
Scheduling Drayage Operations in
Synchromodal Transport

Arturo E. Pérez Rivera and Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

{a.e.perezrivera,m.r.k.mes}@utwente.nl

Abstract. We study the problem of scheduling drayage operations in
synchromodal transport. Besides the usual decisions to time the pick-up
and delivery of containers, and to route the vehicles that transport them,
synchromodal transport includes the assignment of terminals for empty
and loaded containers. The challenge consists of simultaneously decid-
ing on these three aspects while considering various resource and timing
restrictions. We model the problem using mixed integer linear program-
ming (MILP) and design a matheuristic to solve it. Our algorithm itera-
tively confines the solution space of the MILP using several adaptations,
and based on the incumbent solutions, guides the subsequent iterations
and solutions. We test our algorithm under different problem configu-
rations and provide insights into their relation to the three aspects of
scheduling drayage operations in synchromodal transport.

Keywords: Drayage operations, synchromodal transport, matheuristic

1 Introduction

During the last years, intermodal transport has received increased attention from
academic, industrial, and governmental stakeholders due to potential reductions
in cost and environmental impact [10]. To achieve such benefits, these stakehold-
ers have proposed new forms of organizing intermodal transport. One of these
new initiatives is synchromodality, which aims to improve the efficiency and sus-
tainability of intermodal transport through flexibility in the choice of mode and
in the design of transport plans [12]. However, the potential benefits of any new
form of intermodal transport depend to a great extent on the proper planning
of drayage operations, also known as pre- and end-haulage or first and last-mile
trucking. Drayage operations, which account for 40% of the total transport costs
in an intermodal transport chain [5], are the first step where the synchromodal
flexibility in transport mode can be taken advantage of. In this paper, we study
the scheduling of drayage operations of intermodal transport considering termi-
nal assignment (i.e., long-haul mode) decisions.

Drayage operations in intermodal transport include delivery and pick-up re-
quests of either empty or loaded containers, to and from a terminal where long-
haul modes arrive and depart. These operations occur, for example, at a Logistic

-

© Springer International Publishing AG 2017
et al. (Eds.), ICCL 2017, LNCS 10572, pp. 404–419, 2017.

https://doi.org/10.1007/978-3-319-68496-3_27
T. Bektaş

Service Provider (LSP) handling both import and export containers. The planner
scheduling drayage operations must decide upon the time to fulfill each request
and the route of the vehicles that will carry out all requests. In synchromodality,
the planner must also decide to which terminal to bring a loaded container and
to which terminal or customer to bring an empty container. All these decisions
must be made simultaneously, considering constraints such as time-windows for
requests, terminals, containers, trucks, and decoupling of requests for the de-
livery of an empty container and the subsequent pickup of a loaded one (and
vice versa). Furthermore, re-scheduling the requests is allowed as new informa-
tion becomes known (e.g., real-time information about requests, delays, etc.). In
such a dynamic environment, making assignment, timing, and routing decisions
together is difficult [5, 15]. Nonetheless, scheduling drayage operations with an
integrated approach can bring significant savings [1].

In this paper, we develop an integrated approach to make assignment, tim-
ing, and routing decisions of drayage operations dynamically. First, we categorize
the drayage requests in synchromodality and analyze their relations. With our
categorization, we identify challenges and opportunities for scheduling meth-
ods. Second, we formulate the problem as a Mixed-Integer Linear Programming
(MILP) model based on our categorization of requests. Third, we present several
adaptations to the MILP model and design a heuristic algorithm around them
to schedule drayage operations and update the schedule as new requests arrive.

2 Literature Review

We briefly review the literature about scheduling drayage operations in inter-
modal transport. We examine the characteristics of the proposed models and
study their applicability to our problem. We finalize by stating our contribution.

Most studies about scheduling drayage operations use mathematical pro-
gramming. This technique allows researchers to model various problem char-
acteristics at the price of high computational complexity. For this reason, re-
searchers consider one problem characteristic at a time. For example, studies that
consider more than one terminal, such as [11] and [1], assume a homogenous fleet.
Studies that consider a flexible origin or destination for some requests, such as [2]
and [6], consider only one terminal. Studies that do not assume a homogenous
fleet, such as [8], avoid other constraints such as request time-windows. All in
all, mathematical programming can relate various problem attributes to optimal
decisions but requires further developments to handle the actual scheduling.

There is a variety of approaches available to solve the actual scheduling of
drayage operations. There are sequential approaches, such as [2] and [11], that
pair delivery and pickup customers before the routing. There are also integrated
approaches, such as [1,6,13,16], which handle paring (i.e, scheduling) and routing
decisions simultaneously. Particularly, these integrated approaches show that a
combination of parts of the mathematical problems with other heuristics perform
well in solving the problem. Finally, the majority of approaches focuses on “one
plan” per day with no re-planning, except for [5], which re-schedules when the

Scheduling Drayage Operations in Synchromodal Transport 405

problem conditions change, and for [7], which re-schedules when new orders
arrive, or when real-time information regarding traffic or position of trucks gives
rise to this. Naturally, dynamic re-scheduling is another attribute of drayage
operations that increases the complexity of the problem.

Although drayage operations contribute significantly to the total costs of in-
termodal transport [9], research on these operations has been limited in model-
ing considerations and solution approaches [3]. The need for dynamic scheduling
methods for intermodal routing that take into account multiple attributes of
the problem has been recognized [3]. For these reasons, our contribution to the
literature is two-fold: (i) we model many attributes of the scheduling of drayage
operations in synchromodal transport as an integrated MILP with various adap-
tations, and (ii) we develop a dynamic matheuristic to solve the model.

