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When a free-falling liquid droplet is hit by a laser it experiences a strong ablation-
driven pressure pulse. Here we study the resulting droplet deformation in the regime
where the ablation pressure duration is short, i.e. comparable to the time scale on
which pressure waves travel through the droplet. To this end, an acoustic analytic
model for the pressure, pressure impulse and velocity fields inside the droplet is
developed in the limit of small density fluctuations. This model is used to examine
how the droplet deformation depends on the pressure pulse duration while the
total momentum to the droplet is kept constant. Within the limits of this analytic
model, we demonstrate that when the total momentum transferred to the droplet is
small the droplet shape evolution is indistinguishable from an incompressible droplet
deformation. However, when the momentum transfer is increased the droplet response
is strongly affected by the pulse duration. In this later regime, compressed flow
regimes alter the droplet shape evolution considerably.

Key words: acoustics, compressible flows, drops and bubbles

1. Introduction
The impact of a short laser pulse onto a free-falling absorbing liquid droplet induces

a rapid phase change in a thin superficial layer on the illuminated side of the droplet
(Klein et al. 2015; Kurilovich et al. 2016). The resulting vaporization, explosive
boiling or even plasma formation gives rise to mass ablation; see figure 1(a,b).
Subsequently, a recoil pressure wave propagates into the droplet and causes a net
momentum transfer (Sigrist & Kneubuhl 1978; Apitz & Vogel 2005; Klein et al.
2015). As a consequence the droplet is propelled forward and strongly deforms
(Klein et al. 2015; Gelderblom et al. 2016). However, the way in which these
pressure waves establish inside the droplet over time, which is in particular relevant
for short pulse durations, has so far remained unexplored.

In this study we aim to understand the fluid dynamic response of a droplet to
a short ablation-driven pressure pulse. In addition to this ablation pressure, a laser
impact could trigger pressure waves inside the droplet through a number of other
mechanisms (Sigrist 1986). Electrostriction and radiation pressures are of negligible
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(a) (b) (c)

FIGURE 1. An illustration of three different impact duration regimes on a droplet. (a)
A nanosecond laser pulse impacting from the left on a micron-sized liquid tin droplet
leads to plasma formation (white glow in the image) and subsequently plasma-mediated
ablation of the droplet (image taken from Kurilovich et al. 2016). The typical ablation
pressure duration is comparable to the plasma decay duration, which is of the order of
the acoustic time scale: τe .R/c, where R is the initial droplet radius and c the speed of
sound inside the droplet. (b) Impact of a nanosecond laser pulse onto a millimetre-sized
dyed water droplet can lead to vaporization and mist cloud formation, the accompanying
shock wave in the surrounding air is also visible (Klein et al. 2015). The typical vapour-
recoil-induced ablation pressure duration is much longer than the acoustic time scale, but
much shorter than the time scale on which the droplet deforms: R/c� τe�R/U, where U
is the propulsion speed of the droplet (image taken 5 µs after laser impact, image courtesy
Klein). (c) For the impact of a droplet onto a solid surface the typical interaction time
is equal to the deformation time τe = R/U, where U is the impact speed of the droplet
(image taken from Josserand & Thoroddsen 2016).

influence compared to the ablation pressure (Sigrist 1986). However, the local heating
of the liquid close to the droplet surface can induce significant thermoelastic waves
that result from thermal expansion (Sigrist & Kneubuhl 1978; Wang & Xu 2001).
Furthermore, for high laser intensities dielectric breakdown on the droplet surface
can lead to the generation of a shock waves inside the droplet (Zhang et al. 1987;
Vogel & Parilitz 1996; Lauterborn & Vogel 2013) or even plasma generation inside
a transparent droplet (Lindinger et al. 2004; Geints et al. 2010; Avila & Ohl 2016).
These mechanisms could have a strong influence on the droplet response. Indeed,
cavitation phenomena, shock waves and rapid interface acceleration can give rise to
fast jetting, bubble collapse and interfacial instabilities (Vogel & Parilitz 1996; Sun
et al. 2009; Thoroddsen et al. 2009; Tagawa et al. 2012; Avila & Ohl 2016). The
study of these violent, highly nonlinear response regimes is beyond the scope of the
present study. Instead, we examine how an ablation pressure pulse is communicated
throughout the droplet and triggers droplet deformation.

An important application of laser-induced droplet deformation is found in laser
produced plasma light sources to generate extreme ultra violet (EUV) light used for
nanolithography (Fujioka et al. 2008; Banine, Koshelev & Swinkels 2011). In these
sources small tin droplets are converted into a plasma by a two-stage laser impact
process (Banine et al. 2011). Upon the first impact, the droplet deforms into a thin
flat sheet which is thereafter ionized by a second more powerful laser. A key question
to improve this source is how the droplet deformation changes when the laser pulse
duration is shortened.

Up to now, the response of a droplet due to a laser impact has been studied by
using incompressible hydrodynamics to model the droplet deformation (Klein et al.
2015; Gelderblom et al. 2016). In these models the interaction of the laser with the
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droplet is described by an ablation pressure pe acting on the surface of the droplet
for a duration τe. The impulse peτe resulting from this ablation pressure causes a
momentum transfer to the droplet ρ0R3U, where ρ0 is the liquid density, R the initial
droplet radius and U the centre-of-mass speed, which therefore scales as (Gelderblom
et al. 2016)

U ∼
peτe

ρ0R
. (1.1)

The deformation in these incompressible models is calculated by a pressure impulse
approach that is also used for studies on the impact of liquid bodies onto solids
(Batchelor 1967; Cooker & Peregrine 1995; Antkowiak et al. 2007). As long as the
duration of the ablation pressure is long compared to the acoustic time scale R/c,
where c is the speed of sound inside the droplet, and the amplitude pe is such that
no shockwaves are created, the droplet response can be considered incompressible
(Gelderblom et al. 2016). For example, for classical droplet impact onto a solid the
deformation time scale τi=R/U is of the same order as the impact duration τe which
is much longer than R/c (see e.g. Clanet et al. 2004; Josserand & Thoroddsen 2016),
as illustrated in figure 1(c).

