
Mass and Moment of Inertia Govern the Transition in the Dynamics and Wakes
of Freely Rising and Falling Cylinders

Varghese Mathai,1 Xiaojue Zhu,1 Chao Sun,2,1,* and Detlef Lohse1,3,†
1Physics of Fluids Group and Max Planck Center Twente, J. M. Burgers Centre for Fluid Dynamics, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands
2Center for Combustion Energy and Department of Thermal Engineering, Tsinghua University, 100084 Beijing, China

3Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
(Received 24 January 2017; revised manuscript received 3 April 2017; published 31 July 2017)

In this Letter, we study the motion and wake patterns of freely rising and falling cylinders in quiescent
fluid. We show that the amplitude of oscillation and the overall system dynamics are intricately linked to
two parameters: the particle’s mass density relative to the fluid m� ≡ ρp=ρf and its relative moment of
inertia I� ≡ Ip=If. This supersedes the current understanding that a critical mass density (m� ≈ 0.54) alone
triggers the sudden onset of vigorous vibrations. Using over 144 combinations of m� and I�, we
comprehensively map out the parameter space covering very heavy (m� > 10) to very buoyant (m� < 0.1)
particles. The entire data collapse into two scaling regimes demarcated by a transitional Strouhal number
Stt ≈ 0.17. Stt separates a mass-dominated regime from a regime dominated by the particle’s moment of
inertia. A shift from one regime to the other also marks a gradual transition in the wake-shedding pattern:
from the classical two-single (2S) vortex mode to a two-pair (2P) vortex mode. Thus, autorotation can have
a significant influence on the trajectories and wakes of freely rising isotropic bodies.
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Path instabilities are a common observation in the
dynamics of buoyant and heavy particles. Common exam-
ples are the fluttering of falling leaves and disks, and the
corkscrew and spiral trajectories of air bubbles rising in
water [1–3]. The oscillatory dynamics of such particles can
vary a lot depending on the particle’s size and shape, and its
inertia, and the surrounding flow properties. This can be
important in a variety of fields ranging from sediment
transport and fluidization to multiphase particle- and
bubble-column reactors [4–6].
Examples of organisms that exploit path instabilities are

plants and aquatic animals. These often make use of passive
appendages attached to their bodies (plumed seeds, barbs,
tails, and protrusions) to generate locomotion [7–9].
Recently, Lācis et al. [7] demonstrated that the interaction
between the wake of a falling bluff body and a protrusion
clamped to its rear end can generate a sidewards drift by
means of a symmetry-breaking instability similar to that of
an inverted pendulum. Such kinds of passive interactions
are advantageous to locomotion, since no energy needs to
be spent by the animal. Instead, the energy can be extracted
through a fluid-structure interaction.
The simplest case of a rising or falling body in a fluid is a

sphere or a cylinder released in quiescent fluid. This
problem has traditionally been studied and characterized
using two nondimensional parameters: the solid-fluid
density ratio (m� ≡ ρp=ρf) and the generalized particle
Galileo number Ga [10,11]. Among these, Ga governs the
onset of various kinds of wake instabilities behind the
particle, and m� governs the motion of the particle in

response to these flow instabilities and vortex-induced
forces. A number of investigators have studied the influ-
ence of these parameters, and various kinds of paths and
wakes have been observed for rising and falling bodies
[12–14]. However, despite a fair level of understanding of
the mechanisms affecting path and wake instabilities, it
remains unclear as to what factors precisely trigger vigo-
rous path oscillations for a rising or falling object, such as a
sphere or a cylinder.
The motion of a freely rising or falling particle in a fluid

is a complex fluid-structure-interaction problem. Wake-
induced forces cause the particle to move, which in turn
changes the flow field around it. This holds many simi-
larities to the popular subject of vortex-induced vibrations
[15]. In this area, investigators have explored the dynamical
response of elastically mounted and tethered bodies in
uniform flows. A spring-mass-damper model was often
used to make predictions of the oscillatory response of such
systems under various conditions [12,13]. For example,
a critical mass ratio m�

crit was predicted for the sudden
appearance of path oscillations for elastically mounted
spheres and cylinders undergoing vortex-induced vibra-
tions [15,16]. For the freely rising body as well, similar
predictions were made (m�

crit ¼ 0.54 for a cylinder, and
m�

crit ¼ 0.61 for a sphere) by modeling it as a spring-mass-
damper system with zero spring stiffness and zero damping
[14]. While a dependence on the mass-density ratio is
undisputable, others observed wide scatter in their data to
the point that there is no consensus with regard to whether a
unique critical mass ratio exists or not [17,18]. Moreover,
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from a dynamical point of view, the existence of a m�
crit

