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Scaling relations in large-Prandtl-number natural thermal convection
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In this study, we follow Grossmann and Lohse [Phys. Rev. Lett. 86, 3316 (2001)], who
derived various scalings regimes for the dependence of the Nusselt number Nu and the
Reynolds number Re on the Rayleigh number Ra and the Prandtl number Pr. We focus on
theoretical arguments as well as on numerical simulations for the case of large-Pr natural
thermal convection. Based on an analysis of self-similarity of the boundary layer equations,
we derive that in this case the limiting large-Pr boundary-layer dominated regime is I<∞,
introduced and defined by Grossmann and Lohse [Phys. Rev. Lett. 86, 3316 (2001)], with the
scaling relations Nu ∼ Pr0 Ra1/3 and Re ∼ Pr−1 Ra2/3. Our direct numerical simulations for
Ra from 104 to 109 and Pr from 0.1 to 200 show that the regime I<∞ is almost indistinguishable
from the regime III∞, where the kinetic dissipation is bulk-dominated. With increasing Ra,
the scaling relations undergo a transition to those in IVu of Grossmann and Lohse [Phys. Rev.
Lett. 86, 3316 (2001)], where the thermal dissipation is determined by its bulk contribution.

DOI: 10.1103/PhysRevFluids.2.103502

I. INTRODUCTION

Thermal convection flows are common in nature and technology. One of the classical systems
to study such flows is Rayleigh-Bénard convection (RBC) [1–4], where a fluid is confined between
a heated bottom plate and a cooled top plate. In RBC the main input or control parameters of the
system are the Rayleigh number Ra ≡ αg�H 3/(κν), the Prandtl number Pr ≡ ν/κ , and the cell
geometry. Here ν denotes the kinematic viscosity, κ the thermal diffusivity, α the isobaric thermal
expansion coefficient of the fluid, g the acceleration due to gravity, H the distance between the top
and bottom plates, and � ≡ T+ − T− > 0 with T+ and T− the temperatures of, respectively, the
heated bottom and the cooled top plates.

The main global response characteristics of this convective system are the mean convective
heat transport from bottom to top and the mean momentum transport by convection, which are
represented, respectively, by the Nusselt number Nu and the Reynolds number Re. How Nu and Re
depend on Ra and Pr is the main issue in investigations of thermally driven flows.

The kinetic and the thermal dissipation rates are fundamental concepts in turbulent thermal
convection. For some convective flow configurations, including RBC, it is possible to derive
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analytical relations for the time- and volume-averaged kinetic and thermal dissipation rates εu

and εθ in terms of Ra and Nu cf. [1,5]. For example, in RBC, it holds:

εu = (ν3/H 4)(Nu − 1)Ra Pr−2, (1)

εθ = (κ�2/H 2) Nu. (2)

Using these relations, Grossmann and Lohse developed a scaling theory (GL theory) [5–11], which
is based on a decomposition of εu and εθ into their boundary-layer (BL) and bulk contributions.
Basically, the so-called scaling regimes I, II, III, and IV in the GL theory are associated with
the BL-BL, bulk-BL, BL-bulk, and bulk-bulk dominance in εu and εθ , respectively. The assigned
subscripts u and � to these regimes indicate the upper-Pr and �ower-Pr cases, respectively. Equating
εu and εθ to their estimated either bulk or BL contributions and employing the Prandtl-Blasius BL
theory [12–15] for the thermal and viscous BL thicknesses, theoretically possible limiting scaling
regimes followed. In particular, for the case of large Pr-number thermal convection, the various
possible scaling regimes Iu, I<∞, I>∞, IIu, IIIu, III∞, IVu were obtained, see Grossmann and Lohse [6]
for the details.

In this paper, we first derive a scaling relation between Re, Nu, and Pr in natural boundary-
layer dominated thermal convection, in which the complete convective flow is due to temperature
differences without any externally controlled wind input. This relation implies that in RBC the
limiting large-Pr boundary-layer dominated regime is I<∞, with the scaling relations Nu ∼ Pr0 Ra1/3

and Re ∼ Pr−1 Ra2/3. This regime I<∞ matches the regime III∞ for larger Ra, which in turn adjoins
the regime IVu for even higher Rayleigh numbers. Based on the results of our direct numerical
simulations (DNS) of RBC in a cylindrical container of aspect ratio 1, for Ra ranging from 104 to
109 and Pr from 0.1 to 200, we demonstrate the correctness of the derived scaling relations in regime
I<∞ and also the transition to regime IVu for sufficiently large Ra.