3 Problem Description

We study the problem of scheduling drayage requests in a synchromodal network
with the objective of minimizing routing and terminal (i.e., long-haul mode) as-
signment costs. There are three simultaneous decisions: (i) timing the execution
of requests, (ii) routing the vehicles that carry out the requests, and (iii) as-
signing long-haul terminals (or customers) to the requests. These decisions are
subject to the characteristics of the requests, available trucks, available con-
tainers, and terminals. Requests are characterized by customer location, type
of truck (e.g., driver clearance, chasis, trailer, etc.), type of container (e.g., size,
security, refrigeration, etc.), time-window, service (i.e., loading, unloading) time,
and decoupling allowance. Trucks are characterized by start and end location,
type, maximum working time, setup cost, and variable cost. Containers are char-
acterized by location, type, and amount. Terminals are characterized by location,
time-window, and an assignment cost that represents costs for using a certain
long-haul mode, container storage, etc.

The terminal assignment cost and the various request attributes in synchro-
modality enrich the common drayage operations in intermodal transport. To an-
alyze this enrichment, we classify the requests into pre-haulage and end-haulage.
In a pre-haulage request, an empty container is brought to a customer location
and subsequently (after loading) brought to one of the long-haul terminals. In
an end-haulage request, a loaded container is brought to a customer location
and subsequently (after unloading) brought to a terminal for storage or to an-
other customer who has a container-compatible pre-haulage request. Some of
these requests allow decoupling, which means that a truck delivering an empty
(or loaded) container does not need to wait for it to be loaded (or unloaded)
and that another truck can pick up the loaded (empty) container later on. We
refer to all possible pre- and end-haulage requests as jobs in the remainder of
the paper. We now elaborate on the job configurations.

In drayage operations, there are various job configurations as seen in Fig. 1.
These configurations arise due to different contractual agreements, types of
freight, types of resources, etc. In the complete job configurations of the end-

406 A. Pérez Rivera and M. Mes

Fig. 1. Possible job configurations in synchromodal transport

haulage, the origin is a fixed terminal, but the destination can be either a given
terminal (or customer) or one of multiple terminals (or customers), as seen in
Types 1 and 2, respectively. If decoupling is allowed, one can divide the end-
haulage job configurations into first- and second-half, as seen in Types 3, 4, and
5. In the complete job configurations of the pre-haulage, the origin can be a given
terminal (or customer) and the destination a given terminal, or the origin can
be one of multiple terminals (or customers) and the destination one of multiple
terminals, as seen in Types 6 and 7, respectively. Once more, if decoupling is al-
lowed, the pre-haulage configurations can be divided into first- and second-half,
as seen in Types 8, 9, 10, and 11. Due to the full-truckload and multi-resource
nature of the job configurations, some challenges and opportunities arise. For
example, executing some job configurations after each other (e.g., Type 3 fol-
lowed by Type 10) will require an empty movement of a truck, i.e., truck moving
without a container. In another example, executing some job configurations after
each other (e.g., Type 1 followed by Type 6) can allow the truck to skip the visit
to a terminal (e.g., supersede the use of an empty container at a terminal). In
such opportunities, some job configurations can be merged to reduce the decision
complexity as also proposed by [8]. Using this job categorization, we formulate
an MILP model that captures the challenges and opportunities in drayage op-
erations in the following section. In the remainder of this paper, when we talk
about job types, we refer to the configurations seen in Fig. 1.

4 MILP formulation

Using the previous categorization of jobs, we construct two directed graphs G =
(V,A) and G′ = (V,A′), which have the same nodes V but different arcs A and
A′. Nodes V represent all locations related to jobs and trucks: V = VR ∪ VD ∪
VB ∪ VF. Specifically, VR contains all job locations (i.e., request locations), VD

all terminal locations, VB all beginning location of trucks and VF their finishing
location. All nodes in V are indexed with i and j. Arcs A and A′ are built to
distinguish the assignment and the routing decisions, respectively. Arcs in A
include all job-arcs between two nodes (connections as in Fig. 1). Job-arcs are

Scheduling Drayage Operations in Synchromodal Transport 407

connections between nodes that comply with all resource and long-haul mode
constraints. We define δ−(r) = {j : (j, r) ∈ A} and δ+(r) = {j : (r, j) ∈ A} as
the sets of nodes that form job-arcs that are incoming to, and outgoing from,
node r ∈ VR, respectively. Arcs in A′ include all routing-arcs. These arcs follow
a similar logic as in the VRP with time-windows formulation of [4].

In VR, each job is represented as a single node. We index nodes in VR with
r. In VD, each terminal d ∈ UD is represented as Nd identical nodes, in order
to keep track of arrival times in the model. The set UD is the set with unique
terminal nodes. We index both sets with d. Each node i ∈ VR∪VD has a service
time Si (i.e., time for loading, unloading, coupling, or decoupling a container),
as well as a time-window described by an earliest arrival time Ei and a latest
arrival time Li. For nodes r ∈ VR, which represent jobs, Dr gets a value of one
if decoupling is allowed and zero otherwise. Traveling time between nodes i and
j is denoted with Ti,j . Note that, for the identical nodes of each terminal, all
time parameters are the same and traveling times between them are zero. Note
also that two jobs can be at the same location, and thus traveling time between
them is also zero. However, service times and time-windows can be different,
depending on the job type.

