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This paper establishes the first performance guarantees for a combinatorial online algorithm that schedules

stochastic, nonpreemptive jobs on unrelated machines to minimize the expected total weighted completion

time. Prior work on unrelated machine scheduling with stochastic jobs was restricted to the offline case, and

required sophisticated linear or convex programming relaxations for the assignment of jobs to machines. The

algorithm introduced in this paper is based on a purely combinatorial assignment of jobs to machines, hence

it also works online. The performance bounds are of the same order of magnitude as those of earlier work, and

depend linearly on an upper bound ∆ on the squared coefficient of variation of the jobs’ processing times.

They are 4 + 2∆ when there are no release dates, and 72 + 36∆ when there are release dates. Bounds on the

performance of combinatorial algorithms for problems with unrelated machines were previously unknown,

even when processing times are not stochastic. For the special case of deterministic processing times and

without release times, the performance bound equals 4, which is tight. As to the technical contribution, the

paper shows for the first time how dual fitting techniques can be used for stochastic and nonpreemptive

scheduling problems.

1. Introduction

Scheduling jobs on multiple, parallel machines is a fundamental problem both in combinatorial

optimization and systems theory. There is a vast amount of different model variants as well as

applications, which is testified by the existence of the handbook [19]. A well studied class of

problems is scheduling a set of n nonpreemptive jobs that arrive over time on m unrelated machines

with the objective of minimizing the total weighted completion time. In the unrelated machines

model the matrix that describes the processing times of all jobs on all machines can have any

* Gordon Gekko (Michael Douglas) in Oliver Stone’s “Wall Street” (Twentieth Century Fox, 1987).
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rank larger than 1. The offline version of the problem is denoted R | rj |
∑
wjCj in the three-field

notation of Graham et al. [9], and the problem has been a cornerstone problem for the development

of new techniques in the design of (approximation) algorithms, e.g. [4, 12, 18, 30].

This paper addresses the online version of the problem where jobs sizes are stochastic. In the

online model jobs arrive over time, and the set of jobs is unknown a priori. For pointers to relevant

work on online models in scheduling, refer to [14, 27]. In many systems, the scheduler may not

know the exact processing times of jobs when the jobs arrive to the system. Different approaches

have been introduced to cope with this uncertainty. If jobs can be preempted, then non-clairvoyant

schedulers have been studied that do not know the processing time of a job until the job is com-

pleted [26, 5, 16, 10, 13]. Unfortunately, if preemption is not allowed then any algorithm has poor

performance in the non-clairvoyant model, as the lower bound for the competitive ratio against

the offline optimal schedule is Ω(n). This is even true if we consider the special case where all jobs

have the same unit weight wj.

This lower bound suggests that the non-clairvoyant model is too pessimistic for non-preemptive

problems. Even if exact processing times are unknown to the scheduler, it can be realistic to assume

that at least an estimate of the true processing times is available. For such systems, a model

that is used is stochastic scheduling. In the stochastic scheduling model the jobs’ processing times

are given by random variables. A non-anticipatory scheduler only knows this random variable Pj

that encodes the possible realizations of job j’s processing time. If the scheduler starts a job on

a machine, then that job must be run to completion non-preemptively, and it is only when the

job completes that the scheduler learns the actual processing time of the job. Both the scheduler

and the optimal solution are non-anticipatory, which roughly means that the future is uncertain

for both, the scheduler and the adversary. Stochastic scheduling has been well-studied, including

fundamental work such as [23, 24] and approximation algorithms, e.g. [25, 32, 21, 31, 29].

This paper considers online scheduling of non-preemptive, stochastic jobs in the unrelated

machine model to minimize the total weighted completion time. This is the same problem as con-

sidered in the paper [21] by Megow et al., but here we address the more general unrelated machines

model. In the stochastic unrelated machine model, the scheduler is given a machine-dependent

probability distribution of a job’s processing time. For a given job the processing times across

different machines need not be independent, but the processing time vectors of different jobs are

assumed to be independent.