II. RELATION BETWEEN Re, Nu, AND Pr IN NATURAL (PURELY THERMALLY DRIVEN)
BOUNDARY-LAYER DOMINATED THERMAL CONVECTION

Following Prandtl [12], we consider a fluid flow along a heated plate and choose the coordinate
system such that the x direction is along the plate and the z direction is pointing vertically away
from the plate. We assume that the mean flow in the other horizontal direction (y) is much weaker
than that in x or z and, therefore, consider a two-dimensional flow that depends on x and z only.
Under the standard Prandtl BL approximation [14,15] we obtain the following momentum Eq. (3)
and thermal Eq. (4) BL equations for a fluid motion near the isothermally heated horizontal plate:

ux∂xux + uz∂zux = ν∂2
z ux + βαg(T − T0), (3)

ux∂xT + uz∂zT = κ∂2
z T , (4)

where T (x,z) denotes the temperature field above the plate, (ux,uz) is the velocity vector in the
coordinates (x,z) and in the buoyancy term βαg(T − T0) we have β vanishing in the case of a
horizontal heated plate and β = 1 in the case of vertical heated plate. The temperature boundary
conditions are

T (x,0) = T+, T (x,∞) = T0 ≡ (T+ + T−)/2, (5)

and the velocity vanishes at the plate,

ux(x,0) = uz(x,0) = 0, (6)

due to the assumed no-slip boundary conditions. In the classical Prandtl-Blasius approach [12–14],
a constant flow above an infinite horizontal plate is considered, which is parallel to the plate. This
leads to the next boundary condition for the velocity, far away from the plate, ux(x,∞) = U �= 0,
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where U is the so-called wind outside the BL. The resulting Prandtl-Blasius approximation of the
thermal boundary layer in laminar thermal convection is widely used, see, e.g., Refs. [5,16]. This
approach can be generalized to include the influence of the turbulent fluctuations within the BL
[17–19] and also can be adapted to the case of a nonvanishing pressure gradient within the BL (or to
the case of a non-constant wind above the horizontal isothermal plate, which approaches the plate
at arbitrary angle), see Refs. [20,21]. In all these cases the wind does not vanish in the bulk and,
generally speaking, is artificially imposed in the boundary layer equations.

In natural thermal convection, where no mean flow is imposed in the core part of the domain, all
the wind above the BL is self-organized. At the plate its absolute value is equal to zero. With growing
distance from the plate, the absolute value of the wind first increases and, after it has achieved its
maximum, slowly vanishes back to zero. The maximum value of the wind can be then considered
as the reference quantity U . The magnitude of U and the location, where the maximum of the wind
is achieved, depends implicitly on Ra and Pr. Such approach was considered for the case of vertical
convection (between two isothermal differently heated vertical walls) in Shishkina [22]. Here we
use the ideas from Ref. [22] to derive a relation between the Nusselt number Nu and the Reynolds
number Re in laminar natural convection for the case, where gravity is orthogonal to the isothermally
heated plate, i.e., to the RBC case.

The idea of the method suggested in Ref. [22] is the following. Let us construct a similarity
variable ξ as the usual combination of the vertical and horizontal coordinates, but now also with
introduced Prandtl number and Rayleigh number:

ξ = PraRab(x/L)c(z/H ). (7)

Here L is the length of the heated plate and the exponents a, b, and c are not fixed for the time
being. In a similar way we introduce the exponents d, e, and f for, respectively, Pr, Ra, and x into
the stream-function �:

� = νPrdRae(x/L)f φ(ξ ), (8)

from which the velocity components in horizontal and vertical directions can be evaluated as
ux = ∂z� and uz = −∂x�. The temperature T is represented though a nondimensional temperature
θ as follows:

T = T0 + (T+ − T0)θ (ξ ) = T0 + (�/2)θ (ξ ). (9)

The Nusselt number can then be calculated as

Nu ≡ −L−1
∫ L

0 κ∂zT |z=0 dx

κ�/H
= −θ ′(0)