By contrast, the impact of a laser pulse provides a means to shorten the duration
of the ablation pressure considerably, and thereby to transfer the same amount of
momentum peτe to the droplet in a shorter time. The ablation pressure duration
can for example be decreased by increasing the laser pulse energy to move to the
plasma-mediated ablation regime, which leads to more violent and shorter lived
ablation pressures (Kurilovich et al. 2016), as illustrated in figure 1(a). A further
decrease of the ablation pressure duration can be obtained by directly shortening the
laser pulse duration (Chichkov et al. 1996). In these cases τe is shortened significantly
such that it becomes comparable to or even smaller than R/c such that the droplet
response is compressible and incompressible models breakdown. We note that for
laser-induced ablation τe � τi such that the droplet remains undeformed during
impact (Gelderblom et al. 2016). Indeed, in figure 1(b) we observe that the mist
cloud resulting from mass ablation acts on the surface of an undeformed droplet.

In this paper we study the response of a droplet to a short ablation pressure acting
on its surface. In particular, we focus on the question how the droplet deformation
dynamics depends on the ablation pressure duration at fixed impulse in the regime
where τe . R/c. Hence we consider the situation where the pressure field inside the
droplet is not yet established during the pressure pulse and the droplet response is
no longer incompressible. To this end, we develop a linearly compressible analytic
model for the droplet response to short pressure pulses. In § 2 we introduce the
analytic model and discuss the regime in which it applies. In § 3 we first compare
our analytic results to a compressible lattice Boltzmann simulation. Next we use
the analytic model to study the effects of shortening the pulse duration at constant
impulse on the pressure, pressure impulse, velocity and deformation fields of the
droplet.

2. Problem formulation and methods
In this section we derive a model to describe the spatio-temporal response of a

droplet to an ablation pressure acting on its surface. In § 2.1 we provide a scaling
analysis to delineate three different regimes in the response of the droplet to this
pressure pulse. Analytic expressions for the pressure and velocity fields inside the
droplet as function of the pressure pulse are derived in § 2.2. Finally in § 2.3 we
discuss the lattice Boltzmann method that we use to support our analytic findings.
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FIGURE 2. (Colour online) Sketch of the problem: an ablation pressure of amplitude
pe(θ, φ, t) and duration τe acts on the surface of a droplet with radius R. As a result, a
pressure field is induced inside the droplet over a depth `e ∼ cτe. The colour bar denotes
the pressure amplitude (blue is ambient and yellow is peak pressure). The spherical
coordinate system (r, θ , φ) used is indicated (the azimuthal angle φ is not shown but
rotates around the z-axis).

2.1. Scaling analysis
We consider a spherical droplet with radius R and density ρ0 that is subjected to an
ablation pressure on the illuminated side with an amplitude pe and a duration τe, see
figure 2. The total impulse received by the droplet is given by J ∼ peτe. In this work
we explore the effect of decreasing the pulse duration while keeping the total impulse
transferred to the droplet constant; i.e. decreasing τe at constant J.

During the pulse the pressure disturbance on the surface of the droplet penetrates
over a length scale `e ∼ cτe, where c is the speed of sound in the droplet. If `e

is short compared to R all momentum is initially concentrated inside a thin layer,
as is illustrated in figure 2. By contrast, if `e > R, all fluid inside the droplet has
experienced a change in momentum directly after the pulse. The ratio between `e and
R is quantified by the acoustic Strouhal number and is a dimensionless pressure pulse
duration

St=
`e

R
=

cτe

R
. (2.1)

To investigate the effect of short pulse durations, we are interested in the limit St . 1.
When τe is decreased at constant J, pe rises. From momentum conservation in

this thin layer it follows that the typical velocity induced inside `e is given by
ue ∼ pe/(ρ0c), where ρ0 is the density of the liquid droplet. Hence we observe that
a large pe induces large velocities in `e, which is quantified by the acoustic Mach
number and is a dimensionless pressure pulse amplitude

Ma=
ue

c
=

pe

p0
, (2.2)

where p0 = ρ0c2 is the base pressure of the droplet. When Ma is large the fluid
response inside the droplet is nonlinear and shock waves dominate the flow. If Ma
small, the flow inside the droplet can be considered linear.
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FIGURE 3. (Colour online) A phase diagram showing lines of constant impulse transfer to
the droplet. The blue dotted-dashed line is the isoline St Ma= 0.01, the orange dashed line
is the isoline St Ma= 0.1 and the red dotted line is the isoline St Ma= 0.5. The plot shows
three distinct regimes can be observed at constant impulse: a strongly compressible regime,
a weakly compressible regime and an incompressible regime. The weakly compressible
regime is the focus of the present work.

The product Ma St sets the total dimensionless impulse received by the droplet

St Ma=
peτe

ρ0Rc
=

U
c
, (2.3)

where (1.1) is used to express the centre-of-mass velocity U of the droplet as whole.
This product is often referred to as the global Mach number of the droplet.

