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Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for
tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs’
beneficial effects in tissue regeneration is based on their capability to produce a large variety of bioactive
trophic factors that stimulate neighboring parenchymal cells to start repairing damaged tissues. These new
findings could potentially replace the classical paradigm of MSC differentiation and cell replacement. These
bioactive factors have diverse actions like modulating the local immune system, enhancing angiogenesis,
preventing cell apoptosis, and stimulating survival, proliferation, and differentiation of resident tissue specific
cells. Therefore, MSCs are referred to as conductors of tissue repair and regeneration by secreting trophic
mediators. In this review article, we have summarized the studies that focused on the trophic effects of MSC
within the context of tissue regeneration. We will also highlight the various underlying mechanisms used by
MSC:s to act as trophic mediators. Besides the secretion of growth factors, we discuss two additional mecha-
nisms that are likely to mediate MSC’s beneficial effects in tissue regeneration, namely the production of
extracellular vesicles and the formation of membrane nanotubes, which can both connect different cells and
transfer a variety of trophic factors varying from proteins to mRNAs and miRNAs. Furthermore, we postulate
that apoptosis of the MSCs is an integral part of the trophic effect during tissue repair.
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Introduction

HE TRADITIONAL APPROACH of regenerating biologically
functional tissues, the triad of cells, scaffolds, and growth
factors, has resulted in promising strategies.' In this approach,
mesenchymal stem cells (MSCs) have been considered as
potential therapeutic cells. MSCs can be readily isolated from
a variety of adult tissues throughout the body, including bone
marrow,z’3 adipose tissue,4 and muscle.’ They can also be
derived from fetal tissues that can be collected during ges-
tation and delivery, such as the amniotic fluid® or the um-
bilical cord.” MSCs have a high proliferation potential and
can differentiate into various committed cell types, including
bone, cartilage, muscle, tendon/ligament, fat, dermis, and
other connective tissues.®>™!
In the tissue engineering field, researchers have sought
ways to exploit the multilineage differentiation potential of
these culture expanded MSCs to regenerate lost or worn out

tissue. For example, a working hypothesis is that MSCs would
generate de novo tissue themselves by incorporating specific
biological cues into scaffolds that combined with the cells
would stimulate their differentiation into the desired cell type
(Fig. 1A). This strategy is currently explored in preclinical
studies.'' ™" In another strategy, MSCs are injected either at the
site of the injured tissue or in the blood stream. It is believed
that the MSCs would subsequently home to the diseased tissue
and induce tissue repair. Indeed this concept is under investi-
gation in a large number of preclinical trials for treating a wide
range of diseases.'*"'® While beneficial effects of this approach
have been reported, there is much uncertainty with respect to
the mechanism of action. In fact, only a small fraction of the
injected cells are actually homing to damaged tissues and even
less cells can be found back in the tissue in long-term follow-
up of days to weeks.!” ' After transplantation into the heart,
the exogenous MSC showed poor survival and do not persist in
the infarcted area.”? Other investigators have even failed to
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FIG. 1. Mechanisms
through which MSCs
mediate tissue repair. (A)
MSC:s directly differentiate
into tissue specific cells that
are enforced by specific
biological cues released from
the injured tissue and
microenvironment, which
improves the generation of
de novo tissue. (B) Trophic
effect of MSCs supports
tissue regeneration by
delivering bioactive mole-
cules and genetic information
that enhance the activity

of tissue-resident cells.
MSC, mesenchymal stem
cell. Color images available
online at www
Jiebertpub.com/teb
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detect permanent engraftment of transplanted MSCs in in-
farcted hearts.”> MSC has been found to home preferentially to
the ischemic boundary in stroke studies. 24 However, it has
been shown that cells disappeared progresswelz and were no
longer detected 4 weeks after transplantation.” Similar find-
ings were reported in another study in human adipose tissue-
derived MSCs in a mouse model of hind limb ischemia. Indeed
the injected cells improved neovascularization, but the incor-
poration of MSCs into the vascular structures resulted quite
low (less than 1%), indicating that other effects, rather than
direct differentiation of MSCs in neovasculature, likely ac-
counted for the observed beneficial effects.”® All this evidence
suggests that in many tissue engineering approaches the con-
tribution of MSC to support the repair process by directly
differentiating in de novo repair tissue is fairly limited due to
poor engraftment and survival of cells.”” Since in many of
these studies beneficial effects have been reported this raises
the question how the injected cells exert their effect.

Besides their multilineage differentiation capacity, MSCs
have shown to be capable of reducing inflammation by mod-
ulating the immune system,”®>> promotin § angiogenesis, *
and inducing cell migration, proliferation, differentiation,
and extracellular matrix (ECM) formation®**>*%(Table 1).
Therefore, it has been proposed that the functional benefits
observed after MSC transplantation in experimental models of
tissue regeneration might be related to the trophic effects of
MSCs (Fig. 1B).*~* This specific role of MSCs is the main
focus of this review. In particular, we will discuss the possible
mechanisms behind this effect.