To carry out all jobs, there is a fleet of heterogeneous trucks K. The trucks
that can carry out job r ∈ VR are represented with K̃(r) ⊆ K. Each truck begins
its route in node Bk ∈ VB and finishes its route in node Fk ∈ VF. All trucks have
a maximum working time TK

k . Truck movements are modeled using the binary
variable xi,j,k, which gets a value of 1 if node j is visited immediately after node
i by truck k, and 0 otherwise. Note that truck movements can either be to carry
out a request (i.e., truck has an empty or loaded container) or to reposition the
truck (i.e., no container). To model time in the movements of trucks, we use
the auxiliary variable wi, which represents the time at which the chosen truck
arrives at node i. Note that wi does not depend on k since each job can be done
by only one truck and we duplicate the terminal nodes such that each node is
again visited by only one truck.

The goal is to perform all jobs, within their time-window, while minimizing
routing and terminal assignment costs. To model the routing costs, we introduce
(i) a fixed cost CF

k for using truck k ∈ K and (ii) a variable cost CV
i,j,k for

its movement over arc (i, j) ∈ A′. To model the terminal assignment costs, we
introduce a cost CD

r,d for assigning terminal d ∈ VD to job r ∈ VC. Using the
parameters and variables above, the optimization goal can be achieved solving
the mathematical program shown in (1).

min z =
∑

k∈K

⎛

⎝CF
k ·

∑

j∈δ
′+(Bk)

xBk,j,k

⎞

⎠+
∑

k∈K

∑

(i,j)∈A′
CV

i,j,k · xi,j,k

+
∑

k∈K

∑

r∈VR

∑

d∈δ+(r)∪VD

CD
i,j · xr,d,k

(1a)

s.t.
∑

k∈K̃(r)

∑

j∈δ+(r)

xr,j,k = 1, ∀ r ∈ VR
∣∣δ+(r) �= ∅ (1b)

408 A. Pérez Rivera and M. Mes

∑

k∈K̃(r)

∑

j∈δ−(r)

xj,r,k = 1, ∀ r ∈ VR
∣∣δ−(r) �= ∅ (1c)

(1−Dr)

⎛

⎝
∑

j∈δ+(r)

xr,j,k −
∑

j∈δ−(r)

xj,r,k

⎞

⎠ = 0,

∀ r ∈ VR
∣∣∣δ+(r) �= ∅ and δ−(r) �= ∅, k ∈ K̃(r)

(1d)

∑

k∈K

∑

j∈δ
′+(r)

xr,j,k = 1, ∀ r ∈ VR (1e)

∑

k∈K

∑

j∈δ
′+(d)

xd,j,k ≤ 1, ∀ d ∈ VD (1f)

∑

j∈δ
′+(i)

xi,j,k −
∑

j∈δ
′−(i)

xj,i,k = 0, ∀ i ∈ VC ∪ VD, k ∈ K (1g)

Ei ≤ wi ≤ Li, ∀ i ∈ V (1h)
∑

k∈K
(xi,j,k · (wi + Si + Ti,j − wj)) ≤ 0, ∀ i, j ∈ V (1i)

∑

k∈K
(xBk,j,k · TBk,j) ≤ wj , ∀ j ∈ V (1j)

xi,Fk,k ·
(
wi + Si + Ti,Fk − TK

k

)
≤ 0, ∀ i ∈ δ

′−(Fk), k ∈ K (1k)
∑

(i,j)∈A′
xi,j,k −MA

k ·
∑

j∈δ
′+(Bk)

xBk,j,k ≤ 0, ∀ k ∈ K (1l)

∑

j∈δ
′+(Bk)

xBk,j,k ≤ MK
k , ∀ k ∈ K (1m)

∑

i∈δ
′−(Fk)

xi,Fk,k −
∑

j∈δ
′+(Bk)

xBk,j,k = 0, ∀ k ∈ K (1n)

xi,j,k = 0, ∀ i ∈ VB \ {Bk} , j ∈ VR ∪ VD, k ∈ K (1o)

xi,j,k = 0, ∀ i ∈ VR ∪ VD, j ∈ VF \ {Fk} , k ∈ K (1p)

wi ∈ R, ∀ i ∈ V (1q)

xi,j,k ∈ {0, 1} , ∀ i, j ∈ V, k ∈ K (1r)

The objective is to minimize the total costs z as shown in (1a). Constraints (1b)
state that only one incoming job-arc can be used for job r. Note that it is possible
that job r does not require incoming job-arcs (e.g., Type 10), and thus δ+(r) = ∅.
Similarly, (1c) ensure that only one outgoing job-arc can be used for job r. For
jobs that have both incoming and outgoing job-arcs (i.e., Types 1, 2, 6, and 7),
(1d) ensure that the same vehicle does both the incoming and outgoing job-arc if
decoupling is not allowed for job r. Constraints (1e) ensure that all jobs r ∈ VR

are carried out by one truck only. Constraints (1f) ensure that all terminal nodes
d ∈ VD are visited at most once. Remind that a terminal has duplicate nodes
for keeping track of time, meaning that the same terminal might be visited
multiple times (e.g., for different jobs) but each time to a different duplicated
node. Constraints (1g) ensure flow conservation, meaning that all nodes that

Scheduling Drayage Operations in Synchromodal Transport 409

are exited must be entered as well. The time-windows of jobs, terminals, and
truck locations are enforced in (1h). Constraints (1i) and (1j) keep track of the
time variables. The maximum working time of trucks is guaranteed by (1k).
Constraints (1l) and (1m) establish that each truck can only depart once from
its starting location if it is used for doing jobs. In (1l), MA

k works as a “big-M”
parameter that can be initialized, for example, with MA

k = |VR| + |VD| + 1.
However, it can also be used to restrict the number of routing-arcs that vehicle
k can traverse, as we will explain in Section 5. In a similar way, the auxiliary
parameter MK

k can be used to restrict the use of vehicle k by setting MK
k = 0.

