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Security forces are deployed to protect networks that are threatened by multiple intruders. To select the 

best deployment strategy, we analyze an interdiction game that considers multiple simultaneous threats. 

Intruders route through the network as regular customers, while interdictors arrive at specific nodes as 

negative customers. When an interdictor arrives at a node where an intruder is present, the intruder is 

removed from the network. Intruders and interdictors compete over the value of this network, which is 

the throughput of unintercepted intruders. Intruders attempt to maximize this throughput by selecting a 

fixed route through the network, while the interdictors aim to minimize the throughput selecting their 

arrival rate at each node. We analyze this game and characterize optimal strategies. For special cases, we 

obtain explicit formulas to evaluate the optimal strategies and use these to compute optimal strategies 

for general networks. We also consider the network with probabilistic routing of intruders and show that 

for this case, the value and optimal strategies of the interdictor of the resulting game remain the same. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Security plays an important role in society as terrorist actions

 Jones (2014) ), cyber crime ( Ponemon (2014) ) and the impact of

aritime piracy ( Bensassi and Martínez-Zarzoso (2010) ) increase.

t is therefore not surprising that security problems have been

eceiving increasing attention, and that some of these problems

ave been tackled using mathematical modeling ( Evers, Barros, and

onsuur (2013) , Salmeron, Wood, and Baldick (2004) , Washburn

nd Lee Ewing (2011) , Wein and Atkinson (2007) ). An important

lass of security problems is network interdiction. Generally speak-

ng, network interdiction involves two sets of players which com-

ete over the value of the network: the intruder and the interdic-

or. The intruder tries to optimize the value of the system, for ex-

mple by (1) computing the shortest path between a source node

nd a sink node ( Bell, Kanturska, Schmöcker, and Fonzone (2008) ,

ulkerson and Harding (1977) , Israeli and Wood (2002) ); (2) max-

mizing the amount of flow through the network ( Brown, Car-

yle, Salmerón, and Wood (2006) , Lim and Smith (2007) , Salmeron

t al. (2004) ); (3) maximizing the probability of completing a route
∗ Corresponding author at: Stochastic Operations Research, University of Twente, 

.O. Box 217 7500 AE Enschede, The Netherlands. 
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 Dickerson, Simari, Subrahmanian, and Kraus (2010) , Monsuur,

anssen, and Jutte (2014) , Morton, Pan, and Saeger (2007) ), or (4)

inimizing the probability of getting caught ( Alpern, Morton, and

apadaki (2011) , Lin, Atkinson, and Glazebrook (2014) , Paruchuri

t al. (2008) ). The interdictor attempts to intercept the intruder be-

ore the goal is achieved. 

In the field of network interdiction, a wide variety of models

ave been proposed. Wollmer (1964) was one of the first authors

o consider a network interdiction model on a network defined by

 set of arcs and nodes. In this model, the interdictor can remove

rcs from a network in order to minimize the maximum flow the

ntruder can obtain from a source node to a sink node. Several

apers generalize this work by accounting for the interdictors re-

ources ( Wood (1993) ), which they can use to remove arcs from

he network. The resource cost for such an action depends on the

rc itself. These problems are shown to be NP-complete by Wood

1993) , even when the costs are equal for all arcs. 

Most of the literature focuses on deterministic network in-

erdiction ( Washburn and Wood (1995) , Wollmer (1964) , Wood

1993) ). However, many network properties, such as travel time

r detection probability, are uncertain in practice. Cormican, Mor-

on, and Wood (1998) consider a max-flow interdiction model in

hich interdiction success is a random variable. Moreover, exten-

ions are made in which arc capacities are also considered to be

tochastic. 

http://dx.doi.org/10.1016/j.ejor.2017.02.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.02.035&domain=pdf
mailto:c.m.laan@utwente.nl
http://dx.doi.org/10.1016/j.ejor.2017.02.035
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Early work ( Fulkerson and Harding (1977) , Wollmer (1964) ,

Wood (1993) ) consider network interdiction only from the in-

terdictors point of view. Thus, possible reactions of intruders to

the interdiction actions are not taken into account. In order to

model intelligent adversaries who know of and react to the strat-

egy of an interdictor, game theoretic models have been developed

( Alpern et al. (2011) , Tambe (2011) , Thomas and Washburn (1991) ,

Washburn and Wood (1995) ). Tambe (2011) describes a set of game

theory applications for security problems. Washburn and Wood

(1995) introduces a two-person zero-sum interdiction game that

explicitly model the interaction between interdictors and intrud-

ers. Intruders select their path from a source to a sink node and

interdictors select an arc to inspect. For each arc, a detection prob-

ability is given. By using a minmax formulation, the authors deter-

mine probabilistic strategies for both players. 

Another type of network interdiction is considered in search

models in which the goal of the interdictor is to find a hid-

den intruder. It is possible that the intruder is hidden at a spe-

cific node ( Alpern et al. (2011) , Lin et al. (2014) , Neuts (1963) ),

or moves through the network ( Hespanha, Prandini, and Sastry

(20 0 0) , Thomas and Washburn (1991) ). Neuts (1963) introduces a

search game in which the intruder hides in one box, while the

interdictor must search in a set of boxes. Thomas and Washburn

(1991) consider a dynamic search game in which the intruders

move through the network and react to the interdictor in the fol-

lowing way. The interdictor searches for an intruder in a set of cells

where the travel time to a new cell depends on the distance. The

intruder moves after the interdictor moved, taking into account

the interdictors previous location. The interdictor wins if the in-

truder is found within a certain amount of time, otherwise, the

intruder wins. Dynamic programming is used to solve the model,

such that a linear programming formulation has to be solved for

each state. Wein and Atkinson (2007) combine game theory, dy-

namic programming and queueing theory to intercept terrorists on

their way to the city center. A game theoretic approach is used to

determine the sensor configuration and to calculate the detecting

probabilities. The outcome of the game then becomes input for the

queueing model. 

In this paper, we introduce an interdiction game on a queue-

ing network including multiple intruders and interdictors which

have stochastic travel or service times. Our model is developed

to find an optimal deployment strategy for the interdictors that

inspect the network nodes, i.e. which nodes should be inspected

more often than others. Intruders enter the network at a certain

node modeled as a queue and, after having received service, route

through the network to their target node. The routing strategies

of the intruders can be modeled in a fixed or probabilistic man-

ner. In the case of fixed routing, upon arrival at the network, in-

truders select their complete route to the sink node. In the case of

probabilistic routing, intruders decide their next step at each node

according to a certain probability. At the same time, interdictors

inspect nodes of the network to prevent the arrival of intruder at

the target nodes. When an interdictor inspects a node in which

an intruder is being served, the intruder is removed from the net-

work. In this context, the value of the network can be represented

by the throughput of the intruders. Multiple intruders and inter-

dictors compete to maximize and minimize this value respectively.

To model the intruders and interdictors, we use the concept of

negative customers, which is introduced by Gelenbe, Glynn, and

Sigman (1991) . These authors describe a network of single-server

queues that includes positive and negative customers. Positive cus-

tomers join the queue with the intention of getting served and

then leave the system. Upon arrival of a negative customer, a posi-

tive customer (if present) is removed from the queue. We construct

a game on this network to find the optimal deployment strategy

for the interdictors. These strategies are reduced to choosing ar-
ival rates for inspecting the nodes of the network. The intruders

re modeled as the positive customers of the network, and the in-

erdictors as the negative customers. 

Our approach of an interdiction game on a queueing network

ombines two areas of research: game theory and queueing the-

ry. Game theory is used to model the interaction between the in-

ruder and interdictor. Queueing theory models the dynamic flow

nd time-dependent interdictions in a stochastic environment. The

trategies of the intruders and interdictors influence the queueing

ystem. This approach enables the modeling of the flow of intrud-

rs and the timing of the actions of the interdictor. The network

tself may represent a region that the intruder is required to tra-

erse before it can reach its destination. The queues then have ser-

ice times that correspond to the stochastic travel times. Alterna-

ively, routes in the network may represent sequences of tasks an

ntruder must complete before it is able to reach its target node. 

This paper is organized as follows. In the next section, we in-

roduce the problem for fixed routing and analyze the proposed

nterdiction game on a queueing network. In Section 3 we deter-

ine optimal strategies for this game and provide some examples.

ext, in Section 4 , we discuss the game with probabilistic routing

nd show that these games are closely related. Finally, in Section 5 ,

e present conclusions and provide directions for future research. 