MSCs Act as Trophic Mediators
in Tissue Regeneration

MSC:s exhibit the capacity to migrate to injured sites and can,
therefore, contribute to tissue repair.® The trophic effect of
MSCs in tissue repair was first proposed by Arnold Caplan.”!
There is a dynamic regulation and interplay of stem cell derived
cytokines that influence tissue survival, repair, and regeneration,
including the activation of resident and circulating stem cells.’
Currently, researchers are increasingly integrating the tro-
phic roles of MSCs as a prominent feature in tissue repair
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strategies.”> One engrafted MSC has the potential to mod-
ulate the activity of many surrounding cells through inter-
cellular communication. This hypothesis is supported by the
in vitro observation that MSC-conditioned medium (CM)
improves tissue repair.”’>* MSC-CM acts as a chemoattra-
ctant for tissue-specialized cells.* Analyses of MSC-CM
indicate that MSCs secrete many known mediators of tissue
repair, including growth factors, cytokines, and chemokines.
This evidence suggests that the therapeutic effect of MSCs
may largely depend on their capacity to secrete soluble factors
that promote several key biological activities.

MSCs in osteoarthritis and other cartilage defect repair

Partial replacement of chondrocytes with stem cells in au-
tologous chondrocyte implantation has been proposed as an
effective strategy to limit or even omit the in vitro expansion
phase of chondrocytes.> Indeed, in vitro studies have shown
that cartilage matrix deposition and chondrogenic gene ex-
pression in MSCs could be improved by coculture of MSCs and
chondrocytes.SG’57 Based on these studies, it was assumed that
the beneficial effects of coculturing MSCs and chondrocytes in
cartilage matrix formation were largely due to the differentia-
tion of MSCs into chondrocytes. However, using cell tracking
experiments it was later shown that Dil-labeled allogeneic
MSCs in cartilage defects were present after 1 week, but not
after 4 or 12 weeks postimplantation, while the cartilage repair
progress lasted for at least three months.”® This implies that the
transplantation of allogeneic MSCs could only have acted at the
beginning of the repair process. Importantly, this experiment
indicated that MSCs did not contribute significantly to wound
healing by differentiating into the newly formed tissue.’* %

In a study performed by our group®’ human MSCs
(hMSCs) were used in pellet coculture with human primary
chondrocytes (hPCs) or bovine primary chondrocytes
(bPCs), and the role of the individual cell populations in
matrix formation was studied. This revealed that these co-
culture systems outperformed monoculture systems of either
hPCs or hMSCs in terms of cartilage formation. Interest-
ingly, the increase in matrix deposition was mainly achieved
by increasing the matrix production of hPCs. Furthermore,
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TABLE 1. PARACRINE FACTORS SECRETED
BY MESENCHYMAL STEM CELLS

Secreted factors Proposed function

Cell survival and

Basic fibroblast §rowth factor
proliferation

Granulocyte/macrophage colony
stimulating factor (G/M-CSF%38
Insulin-like growth factor (IGF) 8,42

Secreted frizzled-related protein-1
(SFRP1)*

Secreted frizzled-related protein-2
(SERP2)*!