Identical machines, special processing time distributions: Restricting attention to non-

preemptive policies, when all machines are identical, perhaps the most natural algorithm is
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Weighted Shortest Expected Processing Time (WSEPT) first. When a machine is free, WSEPT

always assigns the job to be processed that has the maximum ratio of weight over expected size.

When all jobs have unit weight, this algorithm boils down to the SEPT algorithm that greed-

ily schedules jobs with the smallest expected size. When there is a single machine, WSEPT is

optimal [28]. In the case where job sizes are deterministic and arrive at the same time, SEPT

is optimal [11]. In the identical machines setting, SEPT is optimal if job sizes are exponentially

distributed [6, 35], or more generally, are stochastically comparable in pairs [34]. Some exten-

sions of these optimality results to the problem with weights exist as well [17]. For more general

distributions, simple solutions fail [33], and our knowledge of optimal scheduling policies is limited.

Identical machines, arbitrary processing times: To cope with these challenges, approximation

algorithms have been studied. With the notable exception of [15], all approximation algorithms

have performance guarantees that depend on an upper bound ∆ on the squared coefficient of

variation of the underlying random variables. Möhring, Schulz and Uetz [25] established the first

approximation algorithms for stochastic scheduling on identical machines via a linear programming

relaxation. Their work gave a (3 + ∆)-approximation when jobs are released over time (yet known

offline), and they additionally showed that WSEPT is a (3+∆)

2
-approximation when jobs arrive

together1. These results have been built on and generalized in several settings [32, 22, 21, 33, 31, 29],

notably in [21] for the online setting. The currently best known result when jobs are released over

time (yet known offline) is a (2 + ∆)-approximation by Schulz [29]. In the online setting Schulz

gives a (2.309 + 1.309∆)-competitive algorithm [29]. These results build on an idea from [8] to

use a preemptive, fast single machine relaxation, next to the relaxation of [25]. The work of Im,

Moseley and Pruhs [15] gave the first results independent of ∆ showing that there exist poly-

logarithmic approximation algorithms under some assumptions. All these papers address problems

with identical machines.

Unrelated machines, arbitrary processing times: For some 15 years after the results of [25]

for the identical machines case, no non-trivial results were known for the unrelated machines case

despite being a target in the area. Recently Skutella et al. [31] gave a 3+∆
2

-approximation algorithm

for the unrelated machines model when jobs arrive at the same time, and a (2 + ∆)-approximation

when jobs are released over time (yet offline). Central to unlocking an efficient approximation

algorithm for the unrelated machines case was the introduction of a time-indexed linear program

that lower bounds the objective value of the optimal non-anticipatory scheduling policy. It is this

1 The ratio is slightly better, but for simplicity we ignore the additive Θ(1/m) term.
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LP that allows the authors to overcome the complexities of the stochastic unrelated machines

setting.

The work introduced in this present paper targets the more realistic online setting for scheduling

stochastic jobs on unrelated machines. A priori, it is not clear that there should exist an algorithm

with small competitive ratio for this problem. Prior work for the offline problem requires sophisti-

cated linear [31] or convex [3] programming relaxations. Good candidates for online algorithms are

simple and combinatorial, but even discovering an offline approximation algorithm that is simple

and combinatorial remains an open problem.

Results: This paper shows that there exists an online, O(∆ )-competitive, combinatorial algorithm

for stochastic scheduling on unrelated machines. More specifically, in the online-list model, where

jobs arrive online (at time 0) and must be assigned to a machine immediately upon arrival, this

paper establishes a competitive ratio of (4+2∆). Specifically, for deterministic processing times this

bound equals 4, which we show is tight. In the online-time model, where jobs arrive over time, this

paper derives an algorithm with competitive ratio (72 + 36∆). Even though the last competitive

ratio is far from tight, we believe our results are interesting for at least four reasons: (1) It is the

first analysis of a combinatorial algorithm for stochastic scheduling on unrelated machines, and

the first result for stochastic online scheduling in the unrelated machine model. (2) It is the first

competitive analysis for a combinatorial algorithm for scheduling on unrelated machines even for

the deterministic setting. (3) The analysis uses the idea of dual fitting, hence we demonstrate for

the first time that this technique can be used for bounding the performance of scheduling policies

in non-preemptive and stochastic scheduling. (4) The performance bounds, even if not tight, have

the same order of magnitude as those of earlier results in the literature, namely O( ∆).