. Game on a network with negative customers 

This section introduces an interdiction game on a queueing net-

ork with negative customers and fixed intruder routing. Each

ode in the network represents a queueing system in which the

ntruders (positive customers) are served by a single server accord-

ng to a FIFO service discipline. Intruders enter the network at the

ource node and travel through the network to the sink node. Af-

er service completion at a node, the intruder follows its route to

nother node in the network. If the intruder is not interdicted at

ome intermediate node (neither the sink nor the source node),

e successfully reaches the sink node. Interdictors (negative cus-

omers) arrive at the network nodes to search for intruders. If the

nterdictor arrives at an empty node, he leaves the network im-

ediately. If an interdictor arrives at a node and finds an intruder

eing served, then he removes the intruder and leaves the net-

ork. Because handling an intruder requires extra effort and time,

e assume that only the intruder in service is removed. 

The players of the interdiction game, the intruders and the in-

erdictors, are constrained by a budget. This limits the rates with

hich they arrive at the network: the interdictor has to determine

rrival rates at nodes for inspecting the queueing systems and the

ntruder determines arrival rates at the routes. This repeated inter-

lay results in probabilities of interdiction at nodes and ultimately

ield intruder arrival rates at the sink node. The value of the game

s therefore defined as the rate of intruders arriving at the sink. 

In the following sections, we introduce a network with intrud-

rs and interdictors in which fixed routing of intruders is consid-

red. After that, we give the game formulation and prove the exis-

ence of optimal strategies. 

.1. Network with fixed routing of intruders 

Consider a queueing network with a source node 0, sink node

 + 1 and intermediate nodes I = { 1 , 2 , . . . , N} , on a connected and

irected graph G . Intruders want to travel through the network un-

etected from source to sink, while interdictors try to intercept

hem at nodes in I . The source node 0 is linked to a non-empty set

 ⊆I of start nodes, while there is a non-empty set of target nodes

 ⊆I linked to the sink node N + 1 . There is no direct link between

he source and sink, but it is possible that S ∩ T � = ∅ . In addition,

e assume that each node in S has just one incoming link (from
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(a) (b)

Fig. 1. Example network G with N = 9 . (a) Underlying network and (b) Network with three routes. 
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he source); likewise, we assume that each node in T has just one

utgoing link (to the sink). An example of such a network is shown

n Fig. 1 a. 

Given this queueing network, we consider the set of all routes

rom node 0 to node N + 1 , in which a route follows the links

n the network. This set may be (countably) infinite, due to

ycles in the network. We consider a finite subset K of the

et of all routes without cycles. A route k ∈ K (in which we

o not take into account nodes 0 and N + 1 ) is given by r k =
 r(k, 1) , r(k, 2) , . . . , r(k, N k )] , where r ( k , s ) identifies the s -th node

n route k and N k is the length of route k . The set of nodes con-

ained in route k is denoted by I k . In Fig. 1 b an example network

ith three routes is given. 

Intruders arrive at the source of the network according to a

oisson process with rate �, and choose route k with probabil-

ty p k ; i.e. the arrival rate of intruders following route k is given

y λk = p k �. Therefore, they enter at node s ∈ S with arrival rate

s = 

∑ 

k ∈ K,r(k, 1)= s λk . 

When intruders arrive at node i , they receive service or join the

ueue. The service time at node i is equal for all intruders and

s exponential with rate μi > 0. The service time of each node is

ndependent of the service time at other nodes. 

Interdictors arrive at the network according to a Poisson pro-

ess with rate �− and select node i with probability p −
i 
, such that

hey arrive at node i ∈ I with rate λ−
i 

= p −
i 
�−. Upon arrival of an

nterdictor, the intruder in service (if present) is removed from the

ode. If the interdictor arrives at an empty node, he immediately

eaves the network. 

Intruders routing through the network leave a node either be-

ause of service completion or because of interdiction while be-

ng served. Intruders are served at node i with exponential ser-

ice rate μi and interdictors arrive independently according to a

oisson process with rate λ−
i 

. This implies that intruders are inter-

icted with rate λ−
i 

. Due to the memoryless property of the expo-

ential distribution, the probability that an intruder leaves node i

ecause of service completion corresponds to the probability that

he service is completed before an interdictor arrives at node i : 

μi 

μi + λ−
i 

, (1) 

nd the probability that the intruder leaves node i (and is removed

rom the network) due to interdiction equals: 

λ−
i 

μi + λ−
i 

. 

hese steady state probabilities are independent of the presence of

ther intruders in the network and of the time the intruders have

pent in the queue. Route k is completed if an intruder completed

ervice at each node of the route and reaches the sink node with-

ut being interdicted. Therefore, the probability that an intruder

ctually completes route k is given by: 

 ( intruder completes route k ) = 

N k ∏ μr(k,s ) 

μ + λ− . (2) 

s =1 r(k,s ) r(k,s ) T  
.2. Game description 

To model the interaction between intruders and interdictors, we

reate an interdiction game on the queueing network described

bove. The intruders and interdictors compete over the value of

his network, which is the arrival rate of intruders at the sink node,

r equivalently, the sum of departure rates at nodes in T . This is

 zero-sum game in which the intruders try to maximize their

hroughput by deciding on their routes, while the interdictors aim

t minimizing this throughput by deciding on the inspection rates

t nodes in I . 

The intruders select their route by choosing λk for each route k ,

onstrained by the total arrival rate �. Thus, the action set of the

ntruders given the set of routes K , is given by: 

 intruder = 

{ 

λ
∣∣∣∑ 

k ∈ K 
λk = �, λk ≥ 0 , for all k ∈ K 

} 

, (3) 

here λ = (λk : k ∈ K) 

The interdictors select the inspection rate, which is given by
−
i 

for all i = 1 , . . . , N, and the total rate is limited by a nonneg-

tive interdiction budget �−. So the action set of the interdictors

s given by: 

 interdictor = 

{ 

λ−
∣∣∣ N ∑ 

i =1 

λ−
i 

= �−, λ−
i 

≥ 0 , for all i = 1 , . . . , N 

} 

, (4) 

here λ− = (λ−
1 
, . . . , λ−

N 
) 

The payoff function of this game is the throughput (or arrival

ate) of the intruders at the sink node, and is obtained by multi-

lying the arrival rate for each route k by the probability of com-

leting the given route (see Eq. (2) ) and summing over all possible

outes: 

 (λ, λ−) = 

∑ 

k ∈ K 
λk 

N k ∏ 

s =1 

μr(k,s ) 

μr(k,s ) + λ−
r(k,s ) 

. (5) 

.3. Game analysis 

In this section we analyze the interdiction game and prove the

xistence of pure optimal strategies. 

Strategies for the intruders and interdictors are measures F and

 defined for the sets A intruder and A interdictor , such that F (A intruder ) =
 and G (A interdictor ) = 1 . We define the expected payoff by: 

 (v (F , G )) = 

∫ 
A intruder ×A interdictor 

v (λ, λ−) d(F × G ) . 

A pure strategy for the intruder is a strategy F such that F (λ) =
 for a particular λ ∈ A intruder . This pure strategy then is denoted

y λ, and is chosen with probability one. Likewise, pure strategies

or the interdictor are represented by λ−. The existence of pure

trategies can be expressed by the following theorem: 

heorem 1. Consider the interdiction game on a queueing network.

he game has a saddle point λ∗ and λ−∗ in (optimal) pure strategies.
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Moreover, for the interdictor this strategy is unique. The value of the

interdiction game is given by: 

v = max 
λ

min 

λ−
v (λ, λ−) = min 

λ−
max 

λ
v (λ, λ−) 

Proof. Define the following two values: 

v I = sup 

F 

inf 
G 

E (v (F , G )) , 

v II = inf 
G 

sup 

F 

E (v (F , G )) . 

The payoff function v (λ, λ−) is continuous, and the action sets

A intruder and A interdictor are compact. Therefore, sup inf and inf sup

may be replaced by max min and min max respectively, and v I =
v II = v and there exist optimal strategies (see Section IV.3 in Owen

(1982) ). 

The existence of optimal pure strategies can be shown through

the following function: 

f (λ−) = 

N ∏ 

i =1 

μi 

μi + λ−
i 

. 