Stanniocalcin-1 (STC-1)**

Transforming growth factor
B (TGF_B)38,183

Metalloproteinase-1 (MMP1)* Remodeling of
extracellular
matrix

Metalloproteinase-2 (MMP2)45

Metalloproteinase-9 (MMP9g46

Plasminogen activator (PA)3

Tumor necrosis factor-ot (TNF- oc)39

Angiopoietins (ANGs)**

Fibroblast growth factor-2
(FGF_2)37,53,183

Transforming growth factor- 8
(TGF- B)38,39

Vascular endothelial growth factor
(VEGF)>/40-184

Hepatocyte growth factor
(HGF)29,49

Human leukocyte antigen-GS5
(HLA-G5)**%%

Indoleamine 2,3-dioxygenase
(IDO)2-32.185

Inducible nitric oxide synthase
(iNOS)!8¢

Interleukin-6 (IL-6)'**

Interleukin-10 (IL-10)**'%7

Leukemia inhibitory factor gLIF 188

Prostaglandin E2 (PGE2)28’ 89-191

Transforming growth factor- 8
(TGF- B)Z ,29,33,192

Angiogenesis

Immunomodulatory

we observed a significant decrease in MSC overtime, most
probably caused by apoptosis, which may play an important
role in the cartilage matrix formation of pellet coculture sys-
tem.%*% The beneficial effects of the pellet coculture model
were largely due to the stimulation of proliferation and the
matrix formation of chondrocytes induced by a trophic effect
of the MSCs. This trophic role of MSCs in cartilage formation
is furthermore supported by independent studies performed by
others.* % These studies point to a dominant role of the MSCs
in stimulating resident or coimplanted chondrocytes to initiate
a regenerative response. One can interpret the role of the MSC
in these systems as the initiator or even as the conductor of the
repair process by activating cell and tissue autonomous repair
mechanisms, such as the induction of chondrocyte proliferation
and matrix production. Once activated, the cartilage regener-
ation becomes self-reliant and chondrocyte driven and is lar-
gely independent of MSC-based stimulation. Moreover, the
trophic effect of MSCs is independent of culture conditions and
the origin of the MSCs.®*%” These studies suggested that the
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supportive trophic role in tissue repair and regeneration might
not be limited to MSCs, but could also be displayed by other
stem cell populations or even non-stem cells such as dermal
fibroblasts.”® These findings starting from observations in vitro
have been confirmed in animal studies and recently also in a
clinical trial.®*%

MSCs in renal regeneration

The role of MSCs in the recovery of acute kidney injury
(AKI) has been extensively studied. It has been reported that
MSC administration effectively counteracted the detrimental
effects of experimental AKI’®"? and induced functional im-
provements in chronic kidney disease (CKD).” Initially, it was
thought that MSCs would home to the kidney to replace
damaged renal cells. However, after initial accumulation of
systemically administered MSCs in the injured kidney, only a
few of these cells permanently engraft within the tubules and
without obvious evidence of cell differentiation into tubular
cells.”®" In a rat AKI model, the iron-labeled MSCs were
predominantly located in the glomerular capillaries, while
kidney tubular cells showed no iron labeling, indicating the
absence of transdifferentiation into tubular cells.” It has been
suggested that MSCs do not replace renal tubular cells, but
mitigate the damage by providing paracrine support for repair.
MSCs achieve this by releasing growth factors that modu-
late the immune response and, subsequently, stimulate tissue
repair.”>’® The kidneys of MSC-treated rats revealed a de-
crease in gene expression of pro-inflammatory cytokines and
an increase in several growth factors with mitogenic, pro-
survival, and antiapoptotic effects.”” In particular, insulin-like
growth factor (IGF-1) and vascular endothelial §r0wth factor
(VEGF) were suggested as critical mediators.**”® In an in vivo
model of lung injury, a decline in the levels of tumor necro-
sis factor (TNF), interleukin (IL)-6, and interferon-gamma
(IFN-vy) was also detected in the group pretreated with MSCs.”
This hypothesis is supported by a mouse model of tubular
injury showing that injection of CM from murine MSCs re-
sulted in a significant decrease of tubular cell apoptosis, in-
creased survival, and renal function improvement. 0 Therefore,
it can be concluded that the regenerative response of MSCs in
this model depends on secreted bioactive factors.

MSCs in myocardial repair and regeneration

Injection of MSCs has been demonstrated to have thera-
peutic effects after myocardial infarction. Similar to the
mechanism of MSCs promoting kidney repair, current data
suggest that the direct differentiation of allogeneic MSCs into
cardiomyocytes is very limited. Instead, the MSCs secrete
factors and regulate the function of cardiomyocytes and im-
mature cells during repair.®'®* In support of this paracrine
hypothesis, many studies have observed that MSCs secrete
cytokines, chemokines, and growth factors that could poten-
tially repair damaged cardiac tissue. VEGF, transforming
growth factor beta 1 (TGF-f1), fibroblast growth factor 2
(FGF-2), hepatocyte growth factor (HGF), and granulocyte
colony stimulating factor (G-CSF) have all been identified as
key factors released by MSCs.* These factors have been
demonstrated to exert beneficial effects on the heart, including
neovascularization, attenuation of ventricular remodeling, and
increased angiogenesis.”® Anti-inflammatory action is also
exerted by MSC in a murine acute myocarditis model.*®
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Furthermore, MSC-CM can reduce apoptosis and necrosis of
cardiomyocytes exposed to low oxygen tension.” The injection
of MSC-CM into animal myocardial infarction models limited
infarct size, reduced cardiomyocyte apoptosis and ventricular
remodeling, and resulted in improved cardiac function com-
pared with controls.**:88-89 Meanwhile, extra cardiac adminis-
tration of MSCs provided clear evidence that cardiac repair can
be achieved through MSC’s trophic actions and did not rely on
their presence in the infarcted myocardium.”® It should be
emphasized that many of these positive effects of MSCs in AKI
and myocardial infarction were found in animal models. Re-
plication of these beneficial effects in human patients is the
subject of many clinical trials and is subject of an intense sci-
entific debate.