Initially, we set MK
k = 1, ∀k ∈ K. Constraints (1n) state that each truck must

end at its ending location if it has departed from its beginning location. Since
the nodes VB and VF are used for modeling beginning and ending locations of
trucks (i.e., not for carrying out jobs), we have to ensure that trucks do not visit
them in any case, as shown in (1o) and (1p). Finally, Constraints (1q) and (1r)
establish the domains of the variables.

Although the formulation above is not linear due to (1i) and (1k), we can
linearize it by substituting these two with (2a) and (2b). An explanation on the
logic behind these constraints can be found in [2].

wi + Si + TT
i,j − (Li + Si + Ti,j − Ej) ·

(
1−

∑

k∈K
xi,j,k

)
≤ wj ∀ i, j ∈ V (2a)

wi + Si + Ti,Fk − (Li + Si + Ti,Fk) · (1− xi,Fk,k) ≤ LFk , ∀ i ∈ δ
′−(Fk), k ∈ K (2b)

Our MILP formulation models the jobs as arcs that need to be traversed by
the trucks. Another option to represent jobs in drayage operations is to model
them as nodes. Modeling jobs as nodes reduces the size of the graph if some of
the nodes are fixed beforehand [1]. However, flexible jobs (such as ours with the
terminal assignment) cannot be collapsed into a single-node [13] and the gains
of an integrated approach are harder to obtain when modeling jobs as nodes [1].
Although modeling jobs as arcs come with the price of a larger graph, there are
other opportunities to improve the formulation through valid inequalities and
pre-processing, as we describe in the following section.

4.1 Valid Inequalities and Pre-Processing

Due to the full-truckload nature of our problem, all jobs deal with at most one
terminal either as the origin or the destination of a container. This means that
a truck carrying out jobs will never visit more than two terminals consecutively.
Since we model the requests and terminals as separate nodes, this means that not
all arcs between terminal nodes will be traversed. An arc between two terminal
nodes will only be traversed when delivering a container to the first one, and
picking up a container from the second one. Thus, we can use a bound MDE on
them as shown in (3).

∑

k∈K

∑

i∈VD

∑

j∈VD

xi,j,k ≤ MDE (3a)

MDE =
∑

r∈VR

∑

d∈UD

Br,d

∣∣∣∣∣Br,d =

{
1 if d ∈ δ−(r)

0 otherwise
(3b)

410 A. Pérez Rivera and M. Mes

In addition to the bound on the number of arcs between all terminal nodes VD,
we can bound the traversed arcs between replicated nodes of a terminal using a
similar logic. We define the set VDR

d ⊆ VD as the set containing all duplicated
nodes of terminal d ∈ UD. We put a bound MDI

d for each unique terminal node
d ∈ UD as shown in (4).

∑

k∈K

∑

i∈VDR
d

∑

j∈VDR
d

xi,j,k ≤ MDI
d , ∀ d ∈ UD (4a)

MDI
d =

∑

r∈VR

∑

i∈VDR
d

Br,i

∣∣∣∣∣Br,i =

{
1 if i ∈ δ−(r)

0 otherwise
, ∀ d ∈ UD (4b)

Taking advantage that our problem deals with jobs that have at most one origin
and at most one destination, we can compute a minimum traveling distance and
traveling time to fulfill all jobs by choosing the origin and destination with the
shortest distance and time, respectively. Using this information, we can calculate
the minimum number MLK of trucks needed (since trucks have a maximum
working time) and a lower bound on the routing costs MLC. Furthermore, using
a constructive heuristic (e.g., the one we benchmark to in Sect. 6), we can find
upper bounds MUK and MUC for the number of trucks needed and the routing
costs, respectively. Thus, we can limit the number of trucks as shown in (5) and
the routing costs as shown in (6).

MLK ≤
∑

k∈K

∑

j∈δ
′+(Bk)

xBk,j,k ≤ MUK (5)

MLC ≤
∑

k∈K

⎛

⎝CF
k ·

∑

j∈δ
′+(Bk)

xBk,j,k

⎞

⎠+
∑

k∈K

∑

(i,j)∈A′
CV

i,j,k · xi,j,k ≤ MUC (6)

The last adaptation we introduce is the pre-processing of time-windows. In
our model, there are duplicated nodes (i.e., same location, service time, and time-
window) for each terminal to keep track of time. However, each duplicated termi-
nal node can only be used for one job. Since we duplicate a terminal for each job
that might use that terminal, we can use the time-window of the job to reduce the
time-window of the duplicated node for that terminal. As an example, consider
Fig. 2. In this figure, we see a job of Type 1 that requires a full container from ter-
minal d and delivers an empty container to terminal d′. In order to carry out this
job within its time-window [Er, Lr], the full container must be put on a truck and

Fig. 2. Example of pre-processing of time-windows for a job Type 1

Scheduling Drayage Operations in Synchromodal Transport 411

travel from terminal d anywhere between [Er − (Sd + Td,r), Lr − (Sd + Td,r)].
Similarly, after unloading the container, the empty container can arrive to ter-
minal d′ anywhere between [Er + (Sr + Tr,d′), Lr + (Sr + Tr,d′)]. We can repeat
this logic with all jobs, their associated (possible) terminals, and the duplicated
nodes for those terminals.

