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Abstract  A three-parameter Lindley distribution, which includes some two-parameter Lindley distributions introduced 
by Shanker and Mishra (2013 a, 2013 b), Shanker et al (2013), Shanker and Amanuel (2013), two-parameter gamma 
distribution, and one parameter exponential and Lindley distributions as special cases, has been proposed for modeling 
lifetime data. Its statistical properties including its shape, moments, skewness, kurtosis, hazard rate function, mean residual 
life function, stochastic ordering, mean deviations, order statistics, Renyi entropy measure, Bonferroni and Lorenz curves, 
stress-strength reliability have been discussed. For estimating its parameters, maximum likelihood estimation has been 
discussed. Finally, a numerical example has been presented to test the goodness of fit of the proposed distribution and the fit 
has been compared with the three-parameter generalized Lindley distribution. 
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1. Introduction 
The modeling and analyzing lifetime data are crucial in 

many applied sciences including medicine, engineering, 
insurance and finance, amongst others. During a short span 
of time a number of one parameter, two-parameter and 
three-parameter lifetime distributions have been introduced 
in statistical literature for modeling lifetime data from 
biomedical science and engineering. But each of these 
lifetime distributions has advantages and disadvantages over 
one another due to the number of parameters involved, shape, 
hazard rate function and mean residual life function, among 
others.  

Lindley (1958) distribution, introduced in the context of 
Bayesian analysis as a counter example of fiducial statistics, 
is defined by its probability density function (p.d.f) and 
cumulative distribution function (c.d.f)  
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A detailed study about its important mathematical and 
statistical properties, estimation of parameter and application 
showing  the  superiority  of Lindley  distribution  over  
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exponential distribution for the waiting times before service 
of the bank customers has been done by Ghitany et al (2008). 
Shanker et al (2015) have comparative study on modeling of 
lifetime data using one parameter Lindley (1958) distribution 
and exponential distribution and concluded that there are 
many lifetime data where exponential distribution gives 
better fit than Lindley distribution. Sankaran (1970) obtained 
a Poisson mixture of Lindley distribution and named it 
discrete Poisson-Lindley distribution (PLD) and discussed 
its various properties, estimation of parameter and goodness 
of fit. Shanker and Hagos (2015) have introduced a simple 
method for estimating parameter of PLD and discussed its 
applications for modeling count data from biological 
sciences.  

The probability density function (p.d.f.) and cumulative 
distribution function (c.d.f) of quasi Lindley distribution 
(QLD) of Shanker and Mishra (2013a) are given by  
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At α θ= , both (1.3) and (1.4) reduce to the 
corresponding expressions (1.1) and (1.2) of Lindley 
distribution. Shanker and Mishra (2016) have obtained a 
Poisson mixture of a quasi Lindley distribution and named it 
a ‘quasi Poisson-Lindley distribution (QPLD)’ and discussed 
its various statistical and mathematical properties, estimation 
of parameters, and applications. Shanker et al (2016 a) have 
discussed many interesting properties of QLD and its 
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applications for modeling various lifetime data and observed 
that it gives better fit in most of the data sets. 

The probability density function (p.d.f.) and cumulative 
distribution function (c.d.f) of two-parameter Lindley 
distribution (TPLD) of Shanker and Mishra (2013b) are 
given by  
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At 1α = , both (1.5) and (1.6) reduce to the 
corresponding expressions (1.1) and (1.2) of Lindley 
distribution. Shanker and Mishra (2014) have obtained a 
Poisson mixture of a two- Lindley distribution and named it a 
two-parameter Poisson-Lindley distribution and discussed 
its various statistical and mathematical properties, estimation 
of parameters, and applications. Shanker et al (2016 b) have 
discussed many interesting properties of TPLD and its 
applications for modeling various lifetime data and observed 
that it gives better fit in most of the data sets. 

The probability density function (p.d.f.) and cumulative 
distribution function (c.d.f) of another two-parameter 
Lindley distribution, introduced by Shanker et al (2013) are 
given by  
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At 1β = , both (1.7) and (1.8) reduce to the 
corresponding expressions (1.1) and (1.2) of Lindley 
distribution. Shanker et al (2012) obtained a Poisson mixture 
of two-parameter Lindley distribution, named it a ‘discrete 
two-parameter Poisson-Lindley distribution’ and studied its 
various properties, estimation of parameters and 
applications. 