MSCs in wound healing and vascularization

Neovascularization is another important biological process
positively influenced by stem cells in a paracrine manner.
Coculture of endothelial cells and MSCs can simulate and
stabilize endothelial microvascular networks and promote cell
functions.”’ A study with coapplication of MSCs and endo-
thelial cells resulted in improved angiogenesis which was
largely due to the secretion of angiogenic cytokines by the
MSCs stimulating the endothelial cells.”* Another mechanism
by which MSCs contribute to wound healing is by reducing
inflammation and by inducing7 migration and proliferation of
resident tissue-specific cells.”” Many of these effects can be
replicated using MSC-CM both in vitro®® and in vivo.”® In-
deed, the CM acted as a chemoattractant recruiting macro-
phages and endothelial cells to the wound. The MSC-CM
has a similar effect as MSCs on a wound both accelerating
epithelialization.”>** Studies have indicated that many cell
types in the wound area, including epithelial cells, endothelial
cells, keratinocytes, and fibroblasts, are responsive to factors
secreted by MSCs.”® The trophic function of MSCs in the
wound healing environment has been further elucidated in
animal models. In a diabetic rat model of ulcerating wounds,
researchers evaluated the function of MSCs in the context of
improved collagen metabolism.”” Overall, these data suggest
that MSCs released soluble factors that stimulated prolifera-
tion and migration of the predominant cell types in the wound
in therapeutically relevant concentrations.

MSCs in neurological disorders

MSCs have been reported to provide a potential therapeutic
benefit in the treatment of neurological disease and injury.”®
MSCs are able to exert neurotrophic effects by releasing a
variety of molecules that directly or indirectly promote en-
dogenous repair. Such molecules may include neurotrophic
growth factors, chemokines, cytokines, and ECM proteins.”
Increased levels of IGF-1, as well as VEGF, bFGF, and epi-
dermal growth factor (EGF), were observed in the brain of
treated rats, compared with controls.*® Paracrine effects of
such factors involve direct neurotrophic and/or neuroprotec-
tive activity on resident progenitor cells, hence inducing neu-
rogenesis, oligodendrogenesis,'® neurite outgrowth,'?!1
angiogenesis,'*> or antiapoptotic effects*® on neurons and glia
cells. Furthermore, MSCs have been shown to improve gain-
of-functions in brain stroked rats without differentiating into
a neuronal phenotype.'® It is assumed that the MSCs were
able to achieve this by secreting a cocktail of factors into the
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neural niche microenvironment that mediated neural repair and
protection.

Mechanisms Behind the Trophic Effects

In each of these disease models discussed above, the MSCs
secreted factors that stimulated neighboring cells. It has been
proposed that the interaction of stem cells with their micro-
environment, also named niche, has a critical role in defining
the phenotype of the stem cell but also determines their se-
cretory profile.'” This has suggested that the selection in the
production of the paracrine factors produced by the MSCs is,
in part, orchestrated by the injured tissue. Indeed, MSCs ap-
pear to enhance the regenerative potential of multiple tissue
types as a result of various mechanisms that become activated
when exposed to the biochemical factors that are characteristic
of an injured environment in vivo.'%

In a living tissue, cells constantly interact with each other
and their ECM. This interaction influences the proliferation
and differentiation of cells within the tissue and organ.'"'%3
Cell-cell communication is required to guarantee effective
coordination among different cell types within tissues. Clas-
sical means of cell communication (Fig. 2) are represented by
cell junctions, cell adhesion molecules, and signaling through
secreted and soluble factors, which all connect neighboring
cells acting in a paracrine or even endocrine manner.'®~'!!

More recently, communication by extracellular vesicles
(EVs) and membrane nanotubes (MNTs) have been iden-
tified as possible mechanisms. Furthermore, we postulate
that apoptosis is an integral part of the trophic effect of
MSCs in tissue repair. It seems likely that each of these
mechanisms can contribute to the trophic role of the MSC
in tissue regeneration. The extent to which each of these
mechanisms can contribute to the therapeutic effect is
likely dependent on the context such as tissue type, type of
tissue damage, and inflammation degree. Recent articles
summarized the mechanisms of the more classical ways of
cell communication.'®"'" In this review, we will emphasize
on the latter three mechanisms.

Extracellular vesicles

EVs are cytosol fragments with a spherical morphology,
surrounded by a membrane composed of a lipid bilayer and
hydrophilic proteins, similar to the cell plasma membrane
(Fig. 3).112 Such vesicles are released from most cells and can
be isolated from most body fluids such as serum, plasma, urine,
and cerebrospinal fluid.'"*™''*> EVs are a heterogeneous group
of vesicles and include exosomes, microvesicles, and apo-
ptotic bodies. It has proven to be a challenge to experimentally
distinguish between these vesicles due to their overlapp-
ing biophysical characteristics and lack of discriminating
markers. %117 Therefore, the term EVs will be used in this
review to refer to a mixed population of vesicles.