lies in contradiction with a fundamental concept: i.e., the
motion of a light particle in a fluid should be fluid added-
mass dominated (since ma > mp) [19,20]. Therefore, it
remains surprising that a marginal reduction in mass
density alone would trigger the sudden appearance of large-
amplitude oscillations, since the effective mass of the
system (actualþ added mass) is almost unchanged [21].
We will provide a plausible explanation for this anomaly.
In this Letter, we study the two-dimensional motion of

circular cylinders rising or falling through a quiescent fluid.
The body geometry (circular cylinder), the state of the
surrounding fluid (quiescent), and the imposition of two
dimensionality to the flow make the problem simplified
(see Leontini et al. [22] for a discussion on the possible
three-dimensional effects). Nevertheless, this model prob-
lem can provide important clues about the underlying
dynamics of buoyancy-driven bodies in general [23]. We
performed direct numerical simulations using the immersed
boundary method. The solver uses the discrete stream-
function formulation for the incompressible Navier-Stokes
equations [24] with a virtual force implementation [25],
which enables us to deal with both light and heavy
particles. A rectangular computational domain of the size
100D × 16D is used, with a grid width of 0.01D near the
cylinder, where D is the cylinder diameter.
The fluid motion governed by the incompressible

Navier-Stokes equations may be written in the dimension-
less form as

∂u
∂t þ u ·∇u ¼ ∇pþ 1

Re
∇2uþ f; ð1Þ

where u is the velocity vector, p is the pressure, Re is the
Reynolds number, and f is the Eulerian body force that is
used to mimic the effects of the immersed body on the flow
[26–28]. The direct numerical simulations provide an exact
description of the flow-body interaction. However, for
modeling purposes, the particle motion may be written
in terms of the forces and moments exerted on the body.
The Kelvin-Kirchhoff equations expressing linear and
angular momentum conservation for the cylinder motion
in a fluid may be extended to an incompressible flow
containing vorticity [29,30]. The equations read

ðmp þmaÞ
�
dU
dt

þΩ × U

�
¼ Fv þ ðmp − ρfVpÞg; ð2Þ

I
dΩ
dt

¼ Γv; ð3Þ

wheremp is the particle mass,ma is the added mass, I is the
particle moment of inertia, U is the particle velocity vector,
Ω is the angular velocity, ρf is the fluid density, Vp is the
particle volume, and g is the acceleration due to gravity. Fv

D

D
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FIG. 1. (a) Oscillatory rise trajectory of a buoyant cylinder
(m� ¼ 0.1), with a constraint on rotation (Ω ¼ 0). (b) Oscillatory
rise trajectory of the same cylinder with a low moment of inertia
(I� ¼ 0.1). Here, Ω is the angular velocity, D is the diameter of
the particle, and λ is the wavelength of the oscillation. (c),
(d) Vorticity snapshots for the cylinders in (a) and (b), respec-
tively. The angular velocity Ω is zero for the rotationally con-
strained cylinder. The red-white-blue color map is used for
the vorticity. Allowing autorotation changes the wake pattern
dramatically.

(a)

(c)

(b)

FIG. 2. Contour map of the (a) translational and (b) rotational
amplitudes of motion for buoyant (m� < 1) and heavy cylinders
(m� > 1) in the [m� − I�] parameter space at Ga ≈ 500. The
shaded regions mark the very high values of I�, which are
primarily of mathematical interest. (c) Vorticity plots for the
points marked as (A), (B), (C), and (D) in (a) and (b). The
vorticity is scaled to the [−1, 1] range. The corresponding movies
are given in the Supplemental Material [34].
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and Γv represent the vortex forces and moments on the
cylinder in a viscous fluid.
Equations (2) and (3) point to two parameter depend-

ences, namely, the particle’s mass and its moment of inertia.
In addition, the rotation rate of the particle Ω is linked to I
and couples with Eq. (2) through a force term. However, the
dependence on I was completely neglected for isotropic
bodies despite the widespread variation in I in almost all
existing experimental studies [12–14,17,31–33]. We there-
fore map out the [m� − I�] parameter space for rising and
falling cylinders.
We begin with the case of a very buoyant cylinder