The probability density function (p.d.f.) and cumulative 
distribution function (c.d.f) of a new quasi Lindley 
distribution (NQLD), introduced by Shanker and Amanuel 
(2013) are given by  
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Where ( )2 0 and 0xθ α θ α+ > + <  or 

( )2 0 and 0xθ α θ α+ < + <  

At α θ= , both (1.9) and (1.10) reduce to the 
corresponding expressions (1.1) and (1.2) of Lindley 

distribution. Shanker and Tekie (2014) obtained a new quasi 
Poisson-Lindley distribution by taking a Poisson mixture of 
NQLD, discussed its various statistical and mathematical 
properties, estimation of parameters and applications for 
count data. 

The probability density function of three-parameter 
generalized Lindley distribution (TPGLD) introduced by 
Zakerzadeh and Dolati (2009) having parameters 

, ,andα β θ  is given by 
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Clearly the gamma distribution, the Lindley (1958) 
distribution and the exponential distribution are particular 
cases of (2.1) for ( )0β = , ( )1α β= =  and ( )1, 0α β= =  
respectively. The discussion about its properties, estimation 
of parameters and applications are available in Zakerzadeh 
and Dolati (2009).  

The corresponding distribution function of the TPGLD 
can be obtained as 

( ) ( ) ( ) ( )
( ) ( )1

,
; , , 1 ;

1

xx x e
F x

α θα β θ α θ β θ
α β θ

β θ α

−+ Γ +
= −

+ Γ +  
0, 0, 0, 0x α β θ> > > >      (1.12) 

where ( ), zαΓ  is the upper incomplete gamma function 
defined as 
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Recently Shanker (2016) has detailed study about TPGLD 
and obtained expressions for coefficient of variation, 
skewness, kurtosis, index of dispersion, hazard rate function 
and the mean residual life function. Shanker (2016) has 
detailed comparative study of TPGLD and three-parameter 
generalized gamma distribution (TPGGD) and observed that 
in most of the data sets from medical science and engineering 
TPGGD gives better fit than TPGLD. 

There are many situations where these distributions are 
not suitable for modeling lifetime data from theoretical or 
applied point of view. Therefore, an attempt has been made 
in this paper to obtain a new distribution which is flexible 
than these lifetime distributions for modeling lifetime data in 
reliability and in terms of its hazard rate shapes. Various 
interesting mathematical and statistical properties of the 
proposed distribution have been discussed. The estimation of 
the parameters of the proposed distribution has been 
discussed using maximum likelihood estimates and the 
goodness of fit of the distribution has been discussed with a 
real lifetime data. Finally the goodness of fit of the proposed 
distribution has been compared with three-parameter 
generalized Lindley distribution, introduced by Zakerzadeh 
and Dolati (2009). 
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2. A Three-Parameter Lindley 
Distribution 

The probability density function (p.d.f.) of a three- 
parameter Lindley distribution (ATPLD) can be introduced 
as 
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It can be easily verified that the two-parameter quasi 
Lindley distribution of Shanker and Mishra (2013 a), 
two-parameter Lindley distribution of Shanker and Mishra 
(2013 b), two-parameter Lindley distribution of Shanker et al 
(2013), a new two-parameter quasi Lindley distribution of 
Shanker and Amanuel (2013), Lindley distribution 
introduced by Lindley (1958), Gamma ( )2,θ  distribution 
and exponential distribution are particular cases of a 
three-parameter Lindley distribution (ATPLD) for ( )β θ= ,

( )1β = , ( )1α = , ( ),α θ β α= = , ( )1α β= = ,

( )α θ= and ( )0β = respectively. 
This distribution can be easily expressed as a mixture of 

exponential ( )θ  and gamma ( )2,θ  distributions with 

mixing proportion θα
θα β+

. We have 
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The corresponding cumulative distribution function (c.d.f.) 
of (2.1) is given by  
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The graph of the p.d.f. and the c.d.f. of ATPLD for 
different values of , ,θ α β  are shown in figures 1 and 2 

 

 

Figure 1.  Graph of the pdf of ATPLD for different values of parameters , ,θ α β  

 

Figure 2.  Graph of the cdf of ATPLD for different values of parameters , ,θ α β  
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3. Statistical Constants 
The r th moment about origin of ATPLD (2.1) can be 

obtained as 
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The first four moments about origin of ATPLD are as 
follows 
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Thus the moments about mean of ATPLD are obtained as 
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The coefficient of variation ( ).C V , coefficient of 

skewness ( )1β , coefficient of kurtosis ( )2β and index of 

dispersion ( )γ  of ATPLD are thus obtained as 
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4. Hazard Rate Function and Mean 
Residual Life Function 

Let ( )f x  and ( )F x  be the p.d.f. and c.d.f of a 
continuous random variable. The hazard rate function (also 
known as the failure rate function) and the mean residual life 

function of X are respectively defined as  
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The corresponding hazard rate function, ( )h x  and the 

mean residual life function, ( )m x  of ATPLD are obtained 
as 
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It can be easily verified that ( ) ( )
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and 
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. It is also obvious from the graphs 

of ( )h x  and ( )m x  that ( )h x  is an increasing and 

decreasing functions of x , and θ , whereas ( )m x  is a 
decreasing function of x , and θ .  