Formation of EVs. Exosomes are 30-100nm in size and
are secreted when multivesicular bodies, a late endosomal
compartment, fuse with the plasma membrane.'"®'' Exosome
production is generally regarded as a constitutive membrane
vesicle pathway, although it can increase as a result of stim-
ulation with, for example, Ca** ionophore.112 Microvesicles,
also termed shedding vesicles, tend to be 100nm to 1 pm in
diameter and are directly derived from the cell membrane of
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FIG. 2. Classical forms of cellular communication. (A) Signal molecules, adhesion molecules, and irons can bind to
specific intracellular and cell surface receptors that can trigger a variety of cellular responses, depending on the receptor. (B)
Signals can be transmitted from one cell to its neighboring cells through signal transmission, especially in neural synapse.
(C) Two cells in direct contact with each other may send signals across gap junctions. Color images available online at

www.liebertpub.com/teb

activated cells through the disruption of the cortical cytoskel-
eton. These vesicles shed into the extracellular space in a
calcium flux- and calpain-dependent manner.'*® Apoptotic
bodies are larger than 1 um and are derived from dying cells.
They result from budding of the plasma membrane and contain
cytoplasm with organelles.'!

These apoptotic bodies are a special class in the EVs. In
tissue regeneration studies, cell death was considered as a
consequence of injury, lack of oxygen and not as a regen-
erative factor, until recently. Researchers proposed the
concept of “‘altruistic cell suicide” based on their observa-
tion that dying cells could induce proliferation of their
neighboring cells.'** The apoptotic cells release a variety of
signals, including apoptotic bodies, which induce cellular
responses over short and/or long-range distances. During
apoptosis, apoptotic bodies containing biological informa-
tion are transferred from apoptotic to nonapoptotic cells.
Indeed, endothelial cell-derived apoptotic bodies convey
paracrine signals to reciPient vascular cells that trigger the
production of CXCL12."** These data indicate that the ap-
optotic bodies likely play an important role in paracrine
signaling supporting tissue repair and regeneration. Thus the
disappearance over time of MSCs from the injured tissue
could reflect the death of MSCs. The extent to which MSC’s
cell death contributes to tissue regeneration, as well as the
underlying mechanism of this ‘““altruistic cell death” de-
serves further study. As mentioned before, also in the pellet
coculture model of MSCs and primary chondrocytes an
association was found between MSC disappearance from the
pellets likely by apoptosis and the stimulation of chon-
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drocyte proliferation and matrix formation. It is presently
unclear whether the cell death of MSCs in these pellet co-
cultures with primary chondrocytes contributes to the im-
proved cartilage formation in this model.

EVs biological activities. Cell communication by means
of EVs is considered to be a universal way for cells to interact
with each other and influence the behavior of other neigh-
boring cells by exchanging material and information. Indeed,
EVs can stimulate target cells and induce alterations in the
phenotype and behavior of recipient cells."**'? EVs influ-
ence the fate of target cells in numerous ways. First, they may
directly stimulate the cells téy interaction with membrane
bound receptors or ligands.'*® Indeed, EVs express surface
molecules and several types of receptors, including trans-
forming growth factor f (TGFp), CD95L, MHC class I/II
molecules, and the CCRS chemokine rcsceptor.lm127 After li-
gand interaction, they may then modulate the functional target
cell by delivering intracellular proteins.'**!'** Second, EVs can
transfer receptors, bioactive lipids, or nucleic acids between
cells after fusion with target cell membrane. Of particular in-
terest is the involvement of EV in the horizontal transfer of
genetic information. Subsets of mRNAs, miRNAs, and long
noncoding RNAs can be transferred through EVs to recipi-
ent cells, inducing functional and phenotypic changes.**'"*! In
particular, the horizontal transfer of miRNAs has been pro-
posed as a new form of intercellular communication, re-
presenting a means by which donor cells can regulate the gene
expression of recipient cells."** EVs extend the trophic rep-
ertoire of MSCs from the classical secreted growth factors to

FIG. 3. Mechanisms in-
volved in the formation of
MVs and exosomes. Exo-
somes are formed from
MVBs and are released by
fusion of MVBs with the
plasma membrane, whereas
MVs bud directly from the
plasma membrane. The EVs
contain a variety of proteins,
RNA, and DNA species. EV,
extracellular vesicle; MV,
microvesicle; MVB, multi-
vesicular body. Color images
available online at www
Jiebertpub.com/teb
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now include as well mRNAs, miRNAs, lipids, and membrane
bound proteins.