The Hessian �2 f ( x ) is positive definite, implying that f ( x ) is strictly

convex. The payoff function v (λ, λ−) is therefore strictly convex in

λ− for each λ. Moreover, v (λ, λ−) is a linear, and thus concave,

function in λ for each λ−. Thus, both the interdictor and the in-

truder have an optimal pure strategy and the value is given by v
(see Section IV.4.1 in Owen (1982) ). Because the payoff function is

strictly convex in λ−, the strategy for the interdictor is unique. �

2.4. Optimization model 

Given that optimal pure strategies exist, we formulate a min-

imization problem to find the optimal strategy of the interdictor.

Let K be a fixed, finite set of routes from source to sink through

the queueing network. The following optimization problem finds

optimal strategies of the intruder and the interdictor: 

v = min 

λ−
max 

λ

∑ 

k ∈ K 
λk 

N k ∏ 

s =1 

μr(k,s ) 

μr(k,s ) + λ−
r(k,s ) 

(6)

s.t. 

N ∑ 

j=1 

λ−
j 

= �−, 

K ∑ 

k =1 

λk = �, (7)

λ−
i 
, λk ≥ 0 , for all i = 1 , . . . , N, k ∈ K. (8)

Note that the value v is the arrival rate of intruders at the sink

node N + 1 . In case � = 1 , it also corresponds to the fraction of

intruders that reach their destination, and thus the probability of

reaching the sink node. 

The optimal strategy of the interdictor can be found by solving

the optimization problem as described in the next lemma. 

Lemma 1. For the interdiction game on a queueing network, the

value of the game and the optimal strategy for the interdictor are

found by solving the following convex minimization problem: 

v = min 

λ−
w (9)

s.t. �

N k ∏ 

s =1 

μr(k,s ) 

μr(k,s ) + λ−
r(k,s ) 

≤ w, for all k ∈ K, (10)

N ∑ 

j=1 

λ−
j 

= �−, (11)
L  
λ−
i 

≥ 0 , for all i = 1 , . . . , N. (12)

roof. The probability of completing route k is given by Eq. (2) ,

o the throughput in the case where the intruder always chooses

oute k is given by �
∏ N k 

s =1 

μr(k,s ) 

μr(k,s ) + λ−
r(k,s ) 

. Given any interdiction

trategy λ−, the worst case for the interdictor is when the intruder

hooses to assign his full budget � to the set of routes with max-

mal completion probability. The interdictor tries to minimize this

orst case, which can be achieved by solving the non-linear pro-

ram in Equations (9) –(12) . From the proof of Theorem 1 , we know

hat Constraints (10) are convex in λ−, so Equations (9) –(12) yields

 convex optimization problem. �

Depending on the graph structure, the number of constraints in

emma 1 can grow exponentially. This is certainly the case for a

omplete graph. 

Note that w is the maximum payoff the intruders can obtain for

ny available route, given the choice of λ− of the interdictors. In

he following section, we solve this model for networks with spe-

ial structures, such as networks with only parallel or only tandem

odes. These are the networks in which routes do not intersect.

ecause the payoff-function is continuous in λ−, the probability of

ompleting a specific route in these networks must be the same for

ach route. In the next section, we also provide numerical results

or networks with a general network structure. 

. Finding optimal strategies 

In the previous section, we described an interdiction game in

hich intruders and interdictors compete over the throughput of

he intruders. In this section, we derive analytical expressions and

lgorithms for finding optimal strategies, for three special cases. In

hese cases, we let K equal the set of all possible routes. Finally,

e use the analytical expressions to speed up the solving process

or general networks and provide numerical results. 

.1. Network of parallel nodes 

Consider a network of parallel nodes as shown in Fig. 2 a. The

ength of each route k equals one. There are N possible routes such

hat r k = [ k ] for k = 1 , . . . , N. The payoff function of the game is

iven by: 

 (λ, λ−) = 

N ∑ 

k =1 

λk 

μk 

μk + λ−
k 

. 

he value and optimal strategies of this game are given in the fol-

owing theorem: 

heorem 2. Consider the interdiction game on a network of parallel

odes. For the interdictors, the unique optimal strategy λ−∗ is given

y: 

−∗
i 

= 

μi ∑ N 
j=1 μ j 

�−, for all i = 1 , . . . , N. (13)

he value of the game is: 

 = 

∑ N 
j=1 μ j ∑ N 

j=1 μ j + �−
�. (14)

roof. According to Theorem 1 , there exists an optimal pure strat-

gy and the value is given by v = max λ min λ− v (λ, λ−) . Through

emma 1 , we know that optimal strategies for the interdictors can
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Fig. 2. Two networks for which an explicit value of the game can easily be derived. (a) Network of parallel nodes and (b) Network of tandem nodes. 
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e found by solving: 

in 

λ−
w 

s.t. �
μi 

μi + λ−
i 

≤ w, for all i = 1 , . . . , N, 

N ∑ 

j=1 

λ−
j 

= �−, 

λ−
i 

≥ 0 , for all i = 1 , . . . , N. 

(15) 

iven this network of parallel nodes, the interdictor must ensure

hat the probability of completing a specific route will be the same

or each route. Thus, for an optimal λ−∗: 

 = �
μi 

μi + λ−∗
i 

, for all i = 1 , . . . , N. (16) 

y combining Eq. (16) with the interdiction budget constraint
 N 
j=1 λ

−
j 

= �−, we obtain the optimal strategy λ−∗ and the value

f the game. �

Eq. (13) , shows that inspection rates increase with node service

ates. 

Given Eq. (14) , it follows that the value of the game is depen-

ent only upon the sum of the service rates μi and not upon how

hese rates are assigned to the nodes. Thus, from a game-theoretic

oint of view, a network of parallel nodes is equivalent to a single

ueue with service rate equal to the sum of service rates. 

.2. Network of tandem nodes 

Consider a network of tandem nodes as shown in Fig. 2 b. There

s only one route with length N and rate �. Therefore, the value

f the game only depends on the strategy of the interdictor. The

ayoff function of the game is given by: 

 (λ−) = �
N ∏ 

i =1 

μi 

μi + λ−
i 

. (17) 

or technical purposes, we introduce a relaxation of the optimiza-

ion model described in Section 2.4 . In this model, only the bud-

et Constraint (7) is taken into account, relaxing the non-negativity

onstraints (8) . The value and optimal solutions of this relaxation

odel with the Objective function (17) are given by the following

emma: 

emma 2. Consider the relaxation problem on a network of tandem

odes. The optimal solution λ−∗ is given by: 

−∗
i 

= 

�− + 

∑ N 
j=1 μ j 

N 

− μi , f or all i = 1 , . . . , N, (18) 

nd the value of this relaxation is: 

 

r = �
N ∏ 

i =1 

Nμi ∑ N 
j=1 μ j + �−

. (19) 
oreover, if 
�−+ ∑ N 

j=1 μ j 

N ≥ max j μ j , the optimal solution and the

alue of the relaxation problem are equal to the optimal strategies

nd the value of the original interdiction game. 

roof. The value v r of the relaxation can be found by solving the

ollowing optimization problem: 

 

r = min 

λ−
�

∏ N 
i =1 

μi 

μi + λ−
i 

, 

s.t. 
∑ N 

i =1 λ
−
i 

= �−. 

n order to derive v r , we use a Lagrangian approach. The La-

rangian of this problem is given by: 

 (λ−, ψ) = �
N ∏ 

i =1 

μi 

μi + λ−
i 

+ ψ 

( 

N ∑ 

j=1 

λ−
j 

− �−

) 

. 

aking the partial derivatives with respect to λ−
i 

and ψ , and

ewriting, enables the calculation of the optimal solution of the re-

axation. If 
�−+ ∑ N 

j=1 μ j 

N ≥ max j μ j , then λ−∗
i 

≥ 0 for all i = 1 , . . . , N.

n that case, it is also a feasible solution to the original game and

 

r is an upper bound for the value v of the original game. Because

here are fewer constraints in the relaxation model, v r also gives

 lower bound for v . Combining the lower and upper bound, gives

 

r = v and the resulting solution is also an optimal strategy for the

riginal game. �

Eq. (18) shows that the inspection rate increases as the service

ate decreases, contrary to the case for parallel nodes. This equa-

ion also suggests that if the service rate of a particular node i is

ery high, it is optimal to set λ−
i 

= 0 beforehand. To be more pre-

ise, suppose that 
�−+ ∑ N 

j=1 μ j 

N < max j μ j . Then there is a node i

uch that λ−
i 

< 0 and the value of the relaxation does not corre-

pond to the value of the original game. To find a feasible solu-

ion for the original interdiction game, we introduce an algorithm

hat, starting with the solution of the relaxation, sequentially re-

oves nodes for which λ−
i 

< 0 . In every step of the algorithm, the

tate space is reduced by adjusting the value of λ−
i 

that violates

onstraints (8) . By using this relaxation and iterative approach, we

ventually find the optimal pure strategy for the interdictor for the

riginal game. 

lgorithm 1. 

et I ′ be a subset of the set I , and N 

′ = | I ′ | . 
1. Set I ′ = I, and N 

′ = | I ′ | . 
2. Calculate for all i ∈ I ′ : 

λ−
i 

= 

�− + 

∑ 

j∈ I ′ μ j 

N 

′ − μi . (20) 

If λ−
i 

≥ 0 for all i ∈ I ′ : STOP, λ− is given by Eq. (20) and the

value of the game is given by: 

v = �
∏ 

i ∈ I ′ 

N 

′ μi ∑ 

j∈ I ′ μ j + �− . 