2(c + 1)
PraRab, (10)

where θ ′ ≡ dθ/dξ is the derivative of θ with respect to the similarity variable ξ . Analogously, we
can derive the Reynolds number, which is defined in terms of the maximal mean velocity along the
heated plate:

Re ≡ UH/ν, U ≡ max
z

L−1
∫ L

0
ux dx. (11)

Here the horizontal velocity ux equals

ux = ∂z� = Pra+dRab+e(ν/H )(x/L)c+f φ′. (12)

Assuming that the maximal velocity is achieved at a certain value of ξ = ξ̂ , where φ′′(ξ̂ ) = 0, from
Eqs. (11) and (12) we obtain

Re = Pra+dRab+e(c + f + 1)−1φ′(ξ̂ ). (13)
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This together with Eq. (10) yields

Nu

Re1/2 Pr1/2 = −
√

c + f + 1

2(c + 1)

θ ′(0)

[φ′(ξ̂ )]1/2
Pr(a−d−1)/2Ra(b−e)/2. (14)

Now we substitute Eqs. (7)–(9) into the BL energy Eq. (4) and require the independence of the
resulting BL equation from Pr and Ra. The equation then takes the following form:

PraRab(x/L)c(1/H )θ ′′ + f Prd+1Rae(x/L)f −1(1/L)φ θ ′ = 0, (15)

which implies

d = a − 1, e = b, f = c + 1. (16)

The BL energy Eq. (15) then reduces to

θ ′′ + c + 1

�
φ θ ′ = 0, (17)

with the aspect ratio � ≡ L/H . Note that the boundary conditions for φ and θ are also independent
of Pr and Ra, i.e., φ(0) = φ′(0) = 0, φ′(∞) = 0, and θ (0) = 1, θ (∞) = 0, which one can obtain
from Eqs. (5)–(9).

With Eq. (16), the relation (14) is reduced to

Nu

Re1/2 Pr1/2 = − 1√
2(c + 1)

θ ′(0)

[φ′(ξ̂ )]1/2
Pr0Ra0. (18)

The momentum Eq. (3) with the similarity variable Eq. (7) and the stream-function Eq. (8) with the
constants Eq. (16) takes the form

Pr4aφξξξ + Pr4a−1[(c + 1)φφξξ − (2c + 1)(φξ )2] − β Ra1−4b(x/H )−4c−1θ/2 = 0. (19)

With a proper choice of the constant b (b = 1/4 for β �= 0) this equation can be released from
the Ra-dependence. However, as one can see from the comparison of the first two terms in Eq. (19),
it cannot be made generally independent of Pr. However, for Pr � 1, the second term in Eq. (19)
becomes negligible compared to the first term, which means that for Pr → ∞ there exist certain
values of a, b, c, d, e, and f in Eqs. (7) and (8) such that the governing momentum Eq. (3) and
thermal Eq. (4) BL equations, written in terms of φ(ξ ) and θ (ξ ), as well as their boundary conditions,
do not explicitly involve Pr and Ra. In this case, the solutions of the resulting BL equations, i.e., the
functions φ(ξ ) and θ (ξ ), are also independent of Pr and Ra. In particular, the value of θ ′(0) [φ′(ξ̂ )]−1/2

is a pure constant. This together with Eq. (18) immediately imply the following scaling relation for
the Nusselt number with the Reynolds and the Prandtl numbers, which thus in general holds for
natural boundary-layer dominated large-Prandtl-number thermal convection:

Nu ∼ Re1/2 Pr1/2. (20)

Note that apart from RBC, the scaling Eq. (20) was found also in other different configurations
of natural large-Prandtl-number thermal convective flows, for example, in horizontal convection,
where the fluid layer is heated through one region of the bottom and cooled through another region
of the bottom [23–25] and also in vertical convection, where the fluid is heated through one vertical
surface of the fluid layer and cooled though another vertical surface [22,26].