The benefit of the aforementioned enhancements of the MILP is twofold.
First, the valid inequalities tighten the feasible solution. Second, the time-window
pre-processing breaks the symmetry in MILP solutions introduced by the dupli-
cated terminal nodes. However, these modifications are sufficient to solve only
small problems. In the following section, we elaborate on further adaptations of
the MILP that can allow it to be applied to larger problems.

5 Matheuristics

In our problem, MILP solvers are able to find a good feasible solution fast, but
struggle on improving it further or in proving its optimality. In this section, we
design three adaptations to the MILP that are aimed to help a solver find good
feasible solutions faster. Furthermore, we design two matheuristics: (i) a static
matheuristic to solve a single instance of the problem using Math-Heuristic Op-
erators (MHOs), and (ii) a dynamic matheuristic to solve a re-planning instance
of the problem using Fixing Criteria (FCs), as shown in the pseudo-code of Al-
gorithms 1 and 2, respectively. We now elaborate on the MHOs, FCs, and parts
of each algorithm.

Algorithm 1 Static Matheuristic

Require: Graph G and associated pa-
rameters

1: Initialize best solution
2: while Stopping criterion not met do
3: Get MHOs (7), (8), and (9)
4: Build adapted MILP
5: Solve adapted MILP
6: if Current solution ≤ Best solution

then
7: Best solution = Current Solution
8: end if
9: end while
10: return Best solution

Algorithm 2 Dynamic Matheuristic

Require: Re-planning trigger and cur-
rent schedule

1: Determine current state
2: Fix trucks with FCs (10) and (11)
3: Determine re-planning jobs
4: Build G and associated parameters
5: Run Algorithm 1
6: return Solution

5.1 Static Matheuristic

Our static matheuristic uses three adaptations to the MILP, iteratively and in
a local-search fashion. These adaptations, denoted by MHOs, are basically ad-
ditional constraints in the MILP that can be seen as cutting planes that reduce
the feasible space. Since our formulation results in a lot of arcs, our MHOs focus
on fixing those arcs in an intuitive way. We now explain each MHO in more detail.

MHO 1: For NM1 random jobs r ∈ VR, we limit the number of feasible job-arcs
to at most two, i.e., |δ−(r)| ≤ 2 and |δ+(r)| ≤ 2. These arcs are from (or to) the

412 A. Pérez Rivera and M. Mes

two closest locations (i.e., shortest traveling time). In other words, all remaining
job-arcs are cut out, as shown in (7).

xj,r,k = 0, ∀k ∈ K, j ∈ δ−(r) \ {i, i′}
∣∣∣∣∣i = argmin

j∈δ−(r)

Tj,r and i′ = argmin
j∈δ−(r)\{i}

Tj,r (7a)

xr,j,k = 0, ∀k ∈ K, j ∈ δ+(r) \ {i, i′}
∣∣∣∣∣i = argmin

j∈δ+(r)

Tr,j and i′ = argmin
j∈δ+(r)\{i}

Tr,j (7b)

MHO 2: For NM2 times, the arc between a job r of Type 2 and a job r′ of Type
7 with the minimum traveling time is fixed. Remind that the arc is feasible when
r ∈ δ−(r′) and r′ ∈ δ+(r), and thus the fixing of a pair of jobs r and r′ can be
done as shown in (8).

∑

k∈K
xr,r′,k = 1

∣∣∣∣∣r = argmin
j∈δ−(r′)

Tj,r′ (8)

MHO 3: For NM3 random jobs r ∈ VR, we fix the feasible job-arcs from (or to)
the closest location (i.e., shortest traveling time), as shown in (9).

∑

k∈K
xi,r,k = 1

∣∣∣∣∣i = argmin
j∈δ−(r)

Tj,r and
∑

k∈K
xr,i,k = 1

∣∣∣∣∣i = argmin
j∈δ+(r)

Tr,j (9)

Assigning a value to the parameters NM* requires tuning (see Sect. 6.2). In
general, the larger the value of NM* the smaller the problem becomes for the
solver, but the higher the chance of ruling out the global optimum.

5.2 Dynamic Matheuristic

Our dynamic matheuristic builds upon the static and is used for re-planning
situations (e.g., new jobs arrived, delays, etc.). Jobs sequences that are being
executed during the re-planning trigger are completed (i.e., no preemption). For
jobs that have not been started yet, we have the option to use the previous
plan or to re-plan them. In the first option, we fix jobs in current truck routes
using two Fixing Criteria (FC). The idea of these criteria is to identify good
routes from the current schedule that can be kept in the new plan. In the second
option, we use the static matheuristic to build a new schedule. The fixing of a
route means that the routes (i.e., job sequences) will be preserved, but the time
at which and the truck by which they are executed is left flexible. This time
flexibility allows new jobs to be added to the trucks already being used and also
to handle delays.

FC 1: We fix NF1 routes kC from the current schedule xC with the largest
number of jobs. We define F1(kC) as the set of arcs (i, j) that fulfill this criteria,
as shown in (10), and fix the routes by

∑
k∈K xi,j,k = 1, ∀(i, j) ∈ F1(kC).

F1(kC) =

⎧
⎨

⎩(i, j) ∈ A : xC
i,j,kC = 1,kC = argmax

k′∈K|∑j∈V xC
Bk,j,k

=1

∑

i∈VR

xC
i,j,k

⎫
⎬

⎭ (10)

Scheduling Drayage Operations in Synchromodal Transport 413

FC 2: We fix NF2 routes with the shortest traveling time, similar to FC 1. We
define F2(kC) as the set of arcs (i, j) that fulfill this criteria, as shown in (11).