Else: Go to next step 
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Fig. 3. Network of parallel tandem nodes: the number of nodes per route may dif- 

fer. 
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5

3. For all i such that λ−
i 

< 0 : Set λ−
i 

= 0 , remove i from I ′ and

update N 

′ . Return to step 2. 

Theorem 3. Algorithm 1 finds the optimal strategy for the interdic-

tors and the value of the interdiction game on a network of tandem

nodes. 

The proof of Theorem 3 can be found in Appendix A . 

3.3. Networks without intersecting routes 

In this section, we consider networks in which the set of routes

K is restricted to routes that do not intersect. An example of such a

network with three routes is shown in Fig. 3 . Consider a network

of N nodes with routes K that do not intersect, in which route k

consists of N k nodes. The value function of this game is given by: 

v (λ, λ−) = 

∑ 

k ∈ K 
λk 

N k ∏ 

s =1 

μr(k,s ) 

μr(k,s ) + λ−
r(k,s ) 

. (21)

As before, we first consider the relaxation model such that λ−
i 

< 0

is allowed. �−
k 

is defined as the interdiction budget assigned by

the interdictor to route k : 

�−
k 

= 

N k ∑ 

s =1 

λ−
r(k,s ) 

, for all k ∈ K, 

�− = 

∑ 

k ∈ K 
�−

k 
. (22)

The optimal solution and the value of this relaxation are given by

the following lemma: 

Lemma 3. Consider the relaxation problem with Objective function

(21) on a network without intersecting routes. The value v r of this

model can then be found by solving: 

�− + 

N ∑ 

i =1 

μi = 

∑ 

k ∈ K 
N k 

N k 

√ 

�
∏ N k 

s =1 
μr(k,s ) 

v r 
. 

Moreover, the budget assigned to route k in the optimal solution, is

given by: 

�−∗
k 

= N k 

N k 

√ 

�
∏ N k 

s =1 
μr(k,s ) 

v r 
−

N k ∑ 

t=1 

μr(k,t) . 

Proof. If we knew the interdiction budget �−
k 
, Lemma 2 could be

used to obtain the value of the relaxation, and its optimal budget

assignment to individual nodes on route k . The throughput of in-

truders over route k is: 

v r k = λk 

N k ∏ 

s =1 

N k μr(k,s ) ∑ N k 
t=1 

μr(k,t) + �−
k 

. (23)

Therefore, similar to the approach followed in Lemma 1 , the op-

timal solution and value v r in this relaxation can be found by

solving: 
in 

�−
k 

w 

s.t. �

N k ∏ 

s =1 

N k μr(k,s ) ∑ N k 
t=1 

μr(k,t) + �−
k 

≤ w, for all k ∈ K (24)

∑ 

k ∈ K 
�−

k 
= �−. 

olving Eq. (24) yields the optimal strategy �−∗ for the relaxation.

s routes do not intersect, for an optimal �−∗
k 

: 

 

r = �

N k ∏ 

s =1 

N k μr(k,s ) ∑ N k 
t=1 

μr(k,t) + �−∗
k 

, for all k ∈ K, (25)

mplying: 

−∗
k 

= N k 

N k 

√ 

�
∏ N k 

s =1 
μr(k,s ) 

v r 
−

N k ∑ 

t=1 

μr(k,t) . (26)

ombining Eq. (26) and Eq. (22) yields: 

− + 

N ∑ 

i =1 

μi = 

∑ 

k ∈ K 
N k 

N k 

√ 

�
∏ N k 

s =1 
μr(k,s ) 

v r 
. (27)

he value v r can be found by solving Eq. (27) iteratively. �

The optimal strategy is one in which the probability of complet-

ng a particular route, is the same for each possible route. It may

appen that for some route k , 
�−

k 
+ ∑ N k 

s =1 
μ j 

N < max j∈ r k μ j , in which

ase the value of the relaxation model is not necessarily equal to

he value of the original game with inequality constraints. There-

ore, we introduce an algorithm to find a feasible solution. The core

f this algorithm is similar to Algorithm 1 : set λ−
i 

to zero if it vi-

lates the inequality constraints and recalculate optimal strategies

or the relaxation without these nodes. 

lgorithm 2. 

et I ′ be a subset of the set I , let I k = { i ∈ I| i ∈ r k } and I ′ 
k 

a subset

f I k . Moreover, let N 

′ = | I ′ | and N 

′ 
k 

= | I ′ 
k 
| . 

1. Set I ′ = I, N 

′ = | I ′ | , and I ′ 
k 

= I k , N 

′ 
k 

= | I ′ 
k 
| for all k ∈ K . 

2. Obtain v r from: 

�− + 

∑ 

i ∈ I ′ 
μi = 

∑ 

k ∈ K 

N ′ 
k 

√ ∏ 

i ∈ I ′ 
k 

N 

′ 
k 
μi 

v r 
. 

3. For all k ∈ K , let: 

�−
k 

= N 

′ 
k 

N ′ 
k 

√ 

�
∏ 

i ∈ I ′ 
k 
μi 

v r 
−

∑ 

i ∈ I ′ 
k 

μi . 

4. For all k ∈ K and for all i ∈ I ′ 
k 
, let: 

λ−
i 

= 

�−
k 

+ 

∑ 

j∈ I ′ 
k 
μ j 

N 

′ 
k 

− μi . (28)

If λ−
i 

> 0 for all k = 1 , . . . , K and for all i ∈ I ′ 
k 
: STOP, λ− is given

by Eq. (28) and the value of the game is given by v r . 
Else: Go to the next step 

5. For all k ∈ K and for all i ∈ I ′ 
k 
: 

If λ−
i 

≤ 0 and μi = max j∈ I ′ 
k 
μ j (i ∈ I ′ 

k 
) : Set λ−

i 
= 0 and remove i

from I ′ and I ′ 
k 
. Then, go back to Step 2. 

heorem 4. Algorithm 2 finds the optimal strategy for the interdic-

ors and the value of the interdiction game on a network of parallel

andem nodes without intersections. 

The proof of Theorem 4 can be found in Appendix A . 

emark 1. The algorithm can be more efficient by replacing Step

 of the algorithm with: 
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• For all k ∈ K and for all i ∈ I ′ 
k 
: 

If λ−
i 

< 0 : Set λ−∗
i 

= 0 and remove i from I ′ and I ′ 
k 
. Then, go

back to Step 2. 

ue to its length, a proof that the adjusted algorithm also finds an

ptimal solution is omitted. 

.4. General network 

In the previous sections, we obtained analytical expressions and

lgorithms to find optimal strategies for special networks, which

o not contain intersecting routes. In this section, we discuss the

eneral network case. 