Previously [5] it was shown that the relation (20) holds also for Pr 
 1 in laminar Rayleigh-Bénard
convection. Since the Pr-dependence as in Eq. (20) holds only for very large or small Pr, it formally
breaks down for intermediate values of Pr, which strictly speaking means the absence of the similarity
solution. However, also in this case relation (20) provides a fair estimate due to the fact that Pr ≈ 1
in this regime and taking this value to some power does not introduce a strong Pr-dependence.
Therefore, relation (20) effectively and in good approximation holds for all Prandtl numbers, which
is fully supported by our simulations as we will see in the next section.
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FIG. 1. Sketch of the conducted DNS (symbols) in an (Ra, Pr) plane. White region corresponds to the
scaling regimes I<∞ and III∞. Shadowed region corresponds to transition to other regimes.

III. SCALINGS OF Re AND Nu WITH Ra AND Pr IN BOUNDARY-LAYER-DOMINATED
LARGE-Pr RBC (REGIME I<

∞)

To obtain the second scaling relation, in addition to Eq. (20), we follow Grossmann and Lohse
[5] for the BL-dominated thermal convection. The balance of the time- and volume-averaged kinetic
dissipation rate εu to its estimated BL contribution gives εu ∼ (νU 2/λ2

u)(λu/H ), where λu is the
thickness of the viscous BL near the bottom plate. This together with Prandtl’s relation λu/H ∼
Re−1/2 for laminar RBC flows [14,15] yields εu ∼ (ν3/H 4)Re5/2. Thus, from Eq. (1), Eq. (20), and
the last relation one obtains the scalings in the laminar low-Pr regime I� of the GL theory:

Nu ∼ Pr1/8Ra1/4, (21)

Re ∼ Pr−3/4Ra1/2. (22)

These scalings have been supported by numerous experimental and numerical RBC studies in the
respective regions of the (Pr, Ra) plane, see, e.g., Refs. [11,27–32]; therefore, in the present work
we do not focus on the low-Pr regime I�.

With decreasing Ra, the viscous BL thickness λu generally increases and slowly saturates to a
certain bounding value, which is comparable with H [6]. In this case, the BL contribution to the
mean kinetic dissipation rate scales as εu ∼ (νU 2/H 2), which yields

εu ∼ (ν3/H 4)Re2. (23)

Thus, from Eqs. (1), (20), and (23) the scaling relations in the regime I<∞ of BL-dominated large-Pr
RBC follow,

Nu ∼ Pr0 Ra1/3, (24)

Re ∼ Pr−1 Ra2/3. (25)

Note that these obtained scaling relations (24) and (25) are similar to those in the regime III∞ [6],
although in the regime III∞ the kinetic dissipation turns to be bulk-dominated.

The relations (24) and (25) hold up to very large Pr. The DNS for Pr = 2548 and Ra up to 109 [33]
showed that Nu ∼ Ra0.3 and Re ∼ Ra0.6. Independence of the Nusselt number of the Prandtl number
for large Pr was demonstrated also in several other DNS, see, e.g., Refs. [32,34]. The measurements
by Xia et al. [35] for Pr from 4 to 1350 and Ra up to 3 × 1010 also demonstrated that Nu roughly
goes as Ra0.3 and is almost independent of Pr.
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FIG. 2. Nusselt number, Reynolds number and their combinations, as functions of the Prandtl number (a),
(c), (e) and of the Rayleigh number (b), (d), (f), as obtained in the DNS of RBC in a cylindrical container of
the aspect ratio 1, for (a), (c), (e) Ra = 104 (red), Ra = 105 (green), Ra = 106 (blue), Ra = 107 (magenta),
Ra = 108 (cyan), and Ra = 109 (gray), and for (b), (d), (f) Pr = 0.1 (red circles), Pr = 0.2 (green circles),
Pr = 0.3 (blue circles), Pr = 0.5 (magenta circles), Pr = 0.7 (cyan circles), Pr = 1 (red squares), Pr = 2 (green
squares), Pr = 3 (blue squares), Pr = 5 (magenta squares), Pr = 10 (cyan squares), Pr = 20 (red triangles),
Pr = 30 (green triangles), Pr = 50 (blue triangles), Pr = 100 (magenta triangles), Pr = 200 (cyan triangles).

The results of our present DNS, which were conducted using the finite-volume code goldfish (see,
e.g., Refs. [17,36] and Fig. 1) for RBC for Ra from 104 to 109 and Pr from 0.1 to 200, are summarized
in Fig. 2. In the left column [Figs. 2(a), 2(c), and 2 (e)] the Prandtl number dependencies and in
the right column [Figs. 2(b), 2(d) and 2(f)] the Rayleigh number dependencies are presented for the
Nusselt number [Figs. 2(a) and 2(b)], Reynolds number [Figs. 2(c) and 2(d)], and their combination
Nu Re−1/2, due to the relation (20).