The graph of the hazard rate function and mean residual 
life function of ATPLD are shown in figures 3 and 4. 

5. Stochastic Orderings 
Stochastic ordering of positive continuous random 

variables is an important tool for judging their comparative 
behavior. A random variable X  is said to be smaller than a 
random variable Y in the  

(i)  stochastic order ( )stX Y≤ if ( ) ( )X YF x F x≥
for all x  

(ii)  hazard rate order ( )hrX Y≤ if ( ) ( )X Yh x h x≥  
for all x  

(iii)  mean residual life order ( )mrlX Y≤ if 
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(iv)  likelihood ratio order ( )lrX Y≤ if 
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decreases in x . 
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Figure 3.  Graph of hazard rate function of ATPLD for different values of parameters , ,θ α β  

 

Figure 4.  Graph of mean residual life function of ATPLD for different values of parameters , ,θ α β  

The following results due to Shaked and Shanthikumar (1994) are well known for establishing stochastic ordering of 
distributions 
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The ATPLD is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the following theorem: 
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It can be easily verified that under conditions (1), (ii), and (iii), ( )
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< . This means that lrX Y≤  and hence

hrX Y≤ , mrlX Y≤  and stX Y≤ . 

6. Mean Deviations 
The amount of scatter in a population is measured to some extent by the totality of deviations usually from mean and 

median. These are known as the mean deviation about the mean and the mean deviation about the median defined by 
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Using p.d.f. (2.1) and expression for the mean of ATPLD, we get 
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Using expressions from (6.1), (6.2), (6.3), and (6.4), the mean deviation about mean, ( )1 Xδ  and the mean deviation 

about median, ( )2 Xδ  of ATPLD are obtained as 
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7. Bonferroni and Lorenz Curves 
The Bonferroni and Lorenz curves (Bonferroni, 1930) and Bonferroni and Gini indices have applications not only in 

economics to study income and poverty, but also in other fields like reliability, demography, insurance and medicine. The 
Bonferroni and Lorenz curves are defined as 
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respectively, where ( )E Xµ =  and ( )1q F p−= . 
The Bonferroni and Gini indices are thus defined as 
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Now using equation (7.7) in (7.1) and (7.2), we get  
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 Now using equations (7.8) and (7.9) in (7.5) and (7.6), the Bonferroni and Gini indices of ATPLD are obtained as 
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8. Order Statistics and Renyi Entropy Measure 
8.1. Order Statistics 

Let 1 2, ,..., nX X X  be a random sample of size n  from ATPLD (2.1). Let ( ) ( ) ( )1 2 ... nX X X< < <  denote the 

corresponding order statistics. The p.d.f. and the c.d.f. of the k th order statistic, say ( )kY X= are given by 

( ) ( ) ( ) ( ) ( ){ } ( )1! 1
1 ! !

n kk
Y
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k n k
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− −
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∑∑ , 

respectively, for 1,2,3,...,k n= . 
Thus, the p.d.f. and the c.d.f of k th order statistics of ATPLD are obtained as 
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8.2. Renyi Entropy Measure 

An entropy of a random variable X  is a measure of variation of uncertainty. A popular entropy measure is Renyi entropy 
(1961). If X  is a continuous random variable having probability density function ( ).f , then Renyi entropy is defined as 

( ) ( ){ }1 log
1RT f x dxγγ

γ
=

− ∫  

where 0 and 1γ γ> ≠ . 
Thus, the Renyi entropy for ATPLD (2.1) can be obtained as 
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9. Stress-Strength Reliability 
The stress- strength reliability describes the life of a component which has random strength X that is subjected to a random 

stress Y . When the stress applied to it exceeds the strength, the component fails instantly and the component will function 
satisfactorily till X Y> . Therefore, ( )R P Y X= <  is a measure of component reliability and in statistical literature it is 
known as stress-strength parameter. It has wide applications in almost all areas of knowledge especially in engineering such 
as structures, deterioration of rocket motors, static fatigue of ceramic components, aging of concrete pressure vessels etc. 