The optimal strategy for the general network case is obtained

sing Lemma 1 . The previously introduced results can be used to

peed up the process of solving general networks. In particular, uti-

izing Lemma 2 may decrease the number of general network vari-

bles with equal service rates in the following way. Each route can

e split into a set of intersection nodes I I 
k 

(nodes that are also part

f another route) and, between these intersection nodes, segments

f tandem nodes I T 
k 

= I k \ I I k . Constraints (10) in Lemma 1 can then

e rewritten as follows: ∏ 

i ∈ I I 
k 

μi 

μi + λ−
i 

∏ 

i ∈ I T 
k 

μi 

μi + λ−
i 

≤ w, for all k ∈ K. 

iven the interdiction rates λ− and a route k , the order of the

odes in this route has no impact on the game value. Therefore,

oute k can be seen as a sequence of intersection nodes I I 
k 

and one

eparate tandem queue with nodes I T 
k 

. Let ˜ �−
k 

be the total budget

hat is assigned to the tandem nodes in route k ( ̃  �−
k 

= 

∑ 

i ∈ I T 
k 
μi ).

f ˜ �−
k 

is known, it is optimal to divide this budget over the nodes

sing Lemma 2 , as this can be seen as a separate tandem queue.

o, by Lemma 2 , the constraints can be replaced with the following

onstraints: 

∏ 

i ∈ I I 
k 

μi 

μi + λ−
i 

∏ 

i ∈ I T 
k 

| I T 
k 
| μi ∑ 

j∈ I T 
k 
μ j + 

˜ �−
k 

≤ w, for all k ∈ K. (29) 

emark 2. Lemma 2 gives a value for the relaxation, which equals

he value of the original game only if no negative interdiction rate

s assigned to one of the nodes. This is always the case if all nodes

ave an equal service rate because nodes with equal service rates

lways have the same interdiction rate. Constraints (29) can also

e used to solve networks with unequal service rates. Then, by

nalogy with Algorithm 2 , the nodes with a negative interdiction

ate can be removed from the network and the resulting non-linear

rogram must be solved again. 

.5. Numerical examples 

We have developed an interdiction game with intruders and in-

erdictors and derived optimal strategies. In this section, we first

onsider the computational efforts of our algorithms. Then, we

resent two illustrative examples. 

.5.1. Computational efforts 

This section explores the computational efforts required to ob-

ain the optimal strategy. To this end, Table 1 below presents the

unning times for randomly generated networks both for a direct

mplementation of Lemma 1 and invoking the structural results

f Section 3.4 based on Lemma 2 . For the results of Table 1 , we

onstructed random routes in a network whose underlying graph

s complete, and all nodes have service rate one. For each case,

e generated ten random instances and show the average values

nd 95%-confidence intervals in Table 1 . The average length of the
outes equals the square root of the number of nodes, and in gen-

ral it holds that if the number of routes is small, the number of

ntersection nodes is also small. 

To find optimal strategies, we used CVX 2.1, a package for

olving convex programs ( CVX Research (2016) , Grant and Boyd

2008) ), in Matlab version R2014b MATLAB (2014) on an Intel(R)

ore(TM) i7 CPU, 2.4 gigahertz, 8 gigabytes of RAM. To this end,

e reformulated Constraints (10) such that they comply with the

uleset of Disciplined Convex Programming (DCP) ( Grant, Boyd, and

e (2006) ) as follows: 

N k ∏ 

s =1 

μr(k,s ) 

N k ∏ 

s =1 

(
μr(k,s ) + λ−

r(k,s ) 

)−1 ≤ w, 

hich can be rewritten as: 

 

N k ∏ 

s =1 

v −1 
r(k,s ) 

≤ w, 

here C = �
∏ N k 

s =1 
μr(k,s ) is a constant and v r(k,s ) = μr(k,s ) + λ−

r(k,s ) 
.

nvoking the function prod _ in v from the CVX library, the reformu-

ation of the convex program of Lemma 1 meets the requirements

f the DCP ruleset ( Grant et al. (2006) ). With this formulation, CVX

nds the optimal solution of the problem. 

From Table 1 , we observe that the running time for networks

f reasonable size remains acceptable for practical purposes. The

etwork structure exploited in Lemma 2 considerably reduces the

unning time for networks containing a relatively low number of

outes. 

.5.2. Networks of parallel and tandem nodes 

First, we compare a network of parallel nodes with a network

f tandem nodes. Both networks consist of ten nodes with service

ate one. The results are shown in Fig. 4 a. For a network with tan-

em nodes, the throughput is much lower than for the network

ith parallel nodes. This is an intuitive result because the intruder

ust be served at all nodes within a tandem node network, while

n the network with parallel nodes, intruders are only required to

omplete service at one node. 

Second, we investigate whether it is better to design a net-

ork with one node or with multiple nodes, i.e. the optimal lo-

ations for protection against intruders. In a network with parallel

odes, we see that the value of the game increases in the num-

er of nodes because intruders can choose between multiple paths

see Theorem 2 ). Therefore, in order to obtain the same value in a

etwork with multiple nodes, the service rate must be smaller in

roportion to the number of nodes, e.q., the services rate must be

alved if the number of nodes is doubled. 

Now, consider a tandem network in which the intruders are re-

uired to complete service at all nodes. We compare one and two

ode cases. In the two node case the intruder is served twice as

ast. Fig. 4 b shows that for a low interdiction budget, it is better to

ave one node, while for a high interdiction budget, most intruders

re intercepted if multiple nodes are considered. These examples

ot only illustrate that our model can be used to determine op-

imal deployment strategies of the interdictors, but they may also

elp in the design of an effective network topology. 

.5.3. General network 

Consider the network in Fig. 5 with six intersecting routes

 1 , r 2 , . . . , r 6 . These routes have six intersection nodes i 1 , i 2 , . . . , i 6 
nd 35 tandem nodes. For each node, the service rate equals one.

e solved this model in Matlab for different values of �−. The to-

al arrival rate of the intruder � equals one. The value v and opti-

al strategies λ− and 

˜ �− for the interdictor are shown in Table 2 .

he rates for all intersection nodes are given by λ−
i 

, . . . , λ−
i 

and

1 6 
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Table 1 

Running times for solving Lemma 1 with and without implementation of Lemma 2. 

# Nodes # Routes � Running time after Running time without Game 

implementation of implementation of value 

Lemma 2 (seconds) Lemma 2 (seconds) 

10 0 0 10 5 2.44 ( ± 0.13) 4.03 ( ± 0.16) 0.381 ( ± 0.020) 

10 0 0 50 5 13.66 ( ± 2.99) 14.07 ( ± 2.81) 0.694 ( ± 0.024) 

10 0 0 100 5 27.39 ( ± 1.21) 27.41 ( ± 1.32) 0.777 ( ± 0.010) 

50 0 0 10 10 4.17 ( ± 0.46) 12.53 ( ± 0.62) 0.199 ( ± 0.025) 

50 0 0 50 10 25.13 ( ± 1.10) 36.11 ( ± 1.47) 0.563 ( ± 0.018) 

50 0 0 100 10 66.95 ( ± 5.10) 72.94 ( ± 4.50) 0.680 ( ± 0.014) 

250 0 0 10 20 8.81 ( ± 1.79) 63.52 ( ± 2.16) 0.058 ( ± 0.018) 

250 0 0 50 20 55.66 ( ± 3.97) 121.96 ( ± 5.08) 0.385 ( ± 0.015) 

250 0 0 100 20 273.56 ( ± 19.42) 553.85 ( ± 62.16) 0.536 ( ± 0.009) 

(a) (b)

Fig. 4. Illustrative examples. (a) Compare parallel and tandem nodes and (b) Different network design. 

Table 2 

Strategies interdictor for the general network of Fig. 5 . 

�− = 0 . 5 �− = 1 �− = 5 �− = 10 �− = 50 

v 0.8512 0.7321 0.2818 0.1162 0.0012 

λ−
i 1 

– – 0.158 (3.2%) 0.684 (6.8%) 2.175 (4.4%) 

λ−
i 2 

0.070 (14.1%) 0.141 (14.1%) 0.497 (9.9%) 0.832 (8.3%) 2.778 (5.6%) 

λ−
i 3 

0.098 (19.5%) 0.197 (19.7%) 1.047 (20.9%) 1.789 (17.9%) 4.361 (8.7%) 

λ−
i 4 

0.098 (19.5%) 0.197 (19.7%) 0.779 (15.6%) 1.184 (11.8%) 2.839 (5.7%) 

λ−
i 5 

0.070 (14.1%) 0.141 (14.1%) 0.722 (14.4%) 1.098 (11.0%) 2.734 (5.5%) 

λ−
i 6 

0.070 (14.1%) 0.141 (14.1%) 0.734 (14.7%) 1.290 (12.9%) 3.110 (6.2%) 

˜ �−
r 1 

– – – – 3.193 (6.4%) 
˜ �−

r 2 
– – – 0.110 (1.1%) 3.738 (7.5%) 

˜ �−
r 3 

– – 0.295 (5.9%) 0.828 (8.3%) 6.238 (12.5%) 
˜ �−

r 4 
– – – 0.304 (3.0%) 4.769 (9.5%) 

˜ �−
r 5 

– – 0.007 (0.1%) 0.400 (4.0%) 5.537 (11.1%) 
˜ �−

r 6 
0.094 (18.8%) 0.182 (18.2%) 0.761 (15.2%) 1.481 (14.8%) 8.539 (17.1%) 
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r 1 

, . . . , ˜ �−
r 6 

are the rates for all tandem nodes of one route. The

results are summarized in Table 2 . 