One can use Ma and St to delineate different regimes in the droplet response,
as illustrated in figure 3. For lines of constant Ma St (hence constant impulse), we
can identify three regimes. Firstly, when St is small and Ma is large, we are in a
strongly compressible regime where nonlinear advective acceleration and nonlinear
viscous dampening need to be taken into account to describe the flow. Secondly, for
intermediate Ma and St, compressible effects are important but nonlinear effects are
small, which renders this regime analytically accessible. This regime, which we term
the weakly compressible regime, will be the main focus of this paper. Finally, when
St� 1 and Ma� 1, we enter the incompressible regime that was subject of previous
studies where long pulse durations (large St) were considered (Gelderblom et al.
2016). This regime is also relevant to droplet impact studies on rigid surfaces, see
e.g. Richard, Clanet & Quere (2002), Clanet et al. (2004), Yarin (2006), Josserand &
Thoroddsen (2016), Philippi, Lagree & Antkowiak (2016), Wildeman et al. (2016).
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2.2. The weakly compressible model
The compressible flow equations are given by (Batchelor 1967, p. 164)

∂ρ

∂t
+ (∇ · ρu)= 0, (2.4)

ρ

(
∂u
∂t
+ u · ∇u

)
=−∇p+µ∇2u+

(
κ +

1
3
µ

)
∇(∇ · u), (2.5)

where ρ is the density field, u the velocity field, p the thermodynamic pressure, µ is
the shear viscosity coefficient and κ the expansion viscosity coefficient. In this work
we only focus on the flow inside the droplet and we do not consider the flow of the
outer gas phase, since for typical experimental situations (tin droplet in vacuum and
water droplet in air): ρg/ρl� 1 and µg/µl� 1 (Klein et al. 2015; Kurilovich et al.
2016). In order to find a closed analytic expression for the pressure and velocity field
inside the droplet, we will first need to simplify (2.4) and (2.5) and finally solve the
system obtained with appropriate surface boundary conditions for the droplet.

In the weakly compressible regime, i.e. for intermediate Ma, St (see figure 3), we
can expand the pressure p, density ρ and velocity u inside the droplet as a constant
plus a small time-dependent part, analogous to Batchelor (1967, p. 166)

p(x, t)= p0 + p1(x, t),
ρ(x, t)= ρ0 + ρ1(x, t),

u(x, t)= u1(x, t),

 (2.6)

where t is the time, x = (r, θ, φ) are the spherical coordinates defined in figure 2.
The thermodynamic pressure can formally be expressed as p = p(ρ, S, T), where
S is the entropy and T is the temperature. In this work however, we neglect any
thermoelastic waves that result from thermal expansion due to the local heating of
the surface of the droplet. This simplification is supported by typical experiments
found in the literature, where both the thermal expansion coefficient and the thermal
diffusion coefficient are small (Klein et al. 2015; Kurilovich et al. 2016). We do note
that with increasing laser intensity, thermoelastic waves could become increasingly
important (Sigrist & Kneubuhl 1978; Wang & Xu 2001). However, this is typically
accompanied by an increase in the acoustic Mach number which is outside the scope
of this work. Following these simplifications, we can write a basic equation of state
for the fluid inside the droplet

p(x, t)= p0 + c2ρ1(x, t), (2.7)

where c is the speed of sound and p0 = c2ρ0 is the ideal base pressure of the
stationary droplet. Since we are interested in the flow directly after the pulse we
introduce the following non-dimensionalization, following the scaling analysis of the
previous paragraph

u=
pe

ρ0c
ũ, x= Rx̃, t= τe t̃, p= pep̃, ρ =

pe

c2
ρ̃, (2.8a−e)

where the tildes refer to the dimensionless parameters. From now on we drop the
tildes and work with the dimensionless parameters. A consistent approximation of
(2.4) and (2.5) is given by the system (Blackstock 2000, p. 97)

∂p1

∂t
+ St(∇ · u1)= 0, (2.9)

1
St
∂u1

∂t
=−∇p1 +

1
Re
∇

2u1 +
1

Rev
∇(∇ · u1), (2.10)
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where Re= ρ0Rc/µ is the Reynolds number with µ the dynamic viscosity and Rev =
ρ0Rc/((µ + κ)/3) the Reynolds number for volume changes, where κ is the bulk
viscosity. Although the Reynolds number in experiments is typically large (Re∼ 103)
we will see later on that we need to retain the viscous terms in (2.10) to overcome
singularities when converging pressure waves superimpose in the centre of the droplet.
In the high Reynolds regime viscous effects however do not influence the droplet
deformation, which was already reported in a previous incompressible and inviscid
model by Gelderblom et al. (2016). We note that there is no explicit dependence
on the acoustic Mach number in (2.9) and (2.10), since this is a low-order Mach
expansion of the compressible Navier–Stokes equations and we scaled all our fields
accordingly (2.8). By taking the divergence of (2.10) and using (2.9) we obtain a
viscous wave equation for the acoustic field inside the droplet

∂2p1

∂t2
− St2
∇

2p1 =
1

Rea

[
∇

2 ∂p1

∂t

]
, (2.11)

where 1/Rea = St(1/Re + 1/Rev) is an effective Reynolds number for the viscous
dissipation in the acoustic wave (Blackstock 2000, p. 97). Below we describe how
this equation for p1(x, t) is solved for the problem at hand. In § 2.2.2 we show how
the velocity field u1(x, t) can be computed once p1(x, t) is known.