Stem cells and differentiated cells communicate with each
other to regulate the self-renewal and differentiation pro-
cesses related to tissue repair.'*® In this process, stem cells
and differentiated cells may establish bidirectional commu-
nication during the reparative process. EVs, by transferring
selected patterns of proteins, lipids, mRNAs, and miRNAs to
recipient cells, may be considered as potent paracrine medi-
ators of signaling between stem cells and differentiated
cells."'” In the first scenario, EVs released from injured tissue
may help to reprogram the phenotype of stem cells to acquire
tissue-specific features. The other way around, EVs derived
from stem cells may induce cell cycle reentry of cells that
survived an injury allowing tissue regeneration.''® In this
context, the stem cell-derived EVs could participate in the
repair process'® by provoking genetic and epigenetic chan-
ges in target cells thereby activating critical cell processes for
tissue regeneration, for example, by inducing cell prolifera-
tion, differentiation, and ECM production. Meanwhile, EVs
released from damaged tissues may organize adult resident
stem cells into a reparative program.'** With the progress of
tissue repair, the demands of the regenerating tissue will
change and may request a different type of support from the
MSC. Paracrine signaling, for example, by EVs back and
forth between tissue specific cells and the stem cells may
keep the trophic role of the MSCs in pace with the regener-
ative process. EVs may exert these functions next to classical
ways of communication by means of secreted growth factors.
In fact, the beneficial effect of MSC-CM as reported in many
studies cannot only be attributed to the presence of secreted
growth factors but could have been mediated at least, in part,
by the presence of EVs which are in most protocols also
present in the CM. It would be of great interest to repeat the
CM experiments with medium deprived from EVs to deter-
mine the contribution of either secreted growth factors or the
EVs to the beneficial effects in tissue repair.

EVs contain diverse species of RNAs that reflect the
functional state of the cell of origin and could represent an
important therapeutic tool, since these RNA subsets impact
directly or indirectly protein translation when taken up by
the target cells.!®? Therefore, several studies have evaluated
whether stem cell-derived EVs gerform similar to MSCs in
tissue regeneration in vivo."**'*® The use of MSC derived
EVs rather than the cells themselves may avoid possible
long-term mal-differentiation of engrafted cells and attenuate
many of the safety concerns related to the use of living cells.

Role of EVs in tissue regeneration. Proteomics analysis
of MSC-derived EVs has shown that they contain the factors
influencing angiogenesis such as FGF, VEGF, HGF, EGF,
and IL-8."°*'% Thus MSCs release not only growth factors
directly into medium but also as an integral part of EVs. It is
at present unclear whether growth factors embedded in an
EV have distinct biological activity compared to the same
growth factors directly released into the extracellular space.
This requires more research. Nevertheless it is clear that
release of growth factors in EVs represents another way for
cellular communication and transportation in the extracel-
lular space.'*!

EVs have been shown that they are the mediators of the
cardioprotective effects of MSCs and that they diminish the
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size of the infarct in an ischemic mouse model.”"™~ A similar

model showed that MSC-derived EVs enhanced blood flow
recovery, reduced the infract size, and preserved cardiac sys-
tolic and diastolic performance by promoting angiogenesis.'**
Currently it is hypothesized that the cardioprotective ef-
fects of EVs are resulting from a combination of improved
angiogenesis, antiapoptotic effects, anti-inflammatory effects,
and anticardiac remodeling factors showing a clear overlap
with the proposed actions of MSC-CM. Recently, researchers
showed that CXCR4 overexpressing MSCs produced EVs
with increased concentrations of VEGF and IGF-1a. They
loaded MSCs with EVs, which were produced in CXCR4
overexpressing MSCs, and proved that these exosomes were
delivered in vivo upon implantation of a cell sheet, leading to
increased angiogenesis, reduced infarct size, and improved
cardiac remodeling.'**

Bruno et al. wrote an extensive review on the use of MSC-
derived EVs on renal regeneration.''” MSC-derived EVs were
first tested for their renal regenerative potential in a model of
AKL"™ A meta-analysis on the studies using MSC-derived
EVs in AKI concluded that MSC-derived EVs have a more
profound therapeutic potential than CM and that early admin-
istration of EVs in AKI has the most effect.'*’ Besides AKI,
MSC-derived EVs have been tested in chronic diabetic ne-
phropathy, where they were found to be as effective as CM.'*®
The exosomes were found to suppress the invasion of bone
marrow-derived cells (the source of inflammatory cytokines) by
downregulating their adhesion molecules (ICAM-1). This re-
sulted in a decrease in the expression of TNF-o. Besides this,
activation of renal inflammatory pathways through p38-MAPK
was reversed. TGF-B1 expression was downregulated, and tight
junction protein expression (e.g., ZO-1) was persevered. Con-
sequently, TGF-f3 mediated epithelial-to-mesenchymal transi-
tion was inhibited.