We would expect that the interdiction budget is evenly spread

over the routes to make sure that the maximum completion

probability is minimal. Table 2 shows the expected spread of

interdiction budget over the routes. For example in the last case

( �− = 50 ), all routes get around 24% of the total budget. From

Lemma 2 , we expect that nodes in shorter routes (routes 3, 5 and

6) would have higher interdiction rates than nodes along longer

routes. This can also be seen in Table 2 . Table 2 also shows that

if the interdiction budget �− is low, most budget is assigned to

the intersection nodes because multiple routes can be protected

simultaneously from these nodes. However, if the total interdiction

budget increases, more budget remains for the tandem nodes.
oreover, more budget is assigned to intersection nodes where

ore routes intersect, such as i 3 , because more routes can be

rotected from the same point. Also, routes with a small number

f intersection nodes, such as r 6 , have more budget allocated on

he tandem nodes to ensure that these routes are sufficiently

rotected. In this example, the total route budget is almost the

ame for each route. This doesn’t have to be the case if the lengths

f all routes are very different or the service rates are unequal. 

. Probabilistic routing of intruders 

In Section 2 , we described an interdiction game on a network

ith fixed routing of intruders. In that game, intruders select their

oute upon arrival at the network by choosing from a fixed set of
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Fig. 5. Example of a general network. 
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outes. We can also model probabilistic routing of the intruders. In

his case, intruders decide their next step at each node according

o a certain probability. In this section, we describe the game with

robabilistic routing of intruders and show that the results coin-

ide with those for fixed routing of intruders. 

.1. Network with probabilistic routing of intruders 

Consider a network, similar to the network of Section 2.1 , but

ow with probabilistic routing of the intruders. Intruders arrive

t the network according to a Poisson process with rate � and

oute through the network using a probability matrix P = (p i, j ) ,

, j ∈ { 0 , 1 , . . . , N, N + 1 } where p i , j is the probability of routing to

ode j after service completion at node i . This probability p i , j is

nly allowed to be positive if there is a link between node i and

ode j in the queueing network; the set of all possible links is

iven by E . Intruders arrive at node i , i ∈ S , with probability p 0, i ,

o the arrival rate at node i is given by λi = p 0 ,i �. If i �∈ S , λi = 0 .

s i ∈ T has just one outgoing arc (to N + 1 ), the probability of

eaving the network after service completion at node i ∈ T is given

y p i,N+1 = 1 . Note that a P matrix may introduce routes with an

rbitrary number of cycles. 

Let R be the (possibly infinite) set of all possible finite routes

hrough the network, in which r ( k , s ) is the sth node of route k ∈
 and N k is the length of route k (in which 0 and N + 1 are not

ccounted for). We let r(k, N k + 1) = N + 1 . Then, given matrix P ,

he probability that route k is chosen by the intruder equals: 

 ( route k is chosen ) = p 0 ,r(k, 1) 

N k −1 ∏ 

s =1 

p r (k,s ) ,r (k,s +1) . (30) 

he probability that intruders leave node i because they finished

ervice is given by Eq. (1) and the probability that route k is actu-

lly completed without interdiction is given by Eq. (2) . 

.2. Game description 

Consider the interdiction game with the probabilistic routing of

ntruders. Instead of intruders selecting arrival rates λk for route k ,

ntruders select a routing matrix P . Therefore, the action set of the

ntruders ( Eq. (3) ) is replaced by: 

¯
 intruder = 

{ 

P | 
N+1 ∑ 

j=1 

p i, j = 1 for all i = 0 , . . . , N; p i, j ≥ 0 

if (i, j) ∈ E, p i, j = 0 if (i, j) ∈ Ē 

} 

, 
he interdictors action set remains the same as in the fixed rout-

ng scenario ( Eq. (4) ). The payoff function is replaced by the corre-

ponding payoff function, which defines the arrival rate of intrud-

rs at node N + 1 : 

¯
 (P, λ−) = 

∑ 

k ∈ R 
λr(k, 1) 

N k ∏ 

s =1 

p r (k,s ) ,r (k,s +1) 

μr(k,s ) 

μr(k,s ) + λ−
r(k,s ) 

, (31) 

ith λr(k, 1) = p 0 ,r(k, 1) �. 

.3. Relation between optimal strategies 

In Section 3 , we described methods to find optimal strategies

or the interdiction game on a network with fixed routing of in-

ruders. In this section, we discuss the relationship between the

ptimal strategies for a network with probabilistic routing of in-

ruders. We first show that for each network with probabilistic

outing, there exists a network with fixed routing of intruders such

hat the average arrival rates are equal and vice versa. 

emma 4. Take λ− fixed. For every network with probabilistic routing

f intruders and given λ, there exists a network with fixed routing of

ntruders, such that the average arrival rate at each node is the same

n both networks. Furthermore, for every network with fixed routing of

ntruders and given λ, there exists a network with probabilistic rout-

ng of intruders, such that the average arrival rate at each node is the

ame in both networks. 

The proof of Lemma 4 can be found in Appendix A . 

We use Lemma 4 to prove that optimal strategies also exist in

he case that intruders use probabilistic routing. Consider a net-

ork with N intermediate nodes, a source node and a sink node.

oreover, let F total be the finite set of all possible fixed routes

ithout cycles between the source node 0 and the sink node N + 1 .

or that case, an optimal strategy for the intruders and interdictors

an be calculated by the optimization model in Section 2.4 . These

trategies are given by λ∗ and λ−∗ and the optimal value is given

y v . We show that the value of the game with probabilistic rout-

ng of intruders exists and is the same as the value of the game

ith fixed routing of intruders. Moreover, optimal strategies of the

nterdictor are the same for both games. 

heorem 5. Consider the interdiction game on a queueing network

ith probabilistic routing of intruders. There exist optimal strategies

 

∗ and λ−∗ and the value of the game with probabilistic routing of

ntruders equals the value v of the game with fixed routing on F total .

oreover, the strategy of the interdictor is also optimal for the game

ith fixed routing. 

roof. Take an arbitrary routing matrix P that describes a strat-

gy of intruders for a network with probabilistic routing of intrud-

rs. Suppose that the interdictor chooses the arrival rates accord-

ng to the optimal strategy λ−∗ of the game with fixed routing of

ntruders on F total . By Lemma 4 and given λ−∗, we can construct

 network with a set of fixed routes F̄ and strategy λ̄ such that

he average arrival rate at each node is the same for the network

ith probabilistic routing and fixed routing of intruders. Because

he payoff of both games ( Eqs. (5) and ( 31 )) is given by the arrival

ate at the sink node, it follows that: 

 ( ̄λ, λ−∗) = v̄ ( P, λ−∗) . (32) 

he set of fixed routes F̄ , derived from probabilistic routing may

e infinite. This is due to the fact that probabilistic routing may

nduce cyclic paths. We show that for our model with fixed rout-

ng, cyclic routes can be eliminated. To this end, suppose that

he intruder assigns a positive arrival rate to a cyclic route k :

k > 0. By arbitrarily eliminating detours in the cyclic route, we

btain a non-cyclic route k̄ such that P ( route k̄ is completed ) ≥
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P ( route k is completed ) (by Eq. (2) ). Transferring the rate λk to λ
k̄ 

results in an improved strategy for the intruder. 