2.2.1. The pressure field
We solve (2.11) subject to a pressure boundary condition on the droplet surface. At

the interface of the droplet the stresses between the liquid and the gas phase must be
continuous. We assume that the magnitude of the pressure variations in the gas phase
are much smaller than those inside the droplet. For typical experiments (Klein et al.
2015; Kurilovich et al. 2016) this assumption is justified since the density and the
viscosity of the gas phase are much smaller. As a result, the stress condition on the
interface significantly simplifies since the pressure in the gas phase may be considered
constant and equal to p0. As a consequence, the time-dependent part of the pressure
at the surface of the droplet must satisfy

p1(1, θ, φ, t)= 0, (2.12)

to ensure that all acoustic energy remains inside the droplet. Furthermore we assumed
that the interface remains immobile and therefore the droplet spherical during the
pulse. This latter assumption is justified when the pulse duration τe is much smaller
than the typical interface deformation time scale τint=R/ue, or in dimensionless form
St Ma� 1. Typically in experiments St Ma∼ 10−2

− 10−1. An ablation pressure acting
on the surface of the droplet is introduced through a Green’s function formalism
(Morse & Feshbach 1953, chap. 7). The general solution for the spatio-temporal
pressure field inside the droplet is given by

p1(x, t) =
∫∫∫

V

[
∂G(x, t; x0, t0)

∂t0
p1(x0, t0)

−

(
∂p1(x0, t0)

∂t0
−

p1(x0, t0)

Rea
∇

2
x0

)
G(x, t; x0, t0)

]∣∣∣∣t+
t0=0

dV0

+

∫ t+

0
dt0

∮
S

[
G(x, t; x0, t0)

(
St2
∇x0p1(x0, t0)+

1
Rea
∇x0

∂p1(x0, t0)

∂t0

)
−∇x0G(x, t; x0, t0)

(
St2p1(x0, t0)+

1
Rea

∂p1(x0, t0)

∂t0

)]
· n dS0, (2.13)
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where G(x, t; x0, t0) is the Green’s function satisfying

∂2G(x, t; x0, t0)

∂t2
− St2
∇

2G(x, t; x0, t0)−
1

Rea

[
∇

2 ∂G(x, t; x0, t0)

∂t

]
= δ(x− x0)δ(t− t0),

(2.14)
where we use a spherical coordinate system for x and x0. To find the general solution
to (2.14), we first define a Fourier transformation

Ĝ(x, ω; x0, t0)=

∫
∞

−∞

G(x, t; x0, t0) exp(−iωt) dt, (2.15)

G(x, t; x0, t0)=
1

2π

∫
∞

−∞

Ĝ(x, ω; x0, t0) exp(iωt) dω. (2.16)

Using (2.15), (2.14) can now be transformed into a Helmholtz equation

−ω2Ĝ(x, ω; x0, t0)−

(
St2
+

iω
Rea

)
∇

2Ĝ(x, t; x0, t0)= δ(x− x0) exp(−iωt0), (2.17)

where i is the imaginary unit. A general solution to this equation can be found by
expanding Green’s function into eigenfunctions, resulting in

G(r, θ, φ, t; r0, θ0, φ0, t0) =
∑
nlm

ψm
nl(r, θ, φ)ψ

m
nl(r0, θ0, φ0)

×
1

2π

∫
∞

−∞

 exp(iω(t− t0))

St2β2
nl +

iωβ2
nl

Rea
−ω2

 dω, (2.18)

where ψm
nl(r, θ, φ) are the eigenfunctions of the spherical Helmholtz equation

ψm
nl(r, θ, φ)=

√
2jl(βnlr)Ym

l (θ, φ)

jl+1(βnl)
, (2.19)

jl are the spherical Bessel functions, Ym
l are the spherical harmonics and βnl are the

zeros of the spherical Bessel functions. To evaluate the inverse Fourier transform
(2.16), we use complex contour integration (see figure 4). It can be shown that
the contribution of the arc is zero in the limit where the contour radius a → ∞.
Furthermore, there should be no response of an impulse released at t0 at earlier
times t< t0 (causality condition). To this end, we pick the Jordan curve illustrated in
figure 4(a) for t > t0 and the curve of figure 4(b) for t < t0, in the limit a→∞. A
closed form expression of the Green’s function is now given by

G(x, t; x0, t0)=
∑
nlm

ψm
nl(r, θ, φ)ψ

m
nl(r0, θ0, φ0) exp(−κnl(t− t0))

sin(ηnl(t− t0))

ηnl
H(t− t0),

(2.20)
where κnl = β

2
nl/2Rea and ηnl = (

√
4St2β2

nl − β
4
nl/Re2

a)/2. The resulting spatio-temporal
pressure field using (2.13) reads (without any initial condition)
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(a) (b)

FIGURE 4. (Colour online) Jordan curves used to evaluate the inverse Fourier transform
(2.18) in the complex plane where a→∞. (a) Contour used for t> t0, which includes the
poles. (b) Contour used for t< t0 to obey the causality condition for the Green’s function.

p1(r, θ, φ, t)=
∑

nl

βnl
jl(βnlr)
jl+1(βnl)

(
1−

jl−1(βnl)

jl+1(βnl)

)
2l+ 1

4π

∫ 2π

0

∫ π

0

∫ t

0
exp(−κnl(t− t0))

×
sin(ηnl(t− t0))

ηnl
H(t− t0)Pl(cos γ )

(
St2pi(1, θ0, φ0, t0)+

1
Rea

∂pi(1, θ0, φ0, t0)

∂t0

)
× sin(θ0) dθ0 dφ0 dt0, (2.21)

where H is the Heaviside theta function, Pl are the Legendre polynomials and
cos(γ )= cos(θ) cos(θ0)+ sin(θ) sin(θ0) cos(φ− φ0). In § 3, we will use (2.21) using a
particular pressure boundary condition specified by pi(1, θ0, φ0, t0). We note that this
condition is integrated into the solution at r= 1−, i.e. r= 1− ε where ε→ 0.