Recent studies compared the effect of injected MSCs and
MSC-derived EVs on the neural functional recovery after
ischemia or apoplexy.'*”'*7 Both studies found equally
positive therapeutic effects of MSCs and EVs. Improvement
of neurological impairment, neuroprotection, and neurogen-
esis and angiogenesis were equally stimulated by the pres-
ence of either MSCs or EVs. Although the composition of the
EVs was not within the scope of these studies, other research
has shown that the neurotrophic effect of injected MSCs re-
sults from a variety of molecules that directly or indirectly
promote endogenous repair (reviewed in chapter 2.5). Hofer
and Tuan reviewed the role of MSC secreted trophic factors
in never repair.'*® Neurotrophic brain-derived neurotrophic
factor, nerve growth factor, glial cell line-derived neuro-
trophic factor, ciliary neurotrophic factor, as well as angio-
genic VEGF and angiopoietin-1, work as neuroprotective
factors. It is assumed that the MSCs are able to achieve their
therapeutic effects by secreting a cocktail of these factors in
EVs into the neural niche microenvironment that mediates
neural repair and protection. However, to date, the molecular
definition of their cargo remains unknown. Also these studies
suggest a large overlap in the activity of MSC-CM and MSC-
derived EVs, which may suggest that EVs rather than se-
creted growth factors and cytokines play a more dominant
role in the mechanism of action by which MSCs induce tissue
regeneration.

Based on the anti-inflammatory, antiapoptotic, anti-
fibrotic, and pro-regenerative properties of MSC-derived
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EVs, it was long speculated that EVs might exert a positive
effect on osteoarthritis (OA) or rheumatoid diseases. 4150
Zhang et al. showed that the addition of MSC-derived
exosomes led to complete restoration of cartilage and sub-
chondral bone. Hyaline cartilage with a good surface regu-
larity and complete bonding to the adjacent cartilage was
formed after 12 weeks in 5 out of 6 rats.'™®

Based on all examples above EVs can have numerous pos-
itive effects on tissue regeneration due to their antiapoptotic,
angiogenesis promoting, and pro-proliferative effects. Despite
all these positive results many of the animal models used do not
resemble a realistic pathological situation. Many of the models
inject the EVs directly after injury, to prevent development of
tissue damage, even when the disease is chronic and progres-
sive like OA.!143:144150 There are studies where the admin-
istration of EVs is delayed, but these are the minority. In the
studies for CKD there is one article using EVs to cure already
established damage.'”' In this study they compared EVs and
CM and found that EVs do not have a curative effect. One
other article describes the regenerative effect of EVs in estab-
lished chronic diabetic nephropathy.'*® The exosomes were
found to suppress the invasion of bone marrow-derived cells by
downregulating their adhesion molecules. Clearly more work is
needed to find whether MSCs, MSC-CM, or MSC-derived EVs
can play a role in the reversion or even regeneration of estab-
lished disease and whether there are specific windows for op-
portunities in which treatment is most beneficial.

Membrane nanotubes

Rustom et al.'> were the first to describe an as yet un-

known type of intercellular connection. They noticed some
straight lines connecting two adjacent cells that were not in
direct cell-cell contact. With regards to dimensions and
morphology, these structures were termed MNTs or tunneling
nanotubes (TNTs). MNTs are long thin F-actin-based mem-
branous channels connecting cells (Fig. 4). These structures
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were observed between many eukaryotic cells,'>*'>° sug-

gesting that these connections represent common mechanism
of functional intercellular connectivity and cell-to-cell com-
munication. MNTs are widely considered a neotype of cell
communication through its ability to transport many com-
ponents and signals from one cell to another.'®’

Structural characteristics of MNTs.  Electron transmission
and scanning microscopes were used to reveal the surface and
formation of MNTSs. Meanwhile, fluorescence studies can
give information about the structure of MNTs, as well as
their function in intercellular transfer."”®'>® To study the
latter process, dyes such as DiD, DiO, fluorescent proteins
like GFP, and selected cell compartment markers are widely
used. The diameter of MNTs ranges from 50 to 200 nm and
some are as long as the diameter of a few cells.'>? Findings
suggest that the thickness and length of MNTs might be
related to the components exchanged through the tunnels, as
well as their quantity.'®

Two types of MNTs have been distinguished, open ended
and closed ended. For open-ended MNTs, intercellular
cargo or larger organelles such as mitochondria or vesicles
may be transported from the MNTs to the target cell.'®%!®!
For the closed-ended structures membranous cargo can enter
into the target cell as a result of endocytic forces.'®* Their
functions could apply to various specific topologies, de-
pending on the types of signals.