One can see that through several decades of Pr and Ra, the Nusselt number remains to be
independent of Pr [Fig. 2(a)] and scales with the Rayleigh number as ∼Ra1/3 [Fig. 2(b)], in full
agreement with Eq. (24). Note that also for the larger Ra this scaling should hold, as on this end the
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regime III∞ enters the regime IVu [5,6] with its scaling relations:

Nu ∼ Pr0 Ra1/3, (26)

Re ∼ Pr−2/3 Ra4/9. (27)

For the smallest Pr [Pr < 0.5 in Fig. 2(a)], the Nusselt number slightly grows with Pr, as the flow
undergoes a transition from the regime I<∞ to the regime I�, with its own scaling Eq. (21).

From Fig. 2(c), we can conclude the following: For sufficiently large Pr (Pr � 0.5) and moderate
Ra (Ra < 109), the Reynolds number scales as Re ∼ Pr−1 through several decades of Pr, as it should
be in the regimes I<∞ and III∞; see Eq. (25). Again, the region of very small Pr, Pr < 0.5, belongs to
the scaling regime I� Eq. (22) and, therefore, the values of (Re Pr) increase with increasing Pr. The
large-Ra region is already around the transition to the regime IVu, where the scaling Eq. (27) should
take over. For Ra = 109, the Reynolds number behaves already as Re ∼ Pr−0.78, as our simulations
show. Figure 2(d) also supports the scaling Eq. (25), but this time with respect to the Ra-scaling in
large-Pr BL-dominated RBC. Indeed, Re goes as ∼Ra2/3 there, with a tendency to ∼Ra4/9 Eq. (27),
as it should be in the scaling regime IVu [this slope is shown in Fig. 2(d) with a red inclined line].

Finally, in Fig. 2(f) one can see that Nu Re−1/2 in the regimes I<∞ and III∞ is independent of Ra.
For larger Ra, this quantity starts to increase and tends to Nu Re−1/2 ∼ Ra1/9, as it should be in the
scaling regime IVu [this slope is shown in Fig. 2(f) with a red inclined line]. The Prandtl-number
dependencies of Nu Re−1/2 in Fig. 2(e) also support the scaling relations (24) and (25) for the
regimes I<∞ and III∞ and the scaling relations (26) and (27) for the regime IVu, i.e., it varies from
Nu Re−1/2 ∼ Pr1/2 for smaller Ra to Nu Re−1/2 ∼ Pr1/3 for larger Ra.

IV. CONCLUSIONS

In the present work we derived that the relation Nu ∼ Re1/2 Pr1/2 holds in laminar natural thermal
convection, where no wind is imposed above the isothermal plate, for large Prandtl numbers Pr � 1.
Our derivation is based on a generalization of the Prandtl approach [12] and on a search of a
similarity solution of the laminar thermal BL equation when Pr → ∞. The scaling relation (20),
Nu ∼ Re1/2 Pr1/2, which holds for all Prandtl numbers in laminar Rayleigh–Bénard convection,
holds more generally also in the non-laminar regimes. It strictly holds for very large or very small
Pr, but formally breaks down for intermediate Pr. However, as in this case Pr ∼ 1, the relation
Nu ∼ Re1/2 Pr1/2 still provides a good approximation of the relationship between Re, Pr, and Nu
also in this regime, which is fully supported by our simulations in a wide parameter range.

Because of the relation (20), the limiting large-Pr laminar regime in RBC is regime I<∞ with the
scaling relations (24) and (25), which were originally derived in Ref. [6] as one of the possible
scaling regimes in large-Pr thermal convection.

Based on our DNS data for Ra from 104 to 109 and Pr from 0.1 to 200 (totally 200 cases), we
showed that the scaling regime I<∞ undergoes a smooth transition into regime III∞, so that one does
not necessarily have to distinguish them. For sufficiently large Ra, the scaling relations in regime
III∞ undergo a transition to those of regime IVu. All these scaling relations and transitions have
been supported by our DNS over a large range of Ra and Pr.
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