F2(kC) =

⎧
⎨

⎩(i, j) ∈ A : xC
i,j,kC = 1,kC = argmin

k′∈K|∑j∈V xC
Bk,j,k

=1

∑

(i,j)∈A′
xC
i,j,kTi,j

⎫
⎬

⎭ (11)

Just as in the static matheuristic, the best value of the parameters NF* de-
pends on circumstances such as the current schedule, the instance G, and the
re-planning trigger. In the following, we present a brief proof-of-concept of the
algorithms just described.

6 Numerical Experiments

We test our solution approach in two numerical experiments. First, we examine
the benefits that our adaptations have in solving the MILP. Second, we test the
gains of using our dynamic matheuristic compared to a benchmark heuristic.
Our goal is to explore our approach and gain insights for further research.

6.1 Experimental Setup

We design 32 problem instances containing 25 jobs each. The location, time-
window, and service time for each job is obtained from the first 25 customers
of the Solomon instances for the VRPTW [14]. We use the first eight instances
of four categories in [14]: C1, C2, R1, and R2, where C stands for clustered
locations, R for random locations, 1 for short time-windows, and 2 for long-time
windows. For each instance, there are 25 homogeneous trucks to guarantee there
is a feasible solution. For each truck, the fixed cost is 1000 and the traveling time
and variable cost is equal to the Euclidean distance between two locations.

The job configurations for all instances are shown in Table 1. These job
configurations are based on the average drayage operations of a Dutch LSP in
the Eastern part of The Netherlands. This LSP has three terminals that we
use as follows. Terminal 1 is located in the same location as the Depot in the
corresponding Solomon instance and has a terminal assignment cost of 500.
Terminal 2 and Terminal 3 are located at (60,60) and (10,10), which are points
along the diagonal in the Euclidean space that are close to the most distant
customers from the geographical center of each of the Solomon instances. The
assignment costs vary per instance, and are defined as 500− 2β, where β is the
length of the diagonal formed by the extremes of the corresponding Solomon
instance. The rationale is to make the distant terminals worth “assigning” if a
job is within half of the diagonal. The time-window of each terminal is twice the
time-window of the depot in the corresponding Solomon instance. The maximum
working time for each truck is equal to the length of the time-window of each
terminal. Terminal 1 is the beginning and finishing location of nine trucks, and
Terminals 2 and 3 of eight trucks each.

414 A. Pérez Rivera and M. Mes

Table 1. Job configuration for all instances

Characteristic
Job Type

1 2 3 4 5 6 7 8 9 10 11

Number of jobs 2 3 2 2 2 2 4 3 3 1 1
Jobs decoupling Dr 1 1 - - - 1 1 1 - - -

In both the static and dynamic experiments, we compare to the use of a
benchmark heuristic that follows the logic from [2]. First, each job of Type 2 is
paired with a job of Type 7 that incurs the minimum variable cost considering
all constraints. Note that the origin of the full container of Type 2 is known,
thus the pairing occurs in the destination of the empty container of Type 2
with the source of the empty container of Type 7. Subsequently, the closest
terminal is assigned to the full container of Type 7. The paired jobs are sorted in
non-decreasing route distance and scheduled using a cheapest insertion method.
This method schedules the paired jobs in the position of the route that yields
the lowest routing cost. All remaining jobs are then scheduled with a similar
cheapest insertion method. For the jobs that have a flexible source or destination
of a container, all combinations of sources and destinations are examined and the
position with the cheapest routing and terminal assignment cost is chosen. To use
this heuristic dynamically, the job sequences that are being executed during the
re-planning trigger are fixed (i.e., no preemption of the current schedule). Jobs
that have not been started and that are not in a non-preemptive sequence are
re-scheduled with the steps described before. We now describe each experiment
in detail and present their results.

6.2 Static Experiments

In the static experiments, we test the effect that the Valid Inequalities (VIs),
Time-Window Pre-Processing (TWPP), and the three Math-Heuristic Operators
(MHOs) have on the total costs. For each of the eight instances in categories C1,
C2, R1, and R2, we test the MILP without any modification, the MILP with
the VIs, the MILP with the TWPP, and the MILP with the VIs, TWPP, and
each of the MHOs. We use CPLEX 12.6.3 (via the C API) with a limit of 300
seconds and a warm-start given by the solution of the Benchmark Heuristic
(BH). For MHO 1 and 3, we perform nine iterations; and at each iteration, we
choose seven random jobs in MHO 1 and one random job in MHO 3. MHO 2
has no randomness, so we perform only three iterations and we fix 1, 2, and 3
jobs respectively. The “random” settings are arbitrary, since we just test their
usefulness rather than tuning them. We show the aggregated results in Table 2.

In Table 2, four interesting observations arise. First, the VIs do not improve
the solution of the MILP but the TWPP does. Second, the best solutions in the
clustered (C) instances are achieved by MHO 3, and in the random (R) instances
by MHO 1. It is reasonable that MHO 1 achieves better solutions in R instances
than C ones because this operator increases the chance of assigning the closest

Scheduling Drayage Operations in Synchromodal Transport 415

Table 2. Total costs for various MILP adaptations

Instances BH MILP VIs TWPP MHO 1 MHO 2 MHO 3

C1 77,960 77,926 77,960 76,924 76,829 77,926 75,189
C2 52,904 52,882 52,904 52,049 51,841 52,078 50,802
R1 111,087 111,078 110,904 107,649 107,254 107,647 107,736
R2 50,500 50,435 50,500 50,497 50,255 50,500 50,378

origin and destination to each job in a network with more disperse locations.
Third, MHO 2 has worse solutions than the other MHOs. It seems that choosing
a job as the origin/destination of an empty container (i.e., logic of the BH) is not
better than allowing a job or a terminal to be origin and destination, as MHO 1
and 3 allow. Fourth, in instances C1, C2, and R1, our adaptations to the MILP
result in savings (from the BH) between 3-4%, but in instances R2 there are no
noticeable savings. It seems that in R2, which has long time-windows and longer
traveling times, the cheapest insertion and job-pairing nature of the BH results
in good solutions.