2.2.2. The velocity field
The velocity field inside the droplet is given by (2.10). Since there is no initial

rotation present in the fluid and there are no rotational forces acting at later times, the
velocity field remains irrotational and is given by a scalar potential. A straightforward
time integral over the pressure gradient (the first term on the right-hand side) based
on the spherical Bessel functions (2.21) results in a divergent series. To overcome this
problem, we solve the velocity field in a different function basis. To this end, we first
define the time integral over the thermodynamic pressure as the pressure impulse

J1(x, t)=
∫ t

0
p1(x, t′) dt′. (2.22)

The governing equation for the pressure impulse can be obtained by integration of
(2.11) in time

∇
2J1 =

1
St2

∂p1

∂t
−

1
St2Rea

∇
2p1, (2.23)

where we used that both the pressure field p1 and its derivative vanish at t= 0. It now
becomes apparent that the natural basis functions for the pressure impulse are in fact
harmonic functions which results in a convergent series.

The general solution for the pressure impulse inside the droplet is therefore given
by
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J1(x, t) =
∫∫∫

V
G(x; x0)

[
1

St2

∂p1(x0, t)
∂t

−
1

St2Rea
∇

2p1(x0, t)
]

dV0

−

∮
S
[G(x, x0)∇x0J1(x0, t)− J1(x0, t)∇x0G(x, x0)] · n dS0, (2.24)

where the Green’s function satisfies the Poisson equation in spherical coordinates

∇
2G(x; x0)= δ(x− x0). (2.25)

Completely analogous to the boundary conditions on p1, the boundary condition on J1
is J1(1, t)= 0, which yields

G(x, x0)=
1

4π

(
1√

r2r2
0 + 1− 2rr0 cos(γ )

−
1√

r2 + r2
0 − 2rr0 cos(γ )

)
, (2.26)

where cos(γ ) = cos(θ) cos(θ0) + sin(θ) sin(θ0) cos(φ − φ0). We evaluate (2.24)
numerically using Mathematica 11.1 to speed up the calculations as compared to
evaluating (2.24) analytically (Wolfram Research Inc. 2017). The velocity field now
reads

u1(x, t)=−St∇J1(x, t)−
(

1
Re
+

1
Reν

)
∇p1, (2.27)

where u1(r, 0)= 0 and p1(r, 0)= 0.

2.3. The lattice Boltzmann method
To validate our analytic expression for the pressure field inside the droplet, we
employ axisymmetric compressible multiphase lattice Boltzmann simulations (Succi
2001). Instead of solving the compressible Navier–Stokes equations directly, the
numerical method solves a probability distribution function for the position and
momentum of particles inside a domain. The evolution of the particle distribution in
space and time is given by the Boltzmann equation which is solved numerically on a
lattice with a reduced set of velocity vectors. It can be systematically shown that this
method is able to correctly solve the fully compressible mass (2.4) and momentum
conservation (2.5) equations (Shan, Yuan & Chen 2006).

The pressure in our numerical simulation is given by the van der Waals equation
of state. This non-ideal equation of state allows us to successfully simulate a liquid–
gas system where the interface dynamics is automatically described by the non-ideal
pressure. In the vicinity of equilibrium, the van der Waals equation of state behaves as
an ideal gas. Therefore, we can directly compare the pressure field inside the droplet
with our analytic expression (2.21) in the weakly compressible regime.

Our numerical set-up consists of an initially stationary liquid droplet surrounded
by a gas, with a liquid–gas density ratio of ρl/ρg ∼ 170. We identify the position
of the interface by tracking the derivative of the density field where spikes reveal
the location of the interface. We hit our droplet by applying a force directly on the
liquid–gas interface. By tuning the amplitude (Mach number) and duration (Strouhal
number) of this force, we simulate different regimes in the phase space; see figure 3.
Further details on this numerical method can be found in Reijers, Gelderblom &
Toschi (2016).

Unfortunately, the compressible multiphase lattice Boltzmann method lacks the
advantages of an adaptive grid refinement technique at the moment of writing.
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Therefore simulations of higher density ratios of ρl/ρg > 1000, simulations in the
strongly compressible regime (see figure 3) or even long-time simulations in the
weakly compressible regime are not possible. Only early time dynamics can be
simulated with the computational resources available to us, which we use to validate
the analytic expression for the pressure in the next section.

3. Results
3.1. Acoustic response of a droplet to the ablation pressure

We consider the impact of a uniform laser beam profile on the left side of the droplet
(Gelderblom et al. 2016)

pi(1, θ, φ, t)= cos(θ)H
(π

2
− θ
)
H(1− t), (3.1)

where H is the Heaviside function that restricts the pressure profile to the illuminated
side of the droplet and limits the duration of the ablation pressure. We note that this
boundary condition is only valid for an uniform irradiation along the surface of the
droplet, which applies to the experiments described in e.g. Kurilovich et al. (2016).
In the case of a focused beam hitting the droplet a Gaussian pressure profile with an
appropriate spot size might be preferred, which has been studied extensively in the
incompressible limit by Gelderblom et al. (2016). We use (3.1) in all results presented
below. The analytic pressure field (2.21) subject to (3.1) is given by

p1(r, θ, φ, t) = St2
∑

nl

βnl
jl(βnlr)
jl+1(βnl)