The combinatorial algorithm rests on the straightforward idea to greedily assign jobs to the

machines where the expected increase of the objective is minimal. The same idea that was used also

before, e.g. in [2, 20, 21], but never it was analyzed for unrelated machine settings. Note that the

Ω(∆) lower bound for fixed assignment policies in [31] yields that these results are asymptotically

tight in ∆ among policies that must irrevocably assign jobs to machines at the time of their release.

As mentioned already above, the analysis proposed in this paper uses dual fitting techniques.

The technique has been used e.g. in [1] for deterministic and preemptive scheduling problems.

This paper therefore establishes the new insight that dual fitting can be used for bounding the

performance of algorithms even for non-preemptive and stochastic settings.
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2. Notation & Preliminaries

The input to the problem consists of a set of unrelated parallel machines M of cardinality m.

This paper considers two online models. In the first model, known as online-list, the scheduler is

presented a sequence of jobs j ∈ J one after the other. Whenever a job is presented the algorithm

has to assign it to one of the machines before the next job is presented. The machine assignment

is decided when a job arrives and the decision on the time the job begins being processed can be

deferred. It is unknown how many jobs will arrive, but once all jobs in J have arrived, the jobs

assigned to any one of the machines must be scheduled on that machine. In the second model,

known as online-time, time progresses and jobs appear over time at their individual release times.

Let rj denote the release time of job j. At the moment of arrival r)j, but also at a later point in

time a job must be assigned to a machine. Once assigned to a machine, the job may wait until

a later time to be processed. Each job needs to be executed on exactly one (and any one) of the

machines in M , and each machine can process at most one job at a time.

The jobs are nonpreemptive. This means that a job, once started, must not be interrupted until

its completion. Moreover, the jobs are stochastic, meaning that each job j’s processing time is

revealed to the scheduler in the form of a random variable Pij for every machine i ∈M . If job j

is assigned to machine i, its processing time will be random according to Pij. It is allowed that

certain jobs j ∈ J cannot be processed on certain machines i∈M , in which case E[Pij] =∞.

In the stochastic scheduling model, the realization of the processing time of a job j becomes

known at the moment that the job completes. This paper considers designing a non-anticipatory

scheduling policy Π that minimizes the expected total weighted completion time E
[∑

j wjCj
]
,

where Cj denotes the completion time of job j in the schedule Π.

This paper assumes that the random variables Pij are discrete and integer valued. This can be

assumed at the cost of a multiplicative factor of (1 + ε) in the final approximation ratio, for any

ε > 0 [31]. This analysis will make use of the following facts about first and second moments of

discrete random variables; these facts also appear in [31].

Lemma 1. Let X be an integer-valued, nonnegative random variable. Then,∑
r∈Z≥0

P[X > r] =E[X] and
∑
r∈Z≥0

(r+ 1
2
)P[X > r] =

1

2
E[X2] .

Definition 1. Let X be a nonnegative random variable. The squared coefficient of variation is

defined as the scaled variance of X. That is,

CV[X]2 :=Var[X]/E[X]2 ,

where Var[X] =E[X2]−E[X]2.
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2.1. Stochastic Online Scheduling & Policies

The setting considered in this paper is that of stochastic online scheduling as defined in [21]. This

means that (the existence of) a job j is unknown before it arrives, and upon arrival at time rj,

only the distributions of the random variables Pij for the possible processing times on machine

i= 1, . . . ,m are known to the scheduler. At any given time t, a non-anticipatory online scheduling

policy is allowed to use only the information that is available at time t. In particular, it may

anticipate the (so far) realized processing times of jobs up to time t. For example, a job that has

possible sizes 1, 3 or 4 with probabilities 1/3 each, and has been running for 2 time units, will have

a processing time 3 or 4, each with probability 1/2. It is well known that adaptivity over time is

needed in order to minimize the expectation of the total weighted completion time, e.g. [33]. We

refer the reader to [21] for a more thorough discussion of the stochastic online model.