Let X  and Y  be independent strength and stress random variables having ATPLD (2.1) with parameter ( )1 1 1, ,θ α β  

and ( )2 2 2, ,θ α β  respectively. Then the stress-strength reliability R  of ATPLD can be obtained as 

( ) ( ) ( )
0

| XR P Y X P Y X X x f x dx
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. 

10. Maximum Likelihood Estimate (MLE) 
Let ( )1 2 3, , , ... , nx x x x  be a random sample of size n from ATPLD (2.1). The likelihood function, L of (2.1) is given 

by 
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2

1

n n
n x

i
i

L x e θθ α β
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−

=
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The natural log likelihood function is thus obtained as 
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The maximum likelihood estimates (MLE) θ̂ , α̂  and β̂  of θ , α and β  are then the solutions of the following 
non-linear equations 

ln 2 0L n n n xα
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                             (10.1.1) 
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where x  is the sample mean. The equation (10.1.1) gives 
( )

2X θα β
θ θα β

+
=

+
, which is the mean of ATPLD (2.1).  

These three natural log likelihood equations do not seem to be solved directly. However, the Fisher’s scoring method can 
be applied to solve these equations. We have 
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The following equations can be solved for MLEs θ̂ , α̂  and β̂  of θ , α  and β  of ATPLD 
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where 0θ , 0α  and 0β  are the initial values of θ , α  and β  respectively. These equations are solved iteratively till 

sufficiently close values of θ̂ , α̂  and β̂  are obtained.  

11. Goodness of Fit  
A three-parameter Lindley distribution (ATPLD) has been fitted to a number of lifetime data to test its goodness of fit. In 

this section, we present the goodness of fit of ATPLD for a real lifetime data and its fit has been compared with the 
three-parameter generalized Lindley distribution (TPGLD), introduced by Zakerzadeh and Dolati (2009). The following 
lifetime data has been considered for testing the goodness of fit of ATPLD and TPGLD. 

Data Set: This data represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, 
observed and reported by Bjerkedal (1960) 
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10  33 44 56 59 72 74 77 92 93 96 100 
100 102 105 107 107 108 108 108 109 112 113 115 
116 120 121 122 122 124 130 134 136 139 144 146 
153 159 160 163 163 168 171 172 176 183 195 196 
197 202 213 215 216 222 230 231 240 245 251 253 
254 254 278 293 327 342 347 361 402 432 458 555 

 

In order to compare ATPLD and TPGLD, values of 
2 ln L−  and K-S Statistics (Kolmogorov-Smirnov Statistics) 

for real life time data has been computed. The formulae for 
computing K-S Statistics is as follows:  

( ) ( )0Sup n
x

K S F x F x− = − , where k  = the number of 

parameters, n  = the sample size and ( )nF x  is the 
empirical distribution function.  

The best distribution is the distribution which corresponds 
to lower value of 2ln L−  and K-S statistics and higher 
p-value. 

Table 1.  MLE’s, - 2ln L, AIC, AICC, BIC, and K-S Statistics of the fitted 
distributions of data  

Distributions 
ML Estimate 

2 ln L−  K-S 
statistic P-value 

θ̂  α̂  β̂  

ATPLD 0.0232 -4.4223 
0.4253 783.145 0.152 0.070 

TPGLD 0.0209 1.0932 
5.0688 788.575 0.439 0.000 

It can be easily seen from above table that ATPLD gives 
better fit than the TPGLD, introduced by Zakerzadeh and 
Dolati (2009). 

12. Concluding Remarks 
A three-parameter Lindley distribution (ATPLD) which 

includes two-parameter Lindley distributions introduced by 
Shanker and Mishra (2013 a, 2013 b) , Shanker et al (2013), 
Shanker and Amanuel (2013), two-parameter gamma 
distribution, and one parameter exponential and Lindley 
distributions, has been introduced for modeling lifetime data. 
Its mathematical and statistical properties including its shape, 
moments, skewness, kurtosis, hazard rate function, mean 
residual life function, stochastic ordering, mean deviations, 
order statistics, Renyi entropy measure, Bonferroni and 
Lorenz curves, stress-strength reliability have been discussed. 
For estimating its parameters, maximum likelihood 
estimation has been discussed. The goodness of fit of 
ATPLD has been found better than the goodness of fit given 
by TPGLD, and hence ATPLD can be considered an 
important lifetime distribution for modeling lifetime data 
over TPGLD.  
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