(
1−

jl−1(βnl)

jl+1(βnl)

)
2l+ 1

4π

∫ 2π

0

∫ π

0

∫ t

0

× exp(−κnl(t− t0))
sin(ηnl(t− t0))

ηnl

×H(t− t0)H(1− t0)Pl(cos γ ) cos(θ0)H
(π

2
− θ0

)
sin(θ0) dθ0 dφ0 dt0

(3.2)

for t< 1.
In figure 5 we show a comparison between (3.2) and the lattice Boltzmann

simulations at different times, for St = 6.02 and Ma � 1. In order to obtain the
analytic plots we used Rea∼ 200, l= 20 and n= 500. The same parameter values will
be used for all results in the remainder of this paper. Initially, the pressure disturbance
on the surface of the droplet sends out a radially expanding wave for all source points
on the boundary inside the droplet (figure 5a) which then propagates (figure 5b) to
the right side (figure 5c). During the propagation, the superposition of all the waves
inside the droplet gives rise to a non-trivial pressure distribution, see figure 5(b,c).
Note that a negative value for p1 does not necessarily mean a negative pressure since
the total pressure is given by (2.6). The figures show a good qualitative agreement
between the analytic model (top row) and the simulated droplet (bottom row).

A quantitative comparison of the pressure profiles along the centreline is given
in figure 6. Here, we plotted the pressure field as it passes through the centre of
the droplet (figure 6b) and after the reflection on the right interface (figure 6c). We
observe good quantitative agreement between the analytic results and the simulation,
also after wave reflection (figure 6c) which confirms the validity of boundary
condition (2.12).
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FIGURE 5. (Colour online) The pressure field p1(r, θ) inside the droplet at different times
for an ablation pressure (3.1) impacting from the left side with a dimensionless duration
St ≈ 6.02. The top row shows the analytic results (plotted up to r = 0.95 to restrict
the number of Fourier modes required). The bottom row shows the results of the lattice
Boltzmann simulations, which are in excellent agreement with the analytics. The black
dashed line illustrates the centreline axis used to plot the results in figure 6.

Some small discrepancies can be observed in both figures 5 and 6. In the lattice
Boltzmann simulation, the speed of sound is not constant but depends on the local
pressure due to the nonlinear nature of the van der Waals equation of state. In the
limit where pressure fluctuations are small, the speed of sound is almost constant
however when a pressure wave passes through the centre the pressure increases
considerably. These small changes in speed of sound lead to small discrepancies in
comparison to the analytic model where the speed of sound is constant. Furthermore,
in the simulation a finite density jump is used. Therefore, a small amount of acoustic
energy could be transmitted to the gas phase when a pressure wave hits the interface.

3.2. The effect of the pulse duration on the droplet response
We now address how the droplet response depends on the ablation pressure amplitude
(Ma) and duration (St), while the total momentum transfer to the droplet remains
constant. To this end, we compare the droplet response to the three types of pulses
that are illustrated in figure 7. In the first case (figure 7a) the duration of the ablation
pressure is much smaller than the time it takes for a pressure wave to travel through
the droplet (St = 0.25, Ma= 0.4). In the second case (figure 7b) the duration of the
pulse is exactly equal to the time it takes to travel over a distance of one droplet
radius (St = 1, Ma = 0.1). Finally (figure 7c) defines a pulse duration that is much
longer than the acoustic time scale of the droplet (St = 4, Ma = 0.025). In all three
cases, the total momentum transfer to the droplet is constant and equal to St Ma= 0.1.
Below, we discuss the differences in the pressure field (§ 3.2.1), pressure impulse field
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FIGURE 6. (Colour online) Comparison between the analytic pressure p1(r, 0) (black
dotted curve) and the lattice Boltzmann simulation (blue triangles) along the centreline of
the droplet (see figure 5) at different times for St= 6.02. (a) For St · t= 0.48 the waves
are travelling towards the centre of the droplet, (b) for St · t= 1.02 the waves just passed
the centre of the droplet and (c) for St · t = 2.47 the waves have reflected on the right
interface of the droplet and are travelling back towards the left.

and velocity field inside the droplet (§ 3.2.2) and eventually the droplet deformation
dynamics (§ 3.2.3) for these three different pulses.

3.2.1. Pressure field
Figure 8 shows the spatio-temporal pressure field inside the droplet that is induced

by the three pressure pulses discussed in figure 7. For a short pulse duration, most
of the pressure field is initially (i.e. at t = 1) localized in a small compression zone
(figure 8a). We note that when t = 1, all plots are drawn exactly after the pulse in
figure 8. This zone is the result of the superposition of radial compression waves
emitted from source points on the interface. During the propagation (t = 2), the
superposition of these waves leads to a highly compressed spot in the centre, which
is clearly visible at t = 4. At later times (not shown in the figure) the compression
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FIGURE 7. (Colour online) Three ablation pressure pulses of different duration but
constant impulse (Ma St= 0.1). (a) A short pulse with a duration St= 0.25 and amplitude
Ma = 0.4, (b) an intermediate pulse duration St = 1 and Ma = 0.1 and (c) a long pulse
duration St= 4 and Ma= 0.025.

waves reach the right interface of the droplet where they reflect and give rise to an
expansion zone. Meanwhile, waves radiated from point sources on the droplet surface
continuously reflect on neighbouring surface points leading to expansion waves. The
amplitude of these expansion waves however are so small that they only become
visible in the plot at t= 4, see figure 8(a). We note that the absolute pressure is not
negative, since the absolute pressure is given by (2.6).