(m� ¼ 0.1) rising in a quiescent fluid. Figure 1(a) shows the
trajectory of the particle when its rotation is constrained
(Ω ¼ 0). The amplitude of oscillation A=D ≈ 0.65. Next,
we let the same particle autorotate while it rises through the
fluid. Figure 1(b) shows the trajectory for I� ¼ 0.1. We
observe an 85% enhancement in the oscillation amplitude
due only to relaxing its constraint on rotation. Figures 1(c)
and 1(d) show snapshots of the vorticity field in the vicinity
of the particle for the two cases. These observations
indicate a clear link between the autorotation of the particle
and the resulting translational and wake dynamics.
Next, we explore systematically the dynamics of heavy

and buoyant cylinders, with m� and I� both varied in the
range [0.1, 10], i.e., covering very heavy (m� ¼ 10) to very
light (m� ¼ 0.1) particles. It may be noted that in an
actual experiment m� and I� are linked by the relation
I� ¼ m�ðR2

pG=R
2
fGÞ, which imposes an upper bound,

I� → 2m�. Nevertheless, we vary I� independently over
a wide range [0.1, 10] since it serves as an independent
control parameter to modulate the particle’s rotational
freedom. The resulting translational and rotational ampli-
tudes of vibration are shown in the contour maps in
Figs. 2(a) and 2(b), respectively. The translational and

rotational amplitudes depend on bothm� and I�. The change
in the wake pattern as we move from the upper-right to the
lower-left part of the contour map in Figs. 2(a) and 2(b) is
shown through the sequence (A)–(D) in Fig. 2(c). For large
m�, we always observe a two-single (2S) vortex mode (A),
which is identical to that of a cylinder fixed in a uniform
flow. However, as we lower m� and I�, we first observe a
mixed mode [(B) and (C)], which gradually transitions to a
clear two-pair (2P) mode of wake vortices (D). From the
figure, we see that the 2S-2P transition can occur for m� in
the range [0.2–1], depending on I�. While a similar 2S-2P
transition was also observed in the vortex-induced-vibration
literature [35], the transition itself was thought be sudden at
m� ¼ 0.54. Thus, unlike an elastically mounted or tethered
particle, the extra rotational freedom present for a freely
rising cylinder could be facilitating this gradual transition
from the 2S to the 2P vortex mode. The same can be said
about the oscillation amplitude, which grows gradually
when m� and I� are reduced.
Figure 2 demonstrated the existence of regions where the

mass did not play a serious role, along with others where the
amplitude dependedmainly on themass. Tomodel these, we
adopt a simplified approach, where we assume that the
vortex force on the cylinder [fromEq. (2)] remains similar in
intensity across the cases investigated. We describe this
vortex force as Fv ≈ Fv0 sinωt [20,36]. Next, we assume
that the system dynamics is governed by the vortex
shedding frequency ω. For the freely rising case, the
shedding frequency ω can get modified as we change m�
and/or I�. In the mass dominated regime, ω should
primarily be a function of mp. Thus, the transverse accel-
eration of the particle is given as ap ∼ ðFv0=mpÞ sinωt [20],
which leads to a relation for the transverse motion:
xp ∼ ðFv0=mpω

2Þ sinωt. Nondimensionalizing with the
particle diameterD and the mean rise velocity U, we obtain
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FIG. 3. (a) Oscillation amplitude A=D versus 1=ðm�St2Þ for buoyant and heavy cylinders. The dark blue curve shows the scaling
relation A=D ∝ 1=ðm�St2Þ, which holds for A=D ≤ 0.6. The inset to (a) shows the compensated plot; the plateau for small 1=ðm�St2Þ
demonstrates the robustness of this scaling. (b) A=D versus 1=St2 for buoyant and heavy particles. For A=D > 0.6, the oscillation
amplitude scales as A=D ∝ 1=St2, as is also demonstrated by the plateau for large 1=St2 in the compensated plot in the inset to (b).
(c) Strouhal number contour map covering the [m� − I�] parameter space for the full family of buoyant and heavy cylinders from the
present study. A transitional Strouhal number Stt ≈ 0.17 separates the two scaling regimes shown in (a) and (b). The dashed inclined line
in (c) denotes the homogeneous cylinder cases, while the shaded region of high I� values is primarily of mathematical interest.
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the dimensionless amplitude A=D ∝ 1=ðm�St2Þ, where m�
is the dimensionless mass and St≡ ωD=2πU is the Strouhal
number or equivalently the dimensionless vortex shedding
frequency [36]. In Fig. 3(a), we plot A=D versus 1=ðm�St2Þ
for the full range of parameters in the present study. The solid
blue curve shows our prediction, where Fv is estimated
using the lift coefficient for flow past a fixed cylinder, i.e.,
CL ≈ 0.84. The prediction matches well with the simulation
results up to an oscillation amplitude A=D ≈ 0.5. The inset
to Fig. 3(a) shows the compensated plot, where the plateau
demonstrates the robustness of the scaling.
The prediction for the mass dominated regime is valid up

