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Abstract—The distribution of the spin-singlet component, the short-range spin-triplet component with zero
projection, and the long-range spin-triplet component with projection ±1 of the superconducting pairing
function has been obtained for different regimes of switching of a spin valve with a three-layer heterostructure
(superconductor/ferromagnet/ferromagnet). The distribution of the components is discussed as the main
reason for the behavior of the superconducting transition temperature as a function of the angle between the
magnetic moments of the ferromagnetic layers in these regimes.
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1. INTRODUCTION

The superconducting transition temperature Tc was
analyzed [1] for a three-layer heterostructure SF1F2,
where S is a singlet superconductor and F1, F2 are fer-
romagnetic metals, in which the long-range triplet
superconducting component is formed for noncollin-
ear orientation of the magnetizations of the F layers.
The asymptotically exact numerical method was used
for calculating Tc as a function of the three-layer struc-
ture parameters, such as mutual orientation of magne-
tizations, transparency of boundaries, and layer thick-
ness [2]. Earlier, it was shown in [3] that Tc of the
semi-infinite heterostructure SF1F2 can be a non-
monotonic function of angle α between the magneti-
zations of two F layers in contrast to the monotonic
behavior of the Tc(α) dependence obtained for the
FSF model of the superconducting spin valve [4]. The
existence of an anomalous dependence of the spin-
triplet correlations on angle α in the FFS structure in
the ballistic case was predicted in [5] (the layer thick-
ness was much smaller than the correlation length of
the material of these layers). In this research, we con-
sider the distribution of amplitudes of spin-singlet and
spin-triplet pair correlations as functions of the layer
thickness for different values of angle α between mag-
netizations in the SF1F2 structure in order to deter-
mine how and which of the distributions affects the
superconducting transition temperature Tc.

2. MODEL AND NUMERICAL METHOD
Let us first find the dependence of Tc of the SF1F2

structure (Fig. 1) on angle α between the exchange
fields of two F layers.

Suppose that the S layer of thickness dS lies in the
region –dS < x < 0, the middle layer F1 of thickness dF1
lies in the region 0 < x < dF1, and the outer layer F2 of
thickness dF2 lies in the region dF1 < x < dF1 + dF2. The
x axis is assumed to be normal to the plane of the lay-
ers. The exchange field of the middle layer F1 lies in

SUPERCONDUCTIVITY

Fig. 1. Three-layer heterostructure SF1F2. The SF1 con-
tact boundary corresponds to coordinate x = 0. Bold
arrows in F layers indicate the direction of h exchange
fields lying in yz plane.

z z



PHYSICS OF THE SOLID STATE  Vol. 59  No. 11  2017

DISTRIBUTION OF PAIRING FUNCTIONS 2115

the yz plane, h = (0, hsinα, hcosα), while the exchange
field of the outer layer F2 is directed along the z axis,
h = (0, 0, h). Angle α varies from zero (parallel config-
uration, P) to π (antiparallel configuration, AP).

Structure SF1F2 is considered in the “dirty” limit
in which the state of the superconducting condensate
is described by Usadel equations. In the vicinity of Tc,
the Usadel equations are linearized and contain only
the anomalous Green function  [1]:

(1)

Here, D is the diffusion constant,  is a 4 × 4 matrix,
ω = πTc(2n + 1) is the Matsubara frequency, where
n is an integer,  and  are the Pauli matrices in the
Nambu–Gor’kov space and the spin space, respec-
tively, and  is the direct product of matrices. Order
parameter Δ is real-valued in the superconducting
layer and is zero in the ferromagnetic layer. Diffusion
constant D is assigned with the appropriate subscript S
or F when Eq. (1) is applied to the superconducting or
ferromagnetic layer, respectively.

Green’s function  can be decomposed into the
following components:

(2)
Here, f0 is the singlet component, f3 is the triplet
component with zero projection on the z axis, and f2
is the triplet component with projection ±1 on the
z axis (realized only for α ≠ 0, π).

In view of the existing symmetry of components (3)
given below, it is sufficient to consider only the posi-
tive Matsubara frequencies, ω > 0:

(3)

The problem of calculating Tc can be reduced to an
effective system of equations in a singlet component in
layer S. The system of equations includes the self-con-
sistent equation, the Usadel equations, and the
boundary conditions to them:

(4)

(5)

(6)

Here, TcS and ξS =  are the superconduct-
ing transition temperature and the coherence length of
the isolated layer S, respectively. This is the problem
for which a multimode method was worked out in [2]
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and later used for the structure F1SF2 [4] and the
semi-infinite spin valve SF1F2 [3]. We must only
determine the exact expression for W in Eq. (6) by
solving the boundary value problem for the hetero-
structure SF1F2.

The following characteristic wavevectors were
obtained from Usadel equations (1):

(7)

The solution of Eq. (1) in layer S (A and B are
purely imaginary quantities) can be presented in the
form

(8)

The singlet component f0(x) in layer S has the same
form as in [2].

The solution to Eq. (1) in the middle layer F1

(C1 and S1 are purely imaginary quantities, C3 = – ,

S3 = – ) has the form

(9)

The solution to Eq. (1) in the outer layer F2 (E1 and

H1 are purely imaginary quantities, E3 = – , H3 =

‒ ) has the form

(10)
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The boundary conditions at the free boundary of F2
can be written as

(11)

The boundary conditions at the SF1 and F1F2 contact
boundaries have the form [6]

(12)

where γB and γ are spin-independent proximity
parameters

(13)

RBSF1, RBF1F2 and AB are the resistances and area of the
SF1 and F1F2 contact boundaries, respectively; ρS,
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ρF1, and ρF2 are the resistivities of layers S, F1, and F2,
respectively.