6.3 Dynamic Experiments

In the dynamic experiments, we test the effect of the Fixing Criteria FC 1
and FC 2. In addition, we test a no-fixing criteria FC 0 meaning that all non-
preemptive jobs can be re-scheduled. The problem instances are similar to the
static experiments. We consider five stages for re-scheduling after the initial
planning of the first 25 jobs of each Solomon instance (i.e., the static setup).
These five stages are uniformly distributed within the first half of the trucks
and terminals maximum working time (i.e., half a day). At each stage, five
new jobs are revealed, which correspond to the next five jobs in each Solomon
instance, and whose time-window is increased proportionally to the stage to
guarantee they occur after they are revealed. Non-preemptiveness applies to all
jobs scheduled in a truck before the next stop at a terminal. For the static

C1 C2 R1 R2

75,000

90,000

1.05 · 105
1.2 · 105
1.35 · 105
1.5 · 105
1.65 · 105

Instance category

T
o
ta
l
co
st
s
a
t
st
a
g
e
5

BH FC 0 FC 1 FC 2

Fig. 3. Comparison FCs at last stage

0 1 2 3 4 5

75,000

90,000

1.05 · 105
1.2 · 105
1.35 · 105
1.5 · 105
1.65 · 105

Re-planning stage

T
ot
a
l
co
st
s

C1 - BH C1 - FC 0 C1 - FC 1 C1 - FC 2
R1 - BH R1 - FC 0 R1 - FC 1 R1 - FC 2

Fig. 4. Performance of best FC per stage

416 A. Pérez Rivera and M. Mes

matheuristic within the dynamic matheuristic, we use MHO 3 for C instances
and MHO 1 for R instances. We define the number of truck routes to fix for FC1
and FC2 as a percentage of the available truck routes: NF* = (0.1, 0.5). The
results are shown in Fig. 3 and 4.

In Fig. 3, we observe that in the last re-planning stage (i.e., costs over the
entire day), our dynamic matheuristic achieves significant savings compared to
the BH in instances C1, C2 and R1 (around 8%, 3%, and 3% respectively).
The winning FC, however, seems to vary per instance type. It is reasonable that
fixing routes with the largest number of jobs (i.e., FC 1) is good in C1 since these
instances contain closely located jobs with tight time-windows. Furthermore, it
seems also reasonable that in instances with disperse located jobs such as R1,
fixing routes with good traveling times (i.e., FC 2) is better. We focus on these
two instance categories in Fig. 4. For R1 we observe that FCs 0 and 1 have
similar performance and that FC 2 starts differentiating more from the other
FCs and the BH towards the last stages. For C1 we observe similarly that FCs 0
and 1 have comparable performance, and that the gap to the BH seems to widen
towards the last stages.

6.4 Discussion

In the static experiments, we observe that the MHOs help obtaining a better
MILP solution than the VIs and the TWPP. We observe also that the perfor-
mance of the MHO depends on the problem settings. In the dynamic experi-
ments, we observe that the dynamic matheuristic outperforms the BH but the
performance of the FCs therein depends again on the problem settings. Although
these experiments serve as a proof-of-concept and give an indication of the gains
to be expected, they have three limitations. First, we do not tune the parame-
ters with respect to the problem setting. As described in the results, our MHOs
and FCs have implicit distance and time effects on the solution and thus require
tuning. Second, we do not adapt the algorithms towards previous iterations or
stages. Our MHOs and FCs are analogous to neighborhood operators in local
search heuristics, and thus mechanisms that adapt them can be beneficial to fur-
ther guide the algorithm to better solutions. Third, we limit the computational
time of the matheuristics and use a heuristic for the warm-start. The interaction
of these two methods and the solver has a larger effect on some problems than
others. We observed that for some instance categories, the solver was able to
find improvements at every stage, but in some others failed to find a different
solution than the heuristic within the allowed time. These limitations in our
study, however, give rise to new research questions, specially in the combination
of exact and heuristic approaches, i.e., matheuristics: how to tune the parame-
ters, how to adapt the algorithm that uses the parameters after each iteration,
and how to handle the interaction between solver and solution are examples of
promising research lines.

Even though we analyze one trigger for re-scheduling, i.e., fixed intervals, it
is important to note there can be other triggers such as change in the status of
trucks, traffic data, or cancellation of customer requests [7,15]. Different triggers

Scheduling Drayage Operations in Synchromodal Transport 417

for re-scheduling may require different FCs. For example, fixing routes with the
shortest traveling time from the previous schedule may not be the best option
if the trigger for disruption was a delay due to increased traffic. Furthermore,
the interaction between the real-time aspect of synchromodality and the re-
scheduling trigger needs to be considered. When the time required for re-planning
(e.g., computation time of the matheuristic) is larger than the effect of a trigger
(e.g., delay) it can be that re-planning is not even necessary. Overall, these re-
scheduling aspects in synchromodality need to be investigated and tackled within
a dynamic solution approach.