The pressure field for intermediate pulse duration is illustrated in figure 8(b). At the
end of the pulse (t= 1) the waves have travelled a distance R. Again a compression
zone is created in the centre, followed by an expansion zone (t = 2). At t = 4, all
waves have at least reflected once on the interface of the droplet which gives rise
to another large expansion zone. For a long pulse (figure 8c) the pressure field has
spread over the entire droplet. The superposition of all compression and expansion
waves lead to a non-trivial field that consists of compression and expansion zones.

To summarize, we observe more localized fluctuations in the pressure field directly
after a short pulse as compared to longer pulses. As we will demonstrate below, these
fluctuations have an important effect on how the impulse is distributed over time and
hence on the resulting velocity field inside the droplet.

3.2.2. Pressure impulse and velocity fields
Figure 9 shows the spatio-temporal pressure impulse field (2.22) inside the droplet

for the three pulse durations. To obtain the plots, we evaluate (2.24) numerically. This
scalar field is an important field in our analysis, since it describes the spatio-temporal
distribution of momentum inside the droplet and the velocity field (2.27) is derived
from it, as discussed in § 2.2.2. Note that in all cases the total momentum inside the
droplet is constant as soon as the pulse is over, at t= 1, while the distribution of the
momentum can still change in time.

For a short pulse duration the momentum distribution changes significantly in time,
see figure 9(a). Initially all momentum is concentrated on the left side of the droplet,
while it redistributes itself throughout the droplet at later times. As we will show
below, this localized momentum distribution results in a stronger interface deformation
for short pulses. As the pulse duration increases (figure 9b) the time variation of the
momentum distribution becomes smaller. This effect is most prominent for long pulses
(figure 9c) where the momentum distribution is almost constant after t=1. In the limit
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FIGURE 8. (Colour online) The pressure field p1 inside the droplet for the three different
cases illustrated in figure 7: (a) St=0.25, (b) St=1 and (c) St=4. The results are depicted
for different times: at the end of the pulse (t= 1), at two times the pulse duration (t= 2)
and at four times the pulse duration (t= 4). We note that the colour bar scale is not fixed
and that all fields are scaled with pe. The compression wave is followed by an expansion
after the pulse, which is not visible in panel (a) at t= 2, since its amplitude is negligibly
small at this time instant.

St→∞ (and consequently Ma→ 0 to keep the impulse finite) the pressure impulse
is constant in time which corresponds to an incompressible flow.

The velocity field (2.27) derived from the pressure impulse is plotted in figure 10,
where we show the θ component for r = 0.5 at different times (solid lines). For
comparison, the incompressible velocity field as derived in Gelderblom et al. (2016)
is plotted as the black dashed line. When the pulse duration is short (figure 10a) the
velocity field at r= 0.5 for t= 1 is zero, since the momentum has not yet propagated
far enough into the droplet. As time progresses, velocity fluctuations become apparent
and even for times long after the pulse (t� 1, right panel) they are nowhere near
the incompressible solution. Figure 10(b) shows the velocity field for an intermediate
pulse duration. Here, the velocity field fluctuates around the incompressible solution.
However, the amplitude of these fluctuations are large. For the longest pulse the
velocity gradually builds up (figure 10c, left panel). At later times (right panel) the
velocity field shows only tiny fluctuations around the incompressible solution.
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FIGURE 9. (Colour online) The pressure impulse field J1 inside the droplet for the three
different pulse durations illustrated in figure 7: (a) St = 0.25, (b) St = 1 and (c) St = 4.
The results are depicted for different times: at the end of the pulse (t= 1), at two times
the pulse duration (t= 2) and at four times the pulse duration (t= 4). Note that the colour
bar scale is not fixed and that all fields are scaled with peτe.

3.2.3. Droplet deformation
Finally, we turn to the question how the droplet deformation is affected by

the duration of the ablation pressure pulse. To make a prediction for the droplet
deformation, we use the velocity field at the droplet surface. Strictly speaking, the
analytic solution (2.27) is derived for a constant spherical domain. However, we can
obtain a first-order approximation of the droplet shape at early times, i.e. when the
deviations from a spherical shape are still small, by advecting material points on the
interface as described in Gelderblom et al. (2016).

We compare the effect of the three different pulse durations illustrated in figure 7 on
the droplet deformation. The droplet deformation is not only determined by the pulse
duration, but also by the pulse amplitude. We therefore additionally consider three
different momentum transfers to the droplet: St Ma=0.01, St Ma=0.1 and St Ma=0.5.
The acoustical Mach number (or the product St Ma) now becomes an additional
parameter, because we want to quantify the actual differences in deformation. So
far, we always scaled out this amplitude dependency (2.8). However, a difference in
amplitude now gives a stronger or weaker deformation. In figure 11 we show contours
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FIGURE 10. (Colour online) The θ component of the velocity field inside the droplet at
r= 0.5. The left column represents early times (t∼ 1) while the right column represents
late times (t � 1). (a) A short pulse duration St = 0.25, (b) an intermediate pulse
duration St = 1 and (c) a long pulse duration St = 4. The black dashed line denotes the
incompressible velocity field by Gelderblom et al. (2016).

of the droplet deformation for the three different momentum transfers and compare
the influence of the pulse duration. We note that the unphysically sharp peaks at
the poles are due to the singular nature of the pressure boundary condition (3.1), as
already discussed by an incompressible inviscid model by Gelderblom et al. (2016).
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(a) (b) (c)

FIGURE 11. (Colour online) Contour plots of the droplet deformation for the three
different pulse durations: St= 0.25 (blue dot dashed), St= 1 (orange dashed) and St= 4
(red dotted). (a) For Ma St = 0.01 all cases give rise to identical deformation behaviour,
for (b) Ma St= 0.1 we see discrepancies arising between the three pulse durations which
aggravate in (c) Ma St= 0.5 where we observe a clear influence of the pulse duration on
the droplet deformation. Note that for each impulse the contours are sketched at a different
absolute time to be able to clearly illustrate the deformations.