The following simple formulation is used for
numerical calculations in this work: all contact
boundaries are transparent (γB = 0), the diffusion con-
stants and resistivities are identical (γ = 1), and the
magnitudes of the exchange fields in both F layers are
identical.

Joining the Usadel solutions in the layers with the
help of boundary conditions (11) and (12), we obtain
15 equations. The equation containing the singlet
component derivative on the S side of SF1 contact
boundary (x = 0) has the form

(14)

The remaining 14 linear equations form a system in the
14 coefficients in Eqs. (8)–(10). This system of equa-
tions has a nonzero solution, because f0(0) derived
from Eq. (8) appears on the right-hand side of the sys-
tem of equations. Function W(α) in Eq. (6) can be

=
ξ = −� �

0
S 2 3

0

* .h h
x
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Fig. 2. (a) Superconducting transition temperature Tc as a function of angle α in the direct regime. The spin singlet | f0(x)/f0(‒dS)|
(curve 1) and spin triplet | f3(x)/f0(–dS)| (curve 2) and | f2(x)/f0(–dS)| (curve 3) distributions of the superconducting pairing com-
ponents in direct regime for (b) parallel, (c) orthogonal, and (d) antiparallel orientations of the magnetizations of ferromagnetic
layers for n = 2.

(а) (b)

(c) (d)
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derived in explicit form by substituting coefficient S2

into Eq. (14). The single real-valued function W(α)
contains the entire information about the two F layers.

3. DISCUSSION OF RESULTS

Figures 2–4 show the results of self-consistent
numerical calculations of Tc as a function of angle α
and distributions of the components of superconduct-
ing pairing function for different thicknesses of F lay-
ers in the three-layer heterostructure SF1F2.

Figure 2a shows the direct switching of the spin

valve [ (α = 180°) > (α = 0°)], which takes place
for dF1/ξF1= 0.15 and dF2/ξF2= 0.20. Here and below,

dS/ξS = 2.75 is the thickness of the superconducting

layer. When magnetizations of F1 and F2 layers are
antiparallel, the main physical reason behind the dif-

ference in  and  is the partial compensation of
ferromagnetic exchange fields. The compensation
quite adequately ensures the large difference between

AP

cT P

cT

AP

cT P

cT

 and  as long as the thickness of F layers is
smaller than the coherence length. Both triplet pairing
components f2 and f3 have a peak at the outer surface

of the F2 layer (Figs. 2b–2d).

The triplet regime of the spin valve (Tc(noncollin-

ear) < , ), which is realized for dF1/ξF1= 0.73

and dF2/ξF2 = 2, is shown in Fig. 3a. In this regime,

singlet component f0 of the superconducting pairing

oscillates. The peak of the distribution of the triplet
components f2 and f3 is situated near the SF1 contact

boundary (Figs. 3b–3d).

Figure 4a shows the inverse regime of the spin valve

(  > ), realized for dF1/ξF1= 1.1 and dF2/ξF2 =

0.3. In this regime, the distribution of the triplet com-
ponent with zero f3 projection has a peak on the outer

surface the F2 layer, while the peak of the distribution
of long-range triplet component f2 is situated near the

SF1 contact boundary (Fig. 4c). For antiparallel con-
figuration (Fig. 4d), the singlet component f0 passes

AP

cT P

cT

P

cT AP

cT

P

cT AP

cT

Fig. 3. (a) Superconducting transition temperature Tc as a function of angle α for the triplet regime. The spin singlet

| f0(x)/f0(‒dS)| (curve 1) and the spin triplet | f3(x)/f0(–dS)| (curve 2) and | f2(x)/f0(–dS)| (curve 3) distributions of the supercon-

ducting pairing components in the triplet regime for (b) parallel, (c) orthogonal, and (d) antiparallel orientations of the magne-

tizations of ferromagnetic layers for n = 2.

(a) (b)

(с) (d)
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through zero twice, which is not observed for parallel
configuration (Fig. 4b).

The highest superconducting transition tempera-
ture Tc in each regime corresponds to the predomi-

nance of the singlet component over the triplet com-
ponents (or they have the same order of magnitude) in
the F2 layer accounts for. Conversely, the transition
temperature has its minimum value when a triplet
component dominates over the singlet component.

4. CONCLUSIONS

We have presented in this work the self-consistent
calculations for the superconducting transition tem-
perature of a finite-thickness spin valve SF1F2. Dis-
tributions of the spin-singlet and spin-triplet compo-
nents of superconducting pairing over the heterostruc-
ture layers for direct, triplet, and inverse switching
regimes have been obtained. The distribution of the
spin-triplet component of pairing with a spin projec-
tion one, that carries the magnetic moment, is espe-

cially interesting, because this superconducting pair-
ing component can be detected by using the technique
of spin-polarized neutrons reflectometry (for exam-
ple, in [7]). Since this technique is layer sensitive, it is
important that we must know the layer or layers in
which one should expect the peak of the triplet com-
ponent of superconducting pairing with a spin projec-
tion one for a correct planning and interpretation of
experimental data (for heterostructures with super-
conducting layers [8, 9]). This can considerably
increase the reliability of the conclusions drawn from
the results of reflectometry of spin-polarized neu-
trons.
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