So, let F̄ ′ be the set of routes derived from P , with all cyclic

routes eliminated and let λ̄′ be the corresponding improved strat-

egy for the intruder, so: 

v ( ̄λ, λ−∗) ≤ v ( ̄λ′ , λ−∗) . (33)

Also, because λ∗ is the optimal strategy of the intruder for the case

that all possible fixed routes without cycles are allowed, it follows

that 

v ( ̄λ′ , λ−∗) ≤ v ( λ∗, λ−∗) = v . (34)

Combining Eqs. (32) –( 34 ) yields: 

v̄ ( P, λ−∗) ≤ v , for all P. (35)

We now complete the proof by showing that there exists a

P ∗ such that v̄ ( P ∗, λ−) ≥ v , for all λ−. Given optimal strategies λ∗

and λ−∗ from the game with fixed routing, a routing matrix P ∗

can be constructed according to Lemma 4 . Because the average ar-

rival rates are the same, the average arrival rates at the sink node

are also equal and the values of the payoff functions of both the

game with probabilistic routing and the game with fixed routing

are equal. Therefore: 

v̄ ( P ∗, λ−∗) = v ( λ∗, λ−∗) = v . (36)

Consider an arbitrary strategy λ− for the interdictor. Using the

same argument, we know that: 

v̄ ( P ∗, λ−) = v ( λ∗, λ−) ≥ v , (37)

as λ∗ is optimal for the intruder. 

Combining ( Eq. 35 ) and ( Eq. 37 ) proves that the value exists

and is given by v . Moreover, the optimal strategy of the interdictor

remains the same. �

Remark 3. For a network with probabilistic routing, the construc-

tion of the network with fixed routing as in Lemma 4 also ensures

that the probability of following a specific route is the same for

both networks. This means that for every network with probabilis-

tic routing of intruders, there exists an equivalent network with

fixed routing of intruders. 

However, the reverse is not necessarily true. In fact, consider a

network with fixed routing of intruders; it is not always possible

to construct an equivalent network with probabilistic routing of in-

truders as the next example shows. Consider a network with two

routes and one intersection node. If two routes intersect, there may

exist more routes in the network with probabilistic routing than in

the original network with fixed routing, due to combinations of the

original routes. 

Although it is not always possible to create a probabilistic net-

work that is equivalent to the network with fixed routing, one can

introduce multiple intruders to ensure that the probabilistic net-

work contains the same routes. 

The question now becomes: how many intruders types are nec-

essary to construct a network with probabilistic routing which is

equivalent to the network with fixed routing? Below we describe

how to find an upper bound for the number of types we need. 

Consider a network with fixed routing and K possible routes.

To find an upper bound for the number of customer types, we

construct a graph G , that has K nodes. All nodes correspond to

a route, and two nodes are considered to be connected if the

corresponding routes intersect in the network with fixed routing.

An upper bound for the number of types equals the chromatic

number χ ( G ). The nodes that do have the same type in the vertex

coloring do not intersect, so they are allowed to have the same

intruder type in the probabilistic network. This upper bound

cannot be improved for the general case. However, fewer types
ill be enough in many specific situations, such as when routes

nly intersect at their last node. 

emark 4. Note that the network with probabilistic routing is

nown to have a product-form solution ( Gelenbe (1991) ). We do

ot need this to calculate the intruders’ probability of completing

 specific route because we can rely on the fact that intruders are

nly removable from the queue if they are in service and that in-

erdictors arrive at the network according to an independent Pois-

on process. 

. Concluding remarks 

In this paper, we have described an interdiction game on a

etwork with intruders and interdictors. The interdiction game is

layed within a queueing network where intruders are the regular

ustomers and the interdictors are the negative customers. For the

ase that the routing of the intruders is considered fixed, we de-

igned a network game that has optimal pure strategies and we

ound analytical expressions for special cases, such as networks

ith only tandem or parallel queues. Also, for a network with-

ut intersecting nodes, we introduced an algorithm to find optimal

trategies for the interdictors. 

For general networks, we showed that the analytical results can

e used to speed up finding optimal strategies, by dividing the net-

ork into a set of intersection nodes and separate tandem nodes.

oreover, if there is a subnetwork of the network, that only con-

ists of parallel routes which do not intersect, then the optimal

trategy of the interdictor is such that the completion probability

s the same for each of these routes. Also, if the network contains a

art that only consists of tandem nodes without intersections, the

odes with a lower service rate must be inspected more often. 

In this paper, we also considered modeling the routing of in-

ruders in a probabilistic manner. We showed that in this case, op-

imal strategies for interdictors and intruders also exist. Moreover,

he value and optimal strategies of the interdictor of this game

qual the value and optimal strategies of the interdictor of the cor-

esponding game with fixed routing of intruders. So, the intrud-

rs cannot improve their strategy by deciding to use a probabilistic

outing strategy. 

There are several possible extension of our model. Instead of

odeling interdictors that arrive at a specific node for inspection

nd then leave the network, it could be more realistic in some

ases to model routing of interdictors. In this approach, interdic-

ors not only inspect the nodes, but also route through the net-

ork. Another possible extension concerns each node as a single

erver queue with exponential service time. For further research, it

ould be interesting to study different types of queues, for exam-

le with multiple servers or a different service discipline. 
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ppendix A. Proofs 

roof of Theorem 3. Rewrite the optimization problem for the

riginal game as: 

in 

λ−
�

∏ N 
i =1 

μi 

μi + λ−
i 

s.t. 
∑ N 

i =1 λ
−
i 

− �− = 0 , 

−λ−
i 

≤ 0 , for all i = 1 , . . . , N. 

he KKT-conditions can be used to prove optimality of a solu-

ion in a non-linear program (see Section 4.3 in Bazaraa, Sherali,

 Shetty (1993) ). In order to prove optimality, we show that the
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a  
KT-conditions hold for the solution λ−∗ obtained by Algorithm 1 .

hus, α and β must be found such that: 

−1 

μi + λ−∗
i 

v (λ−∗) + α − βi = 0 , i = 1 , . . . , N, (A.1) 

N 
 

j=1 

λ−∗
j 

− �− = 0 , (A.2) 

i λ
−∗
i 

= 0 , i = 1 , . . . , N, (A.3) 

i ≥ 0 , i = 1 , . . . , N. (A.4) 

et I ′ = { i ∈ I| λ−∗
i 

> 0 } and let N 

′ = | I ′ | . The equality condition

q. (A.2) holds by construction of the algorithm: 

N 
 

i =1 

λ−∗
i 

= 

∑ 

i ∈ I ′ 

(∑ 

j∈ I ′ μ j + �−

N 

′ − μi 

)

= N 

′ 
∑ 

j∈ I ′ μ j + �−

N 

′ −
∑ 

i ∈ I ′ 
μi = �−

oreover, from (A.3) , we know that βi = 0 , for all i ∈ I ′ , so

A.1) gives: 

−1 

μi + λ−∗
i 

v (λ−∗) + α = 0 , for all i ∈ I ′ . 

herefore, using Eq. (20) : 

= 

1 

μi + λ−∗
i 

v (λ−∗) = 

N 

′ ∑ 

j∈ I ′ μ j + �− v (λ−∗) . 

f λ−∗
i 

= 0 (for all i ∈ I �I ′ ), (A.1) gives: 

−1 

μi 

v (λ−∗) + 

N 

′ ∑ 

j∈ I ′ μ j + �
v (λ−∗) − βi = 0 , 

βi = 

(
N 

′ ∑ 

j∈ I ′ μ j + �− − 1 

μi 

)
v (λ−∗) . 

y proving that β i ≥ 0 for all i , the proof that the KKT-conditions

old is completed 

Note that the value of the function v (λ−∗) is positive by defini-

ion, Moreover, by construction of the algorithm, we know for any

 ∈ I �I ′ : ∑ 

j∈ I ′ ∪{ i } μ j + �−

N 

′ + 1 

≤ μi , ∑ 

j∈ I ′ μ j + �−

N 

′ + 1 

≤ N 

′ 
N 

′ + 1 

μi , 

N 

′ ∑ 

j∈ I ′ μ j + �− − 1 

μi 

≥ 0 . 

herefore, β i ≥ 0, for all i ∈ I and the KKT-conditions hold for the

olution found by Algorithm 1 . Furthermore, because of the con-

exity of the value function and linearity of the constraints, the

KT-conditions are sufficient, which completes the proof. �

roof of Theorem 4.. The value of route k is defined as the payoff

f the game if the intruders choose to use only route k , so λk = �.

n an optimal solution, the value for each route should be equal. If

his is not the case, the strategy of the interdictor can be improved

y shifting the arrival rate λ−∗, such that more interdiction budget

s assigned to the route of minimal detection probability. To prove

ptimality of the algorithm, (1) the value over each route must be

qual, (2) the algorithm must find a feasible solution, and (3) the

rrival rates that are set to zero by the algorithm, must also be

ero in the optimal solution. 
The last condition is necessary because of the following. If for a

ertain node the interdictor’s arrival rate is set to zero in the op-

imal solution, then the probability of service completion at this

ode equals one. In essence, this node has no impact on the to-

al throughput of the intruders. Therefore, ignoring these nodes in

he optimization model, which is done for the relaxation in the

ast step of the algorithm, gives the same solution. If solving this

elaxation without these nodes also yields a feasible solution, the

olution of the relaxation also is a solution for the original game. 