to A=D ≈ 0.5. Beyond this, we observe branching of the
oscillation amplitude for different values of the particle
moment of inertia [right half of Fig. 3(a)]. A=D almost
doubles in this regime (0.6 to 1.2), solely due to a change in
I�. Therefore, we call this the moment of inertia dominated
regime. Here, the fluid added mass outweighs the particle
mass. Therefore, the transverse oscillation amplitude in this
regime may be expressed without a m� dependence, as
A=D ∝ 1=St2. A=D versus 1=St2 for the full range of
parameters is shown in Fig. 3(b). A=D scales linearly with
1=St2, as demonstrated by the red dashed line. When
compensated for this, we observe a plateau for 1=St2>32
(or equivalently, St < 0.17) in the inset. The scaling is valid
for A=D ≥ 0.6, i.e., when the oscillation amplitudes are
large.
The above analysis suggests that the growth in oscil-

lation amplitude is linked to the reduction in the dimen-
sionless shedding frequency or St. Thus, a St map [as
shown in Fig. 3(c)] can summarize the dynamics of the
entire family of heavy and light cylinders rising or falling
through a quiescent fluid. The clean 2Swake mode is found
in the mass-dominated regime [right side of Fig. 3(c)], and
the clean 2P mode is restricted to the moment of inertia
dominated regime [lower left side of Fig. 3(c)]. The
transition from the 2S mode to the 2P mode is not sudden,
as was found for elastically mounted particles [15,37], but
gradual and marked by the appearance of a mixed wake
mode in the 0.5 < A=D < 0.7 range.
The main conclusions of the present study are valid even

at a lower Ga (¼220). At this Ga (or corresponding Re), the
flow can be considered predominantly two dimensional, as
suggested by Leontini et al. [22]. Here, again, we observe
two distinct scaling regimes: a mass-dominated regime for
0 < A=D < 0.3, and a moment of inertia dominated regime
for 0.4 < A=D < 0.75, with their respective 1=ðm�St2Þ and
1=St2 scalings. At the same time, the maximum oscillation
amplitude is lower (A=D ≈ 0.75), and the wake transition is
less distinct, owing to the greater viscous effects. In future
work, we will provide a systematic account of the Ga (or
Re) effects on the dynamics and wakes of rising or falling
cylinders.
The simplified model adopted here has enabled us to

understand the motions and wakes of heavy and light

cylinders rising or falling through quiescent fluid. From
the assumption that the vortex forces remain similar in
intensity, but change only in the duration of their action, we
can explain the growth in the oscillation amplitude. Since
the Strouhal number represents the dimensionless fre-
quency of vortex shedding, the fact that it is reduced
means that the vortex shedding is retarded [23]. While the
precise mechanism by which rotation induces this is not
clear, one can qualitatively explain the behavior. For this,
we compare the rotational response of a high moment of
inertia cylinder with that of a low moment of inertia
cylinder [Figs. 1(c) and 1(d)]. The high moment of
inertia cylinder resists rotation, while the low moment of
inertia cylinder yields to the fluid torques and rotates. On
the side where vorticity is shed [see Figs. 1(c) and 1(d)], the
particle’s rotation is along the mean flow direction.
Therefore, the relative speed at the cylinder surface Urel ¼
ðUrise −UrotÞ is reduced for the low moment of inertia
cylinder, which could cause the developing shear layer to
remain attached for longer. Thus, the vortex shedding time
τv ∝ 1=Urel for the low moment of inertia cylinder, as
compared to τv ∝ 1=Urise for the nonrotating cylinder. This
corresponds to a reduction in the dimensionless frequency
for the low moment of inertia cylinder. In Fig. 4, we find
evidence that the dimensionless vortex shedding time scale
τ�v ≡ τvUg=D increases almost linearly with the dimension-
less inverse relative speed 1=U�

rel ≡ Ug=Urel, where Ug ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDj1 − ρp=ρfj

p
is a gravitational velocity scale [20].

In summary, the present study has demonstrated that the
path oscillations of a buoyant particle can be linked to its
rotational freedom, as speculated by Ryskin and Leal in
1984 [21]. Our findings remain to be experimentally
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FIG. 4. Vortex-shedding time τ�v versus the inverse of the
relative speed 1=U�

rel for all heavy and buoyant cylinders from
the present study. The dashed line suggests a nearly linear
dependence. The inset shows the mean rise speed U�

rise and
the mean rotational speedU�

rot ≡ hjΩjiD=2Ug versus τ�v, where Ω
is the instantaneous angular velocity of the cylinder, D is the
cylinder diameter, and Ug ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gDj1 − ρp=ρfj

p
is a gravitational

velocity scale [20].
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confirmed using cylinder-rising experiments, such as those
conducted in the past [12], but with the rotational inertia as
an additional control parameter. The insights gained here
could be extended to isotropic bodies in three dimensions,
such as buoyant spherical particles [2,3,30,38]. In an
ongoing work, we have noticed the validity of this for
buoyant spheres rising in quiescent fluid, as well as for
buoyant spheres rising through a turbulent flow. These will
be the focus of a future work.
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