Formation of MNTs. Until now, two mechanisms of MNT
formation are known'®>1%4 (Fig. 4A). In the first mechanism,
linkages form after a cell extends a de novo filopodia-like
bridge that is then bound and tightly anchored to a neighbor-
ing cell. Filopodia are dynamic exploratory and sensory or-
ganelles that can direct cell migration toward specific sources,
including nearby cells. These structures can be maintained
to form a long-lived stable filopodial bridge, or alternatively,
function as structural intermediates to more complex cell—cell

FIG. 4. Mechanisms of
MNT formation and potential
functions. (A) MNTs can be
derived from filopodia-like
protrusions (i) and prior cell-
cell contacts (ii). (B) Orga-
nelles and proteins can
transport through MNTs, ei-
ther inside (1) or along their
surface (2). Patches of sur-
face membranes and activa-
tion signals could be
transmitted between con-
nected cells (3). Membra-
nous cargo can enter into the
target cell by endocytic for-
ces from the end of closed-
ended nanotubes (4). MNT,
membrane nanotube. Color
images available online at
www liebertpub.com/teb
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interfaces.'®> The second mechanism of MNT formation is
connected with prior cell-cell contact, after which the cells are
separated and a nanotube is formed between them. These
mechanisms may vary per cell type. Indeed, most immobile
cell types, such as neuronal-like PC12, form tubes by the
outgrowth of filopodia.'® Mobile cells, such as kidney cells
and T cells, which easily connect with other cells, form tubes
by the second method."**'®” However, it is important to note
that the two mechanisms could occur in the same cell type.
Despite the two possible mechanisms of formation, it is ac-
cepted that actin polymerization is required for MNT forma-
tion. This specific feature of MNTs helps to distinguish them
from other similar structures such as membrane tubules formed
by neutrophils.'®®

Little has been done to investigate the signaling pathways
involved in MNT formation. Since actin polymerization is
required, it has been proposed that some proteins involved in
actin polymerization, such as Cdc42, will also be important
for nanotube formation. Indeed, Cdc42, Racl, ezrin, and N-
WASP are all present in MNTSs, but the requirement of these
factors in MNT formation has so far not been assessed.'®
Using expression of dominant negative constructs in HelLa
cells, inhibition of Cdc42 resulted in decreased MNT for-
mation, but Racl inhibition showed no effect.'” It suggests
that the signaling requirements for MNT formation may be
different depending on the mechanisms of formation.

Biological significance of MNTs. Many studies have in-
vestigated the biological function of this recently discovered
structure that connects two distant cells (Fig. 4B). A common
function of MNTs is the propagation of an electrical signal.'®’
Organelles and protein transport through MNTs also seem to
play an important role especially when cells are damaged or
undergo premature senescence.’’'~'”* Ca®* and intercellular
vesicles could also be transported through MNTSs between
cells.'®"""*17> Transfer of miRNA through MNTSs has been
described in cancer cells, but has to be investigated if this
function is also present in immune cells or in MSCs.'’® MNTs
were found to transport porous silicon microparticles, so that
they may be involved in the dispersion of therapeutic agents at
the site of diseased tissue.'”” MNTSs have also been suggested
to provide cell-contact dependent communication over long
distances.'>® Recently, MNTs have been observed between
MSCs and vascular smooth muscle cells (VSMCs), which
promoted the proliferation but not differentiation of MSCs by
transfer of mitochondria from VSMCs into MSCs,178 as well as
between MSCs and osteoclast precursors, which was found to
be essential for osteoclastogenesis.179 Overall, MNTs are novel
candidates to explain how direct cell-to-cell communication
occurs and play an important role in many (patho)physiological
processes by transporting molecular signals and cell organelles
from one cell to another.'® We propose that communication
through nanotubes could be an additional mechanism by which
MSCs exert their positive effect in tissue regeneration.

Conclusions

The beneficial function of transplanted MSCs has already
been proven in many therapeutic domains. Recently, the
trophic effect of MSCs is being considered as the most
important player in the observed reparative effects of these
cells. In the case of severe tissue damage, MSCs can be

FU ET AL.

attracted to the site where they secrete a broad repertoire of
trophic factors that function to assist the repair and regen-
eration process.”! The trophic hypothesis of MSCs action
changed the perspective of the therapeutic use of MSCs in
regenerative medicine.'®' The mechanisms governing this
trophic activity are quite distinct from those used in tissue
engineering functional substitutes for replacement of dam-
aged or lost tissue. There is strong evidence showing that the
effect is at least partly mediated by secretion of growth
factors, cytokines, and other secreted proteins affecting
resident cells stimulating tissue repair, but it is likely that
more mechanisms exist. In this review, we have discussed
two additional mechanisms that could be used by the MSCs
in support of their trophic role, EVs and MNTs, which can
connect different cells and deliver their trophic factors.
These structures are defined as important forms of inter-
cellular communication and are involved in many physio-
logical processes. As they may influence the behavior of
recipient cells by delivering their bioactive cargo, it may be
possible to exploit this effect in tissue regeneration and re-
pair. The extent to which these additional mechanisms
contribute to the trophic effect of MSCs in tissue repair and
regeneration deserves further study. Indeed gaining a solid
understanding of these mechanisms may lead to develop-
ment of new strategies and/or therapeutic tools for tissue
regeneration.
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