7 Conclusion

We developed a MILP and a matheuristic to schedule drayage operations in
synchromodal transport. Timing, routing, and long-haul terminal assignment
decisions are integrated and simultaneously considered. Dynamic scheduling is
done as new information is revealed throughout the day.

Through numerical experiments, we studied the performance of our adapta-
tions to the MILP model and fixing criteria in the matheuristic. Overall, we ob-
served that the gains of our approach are dependent on problem attributes such
as customer dispersion, time-window lengths, and dynamic re-planning. Further
research in the relation between these characteristics and our matheuristics is
needed. The proper handling of such relations is essential for scheduling drayage
operations in synchromodal transport.

Acknowledgment: This research has been partially funded by the Dutch In-
stitute for Advanced Logistics, DINALOG, under the project SynchromodalIT.

References

1. Braekers, K., Caris, A., Janssens, G.: Integrated planning of loaded and empty
container movements. OR Spectrum 35(2), 457–478 (2013), dx.doi.org/10.1007/
s00291-012-0284-5

2. Caris, A., Janssens, G.: A local search heuristic for the pre- and end-haulage of
intermodal container terminals. Computers & Operations Research 36(10), 2763 –
2772 (2009), dx.doi.org/10.1016/j.cor.2008.12.007

3. Caris, A., Macharis, C., Janssens, G.K.: Decision support in intermodal transport:
A new research agenda. Computers in Industry 64(2), 105 – 112 (2013), dx.doi.
org/10.1016/j.compind.2012.12.001, decision Support for Intermodal Transport

4. Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle Routing. In:
Barnhart, C., Laporte, G. (eds.) Transportation, Handbooks in Operations Re-
search and Management Science, vol. 14, chap. 6, pp. 367 – 428. Elsevier (2007),
dx.doi.org/10.1016/S0927-0507(06)14006-2

5. Escudero, A., Muñuzuri, J., Guadix, J., Arango, C.: Dynamic approach to solve
the daily drayage problem with transit time uncertainty. Computers in Industry
64(2), 165 – 175 (2013), dx.doi.org/10.1016/j.compind.2012.11.006, decision
Support for Intermodal Transport

418 A. Pérez Rivera and M. Mes

6. Francis, P., Zhang, G., Smilowitz, K.: Improved modeling and solution methods
for the multi-resource routing problem. European Journal of Operational Research
180(3), 1045 – 1059 (2007), dx.doi.org/10.1016/j.ejor.2006.03.054

7. Heilig, L., Lalla-Ruiz, E., Voß, S.: port-io: an integrative mobile cloud platform for
real-time inter-terminal truck routing optimization. Flexible Services and Manu-
facturing Journal (Jan 2017), dx.doi.org/10.1007/s10696-017-9280-z

8. Imai, A., Nishimura, E., Current, J.: A Lagrangian relaxation-based heuristic for
the vehicle routing with full container load. European Journal of Operational Re-
search 176(1), 87 – 105 (2007), dx.doi.org/10.1016/j.ejor.2005.06.044

9. Konings, J.: Intermodal barge transport: network design, nodes
and competitiveness. PhD thesis, TU Delft, Delft University of
Technology (2009), http://repository.tudelft.nl/view/ir/uuid%

3Aff6f5f10-2acc-43fb-9474-5317b0988bdd/

10. del Mar Agamez-Arias, A., Moyano-Fuentes, J.: Intermodal transport in freight
distribution: a literature review. Transport Reviews 0(0), 1–26 (2017), dx.doi.
org/10.1080/01441647.2017.1297868

11. Nossack, J., Pesch, E.: A truck scheduling problem arising in intermodal con-
tainer transportation. European Journal of Operational Research 230(3), 666 –
680 (2013), dx.doi.org/10.1016/j.ejor.2013.04.042

12. Riessen, B., Negenborn, R.R., Dekker, R.: Synchromodal container transportation:
An overview of current topics and research opportunities. In: Corman, F., Voß, S.,
Negenborn, R.R. (eds.) Proceedings ICCL 2015, Delft, The Netherlands, pp. 386–
397. Lecture Notes in Computer Science, Springer (2015), dx.doi.org/10.1007/
978-3-319-24264-4_27

13. Smilowitz, K.: Multi-resource routing with flexible tasks: an application in
drayage operations. IIE Transactions 38(7), 577–590 (2006), dx.doi.org/10.1080/
07408170500436898

14. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987), http://www.
jstor.org/stable/170697

15. Ulmer, M.W., Heilig, L., Voß, S.: On the value and challenge of real-time informa-
tion in dynamic dispatching of service vehicles. Business & Information Systems
Engineering 59(3), 161–171 (Jun 2017), dx.doi.org/10.1007/s12599-017-0468-2

16. Wang, X., Regan, A.C.: Local truckload pickup and delivery with hard time win-
dow constraints. Transportation Research Part B: Methodological 36(2), 97 – 112
(2002), dx.doi.org/10.1016/S0965-8564(00)00037-9

Scheduling Drayage Operations in Synchromodal Transport 419

	27Scheduling Drayage Operations in Synchromodal Transport
	Abstract
	Keywords
	1 Introduction
	2 Literature Review
	3 Problem Description
	4 MILP formulation
	4.1 Valid Inequalities and Pre-Processing

	5 Matheuristics
	5.1 Static Matheuristic
	5.2 Dynamic Matheuristic

	6 Numerical Experiments
	6.1 Experimental Setup
	6.2 Static Experiments
	6.3 Dynamic Experiments
	6.4 Discussion

	7 Conclusion
	Acknowledgment
	References