–0.5

–0.4

–0.3

–0.2

–0.1

0

3010 20 400
–0.5

–0.4

–0.3

–0.2

–0.1

0

31 2 40
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.60.2 0.4 0.80

(a) (b) (c)

FIGURE 12. (Colour online) The advective displacement of the droplet interface 1r/R at
the axis of impact (r= 1, θ = 0) for the three different pulse durations: St= 0.25 (blue dot
dashed), St= 1 (orange dashed) and St= 4 (red dotted). (a) Ma St= 0.01, (b) Ma St= 0.1
(c) Ma St= 0.5.

We use a step function to limit the boundary condition to the illuminated side of the
droplet. In figure 12 we quantify the interface displacement of the droplet at the axis
of impact 1r/R in time.

When the momentum transfer to the droplet is small (Ma St = 0.01, figures 11a
and 12a), we need to go to late times (St · t� 1) in order to observe a significant
deformation. On the acoustic time scale R/c however, the droplet deformation only
shows tiny fluctuations around a static shape. In other words, the fluctuations in the
velocity field due to the pressure waves are negligible and the velocity field is to a
good approximation incompressible. As a result, on late times the droplet deformation
for the three different pulse durations is indistinguishable.

When the amount of momentum transfer to the droplet is increased (figures 11b
and 12b), interface deformations become apparent at earlier times. For the shortest two
pulses all momentum was transferred into the droplet at the time of the plot, while for
the long pulse the ablation pressure is still acting on the droplet surface. Therefore,
the contour of the longest pulse (red dotted curve) is lagging behind compared
to the contour of the shorter pulses (yellow dashed and blue dot dashed curves).
Furthermore, for shorter pulses the droplet interface compression is followed by an
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expansion directly after the pulse which is visible in figure 12(b). Hence, the droplet
deformation for short pulses is now clearly a non-monotonic function of time. As
Ma St is further increased, the droplet deformation shows even larger fluctuations
around a shape that is also globally deforming, see figures 11(c) and 12(c).

These strong deformations invalidate the assumption that the droplet remain
stationary during the pulse. Although figures 11(c) and 12(c) give a first-order
estimate of the deformations that are to be expected, for a quantitative prediction
one has to solve the fields in the deformed geometry. In this regime we therefore
anticipate a strong influence of the pulse duration on the eventual droplet-shape
evolution at later times.

4. Discussion and conclusion

The droplet deformation resulting from a laser-induced ablation pressure pulse is
studied analytically in the regime where the pulse duration is of the order of the
acoustic time scale and the pressure fluctuations are small. The resulting momentum
change of the droplet is determined by the pressure pulse amplitude and duration or, in
dimensionless form, the acoustic Mach number Ma and the acoustic Strouhal number
St. We examined the effect of changing St (i.e. shortening the pulse duration) on the
droplet response while keeping the total impulse transferred to the droplet constant.

The pressure, pressure impulse and velocity fields inside the droplet are studied
as function of St at constant impulse St Ma. To keep the analysis simple we used
a cosine-shaped ablation pressure profile on the surface of the droplet together with
a step function to limit the ablation pressure in time and space. To get a first-order
estimate of the droplet deformation in time we advected material points on the surface.

In the regime where St Ma� 1, the droplet deformation is independent of St and
no significant changes in the deformation were observed for shorter pulses. When
St is large, the flow inside the droplet may be considered incompressible since the
pressure impulse field is approximately constant in time. By contrast, when St� 1 the
flow inside the droplet is compressible. However, on the deformation time scale the
compressible effects average out and the droplet behaves as if it were incompressible.
Therefore, the incompressible model by Gelderblom et al. (2016) can be used to
describe the deformation dynamics in this regime.

Significant differences in deformation arise when St Ma . 1. When St� 1 the flow
is incompressible, but now the droplet deforms significantly during the pulse. When
St� 1 all momentum is localized in a small shell close to the illuminated side of
the droplet directly after the pulse. This momentum distribution results in a large
acceleration of the interface and consequently a compression of the fluid that leads
to a different deformation compared to the case where the pulse duration is long
(St� 1). The droplet deformation in this regime is therefore strongly dependent on the
pulse duration. In practice, to study droplet deformation resulting from femto-, pico-,
nano-second laser pulses in the plasma-mediated ablation regime (i.e. short ablation
pressure pulses St . 1) at high energy (such that St Ma . 1), droplet compressibility
needs to be taken into account.

In the regime where Ma & 1, the linear approximation of the proposed analytic
model breaks down. In this regime, the flow is governed by shock waves, cavitation
phenomena, nonlinear viscous damping and rapid interface acceleration, which
result in a highly nonlinear droplet response. We argue however that the weakly
compressible model can be used as a starting point to identify likely cavitation spots
and study first-order droplet deformation, since shock fronts first need to develop in
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time. We do note however that depending on the liquid properties or temperature,
cavitation phenomena could be observed in the regime where Ma is small. A more
detailed understanding the droplet deformation in these regimes requires numerical
simulations and is topic of future work.
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