The first condition holds because of construction of the al-

orithm: the optimal strategy is calculated under this assump-

ion (by Eq. (25) ). The second condition holds because the algo-

ithm stops if all arrival rates are larger than or equal to zero. We

ill prove that the arrival rates that are set to zero by the algo-

ithm, are also zero in the optimal solution. Let I be the set of all

odes and let I k be the set of nodes that are in route k . More-

ver, let I ′ = { i ∈ I| λ−
i 

> 0 , by algorithm } and let I OPT = { i ∈ I| λ−∗
i 

>

 , in optimal solution } . We must therefore prove that I ′ = I OPT . Let

 

′ be the value found by the algorithm, let v OPT be the value of the

riginal game and let v t be the value of the relaxation calculated

uring iteration t in step 2 of the algorithm. 

We first prove that I ′ ⊇I OPT . Take i �∈ I ′ such that i is removed dur-

ng the first iteration and μi = max j∈ I k μ j for some k . Because v 1 
s the value for the relaxation without any inequality constraints,

e know that v OPT ≥ v 1 . Let �−1 
k 

be the budget assigned to route

 during the first iteration and let �−OPT 
k 

be the budget assigned

o route k in the optimal solution. Consider two cases: 

1. �−1 
k 

≥ �−OPT 
k 

: 

Thus, in the optimal solution, route k receives a smaller or

equal amount of budget. The arrival rate λ−
i 

is obtained from

Eq. (28) and is increasing in �−
k 

. Since it is optimal to use

Algorithm 1 to assign the budget to the nodes of one tandem,

the same formula must hold for λ−∗
i 

in the optimal solution. So

if �−1 
k 

≥ �−OPT 
k 

, λ−∗
i 

would also be zero in the optimal solution

and therefore, i �∈ I OPT . 

2. �−1 
k 

< �−OPT 
k 

: 

Assume that i ∈ I OPT , so λ−∗
i 

> 0 . Because of maximality of μi ,

all j ∈ I k are in I OPT . Because for all j ∈ I k , λ
−∗
i 

> 0 and the value

of the game equals the value for each route ( Lemma 1 ), v OPT 

is given by Eq. (23) with �−
k 

= �−OPT 
k 

and λk = �. Moreover,

during the first iteration, I ′ = I, so v 1 is given by Eq. (23) with

�−
k 

= �−1 
k 

. Eq. (23) is decreasing in �−
k 

and therefore, v OPT <

v 1 , but this contradicts with v OPT ≥ v 1 . So, our assumption is

not correct and i �∈ I OPT . 

Therefore, if i �∈ I ′ such that i is removed during the first itera-

ion, it follows that i �∈ I OPT . 

Now assume that for all i �∈ I ′ that are removed until itera-

ion t − 1 , i �∈ I OPT . Take j �∈ I ′ such that j is removed during iter-

tion t ( t > 1). Let Ī = { i ∈ I| i not removed before iteration t } and

 ̄

OPT = { i ∈ Ī | λ−∗
i 

> 0 , in optimal solution } . By induction, we know

or all i ∈ I \ ̄I that i �∈ I OPT . So, running the algorithm with Ī gives

he same solution as running the algorithm with I . By this logic,

he above argument can be used to prove that if i �∈ I ′ such that i is

emoved during the t -th iteration and μi = max j∈ I k μ j for some k ,

hen i �∈ I OPT . In general, if i �∈ I ′ then i �∈ I OPT and I ′ ⊇I OPT . 

We now prove I ′ ⊆I OPT by contradiction. Assume that I ′ �⊆ I OPT .

ecause we already proved I ′ ⊇I OPT , it follows that I ′ ⊃I OPT . The val-

es v ′ and v OPT are the solutions of the optimization problem

 Lemma 1 ) under the additional constraints λ−
i 

= 0 , for all i �∈ I ′ and
−
i 

= 0 , for all i �∈ I OPT respectively. If I ′ ⊃I OPT , there exists at least

ne i ′ ∈ I ′ such that i ′ �∈ I OPT . Therefore, λ−
i ′ > 0 for the first case

 λ−
i 

> 0 , for all i �∈ I ′ ), but λ−
i ′ = 0 for the second case ( λ−

i 
= 0 , for

ll i �∈ I OPT ). This results in a worse solution for the second case and
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v ′ < v OPT . This also contradicts with optimality of v OPT , thus the

assumption was incorrect and I ′ ⊆I OPT . 

Combining I ′ ⊇I OPT and I ′ ⊆I OPT gives I ′ = I OPT , which completes

the proof. �

Proof of Lemma 4. Consider a network with probabilistic routing

of intruders with arrival rates of intruders λi and interdictors λ−
i 
,

and service rates μi for all i ∈ I . R is the set of all possible routes

induced by P ( R may be infinite). Now, we construct a network

with fixed routing of intruders with arrival rate of intruders λ̄k for

a route k . Define for each route k ∈ R the arrival rate of intruders

following fixed routing by: 

λ̄k = λr(k, 1) p r (k, 1) ,r (k, 2) p r (k, 2) ,r (k, 3) , . . . , p r(k,N k ) ,N+1 . (A.5)

This is the arrival rate at the first node multiplied by the proba-

bility of following this route, given P . For the network with prob-

abilistic routing, the mean arrival rate αi at node i is given by the

traffic equations: 

αi = λi + 

∑ 

j 

α j p j,i 
μ j 

λ−
j 

+ μ j 

. (A.6)

For the network with fixed routing, the mean arrival rates are de-

fined by: 

ᾱi = 

∑ 

k ∈ R 

N k ∑ 

s =1 

a i (k, s ) , 

where 

a i (k, s ) = 

⎧ ⎨ 

⎩ 

λ̄k 

s −1 ∏ 

t=1 

μr(k,t) 

μr(k,t) + λ−
r(k,t) 

, if r(k, s ) = i, 

0 , otherwise . 

Substituting the definitions (A.5) and (A.6) , and rearranging terms

yields: 

αi = λi + 

∑ 

j 

λ j p j,i 
μ j 

λ−
j 

+ μ j 

+ 

∑ 

j 

∑ 

h 

λh p h, j p j,i 
μ j 

λ−
j 

+ μ j 

μh 

λ−
h 

+ μh 

+ · · · . 

The same expression can be found for ᾱi by rewriting the traffic

equations for the network with fixed routing and substituting the

definition of a i ( k , s ). Thus, by construction, the average arrival rates

at each node of the network with intruders following fixed routing

equal the average arrival rates of the network with intruders fol-

lowing probabilistic routing. 

Now consider a network with fixed routing of intruders with

rates λ̄k and λ−. We can construct a network with probabilistic

routing of intruders such that the average arrival rates are equal.

For every route k , we have r(k, 1) , r(k, 2) , . . . , r(k, N k ) and arrival

rate λ̄k at node r ( k , 1). The probability p i , j that an intruder is going

to node j after completing service in node i can be calculated by

dividing the flow from i to j by the total flow out of i : 

p i, j = 

∑ K 
k =1 

∑ N k −1 
s =1 

b̄ i, j (k, s ) ∑ K 
k =1 

∑ N k 
s =1 

ā i (k, s ) 
, 

where: 

ā i (k, s ) = 

{
λ̄k , if r(k, s ) = i, 
0 , otherwise , 

b̄ i, j (k, s ) = 

{
λ̄k , if r(k, s ) = i and r(k, s + 1) = j, 
0 , otherwise . 

Also, the arrival rates at node i for the network with probabilistic

routing are given by: 

λi = 

K ∑ 

k =1 

ā i (k, 1) . 
ow, we can readily show that given λ− the average arrival rates

t each node of the network with fixed routing equal the average

rrival rates of the network with probabilistic routing. �
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