. Cano Giner. 2014. Technology ecosystem governance. Organization Science 25
(4):1195–215. doi:10.1287/orsc.2014.0895.

Weerawarana, S., F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. 2005. Web services platform architecture:
SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-reliable messaging and more. Upper Saddle River, NJ:
Prentice Hall.

Wu, J.-H., -S.-S. Shin, and M. S. H. Heng. 2007. A methodology for ERP misfit analysis. Information & Management
44 (8):666–80. doi:10.1016/j.im.2007.09.001.

Yoon, C., and S. Kim. 2009. Developing the causal model of online store success. Journal of Organizational Computing
and Electronic Commerce 19 (4):265–84. doi:10.1080/10919390903262644.

Notes on contributors

Fabian Aulkemeier recently received a Ph.D. degree from the University of Twente for his research on platform
architectures and service pluggability. During the research project, he collaborated with a consortium of e-commerce
companies to deliver components that implement innovative algorithms and decision support processes. Dr.
Aulkemeier’s research and teaching focus on enterprise architectures, information system design, and software
engineering. Previously, he was a consultant for enterprise application customization and integration at Oracle.
During that time, he worked for customers across Europe delivering IT solutions in various fields such as SCM,
ERP, CRM, and HRM.

Maria-Eugenia Iacob is a Professor in the department of Industrial Engineering and Business Information Systems at
the University of Twente, The Netherlands. She holds a Ph.D. degree in Mathematics from the University Babes-Bolyai
of Cluj-Napoca, Romania. She also worked for this university as an assistant professor in the Department of Computer
Science. In recent years, her research and courses have focused on enterprise engineering areas, such as enterprise
architectures, business modeling and strategic alignment, business process (re)engineering, business rules, supply
chain management and integration, service-oriented architectures, model-driven development, industry 4.0, and smart
manufacturing. Dr. Iacob is one of the developers of the ArchiMate language for enterprise architecture modeling, and
coauthor of the ArchiMate International Standard specification. Her research has primarily emerged as a result of
work in multiple projects carried out with industrial partners (e.g., from logistics, healthcare, finance) and is aimed at
direct applicability and support for the modern needs of Business-IT-operations technology alignment. Professor
Iacob’s work has appeared in numerous books and proceedings, as well as journals such as the Journal of Enterprise
Information Systems, Information Systems, Information Systems Frontiers, Information Systems and E-Business
Management, and Applied Medical Informatics.

Jos van Hillegersberg is a full Professor of Business Information systems and is Head of the Department of Industrial
Engineering and Business Information Systems at the University of Twente. His research deals with innovation of
supply chains and business networks using ICT. He is contributing to several national and international projects on
the design of collaborative businesses and industrial networks applying ICT such as data analytics, architecture
transformation, agent technology, and sensor data. His research has been published in such journals as the
European Journal of Information Systems, Decision Support Systems, Communications of the ACM, Journal of
Information Technology, Information Systems, Journal of Enterprise Information Systems, Electronic Markets, and
International Journal of Production Research. Dr. van Hillegersberg is chairman of the program committee of the
Dutch Research Institute for Advanced Logistics. Before joining the University of Twente, he was on the faculty of the
Rotterdam School of Management at the Erasmus University, working on component-based software systems, IT
management, global outsourcing, and agent systems for supply chains. Professor van Hillegersberg also worked for
several years in business. At AEGON he was component manager for the setup of an internet bank and at IBM he
worked on artificial intelligence and expert systems.

JOURNAL OF ORGANIZATIONAL COMPUTING AND ELECTRONIC COMMERCE 341

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

.]
 a

t 0
4:

59
 1

5 
Ja

nu
ar

y 
20

18
 

http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.1007/s11002-014-9314-1
http://dx.doi.org/10.1057/ejis.2014.36
http://dx.doi.org/10.1287/orsc.2014.0895
http://dx.doi.org/10.1016/j.im.2007.09.001
http://dx.doi.org/10.1080/10919390903262644

	Abstract
	1.  Introduction
	2.  Adoption of e-�commerce services
	2.1.  The trade compliance case
	2.2.  IT service adoption
	2.2.1.  Service provisioning
	2.2.2.  Service deployment
	2.2.3.  Service adaptation
	2.2.4.  Service integration
	2.2.5.  Service operation
	2.2.6.  Service exchange

	2.3.  Pluggability

	3.  Toward a pluggable service platform for e-�commerce
	3.1.  Platforms for e-�commerce
	3.2.  The service platform model
	3.3.  Platform architecture

	4.  A platform-based pluggable trade compliance service
	4.1.  Solution design
	4.2.  Service implementation
	4.3.  Evaluation
	4.3.1.  Ease of service provisioning (EOP)
	4.3.2.  Ease of service deployment (EOD)
	4.3.3.  Ease of service adaptation (EOA)
	4.3.4.  Ease of service integration (EOI)
	4.3.5.  Ease of service operation (EOO)
	4.3.6.  Ease of service exchange (EOE)


	5.  Conclusions
	References
	About the authors