For simplicity of notation, denote OPT as the expected total weighted completion time of an opti-

mal, non-anticipatory online scheduling policy for the problem. We seek to find a non-anticipatory

online scheduling policy (an algorithm) with expected performance ALG close to OPT. For conve-

nience we use the same notation for both the algorithm and its expected performance.

We remark that OPT is not restricted to assigning jobs to machine at the time of their arrival.

The only restriction on OPT is that it must schedule jobs nonpreemptively, and that it is non-

anticipatory. In fact, our approximation guarantees hold against an even stronger OPT benchmark

which knows all the jobs and their release times rj, as well as the processing time distributions Pij

in advance, but not the actual realizations of Pij.

Finally, we may assume w.l.o.g. that no pair of job and machine exists with E[Pij] = 0. That

said, we may further assume that E[Pij]≥ 1 for all machines i and jobs j, by scaling.

3. Linear Programming Relaxations

This section introduces a linear programming relaxation for the problem. This relaxation was

previously discussed in [31, §8]. The LP uses variables yijs to denote the probability that job j

is being processed on machine i within the time interval [s, s + 1], under some given and fixed

scheduling policy. It is known that yijs can be linearly expressed in terms of the variables xijt,

which denote the probability that job j is started at time t on machine i, as follows

yijs =
s∑
t=0

xijt P[Pij > s− t] . (1)

The fact that any machine can process at most one job at a time can be written as∑
j∈J

yijs ≤ 1 for all i∈M , s∈Z≥0. (2)



Author: Article Short Title
00(0), pp. 000–000, c© 0000 7

Moreover, making use of (1) and the first part of Lemma 1, the fact that each job needs to be

completely processed translates into the constraints∑
i∈M

∑
s∈Z≥0

yijs
E[Pij]

= 1 for all j ∈ J . (3)

Finally, with the help of (1) and the second part of Lemma 1, the expected completion time of a

job j can be expressed in yijs variables as

CS
j :=

∑
i∈M

∑
s∈Z≥0

(
yijs

E[Pij]

(
s+ 1

2

)
+

1−CV[Pij]
2

2
yijs

)
for all j ∈ J , (4)

where we labeled the expected completion time variables with a superscript S for “stochastic”,

for reasons that will become clear shortly. For completeness, equation (4) is proved in Lemma 9

(Appendix A).

For the analysis to follow, we also need to express the fact that the expected completion time of

a job cannot be smaller than its expected processing time

CS
j ≥

∑
i∈M

∑
s∈Z≥0

yijs for all j ∈ J . (5)

The following LP relaxation for the unrelated machine scheduling problem can be derived with

these observations. This LP extends the LP given in [31] by adding the constraints (5).

min zS =
∑
j∈J

wj C
S
j

s.t. (2), (3), (4), (5)

yijs ≥ 0 for all j ∈ J , i∈M , s∈Z≥0.

(S)

The analysis in this paper will work with the dual of this relaxation. However the term −CV[Pij]
2

in the primal objective would appear in the dual constrains. As we do not know how to deal with

this negative term in the analysis that is to follow, we are going to factor it out.

To that end, define a simpler, i.e., deterministic version for the expected completion times (4),

labeled with “P” to distinguish it from the previous formulation, by letting

CP
j =

∑
i∈M

∑
s∈Z≥0

(
yijs

E[Pij]

(
s+ 1

2

)
+
yijs
2

)
for all j ∈ J . (6)

Consider the following linear programming problem

min zP =
∑
j∈J

wj C
P
j

s.t. (2), (3), (6)

yijs ≥ 0 for all j ∈ J , i∈M , s∈Z≥0 .

(P)
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This corresponds to a time-indexed linear programming relaxation for a purely deterministic, unre-

lated machine scheduling problem where the random processing times are fixed at their expected

values E[Pij].

In the following, a relationship between these two relaxations is established. To begin, define an

upper bound on the squared coefficient of variation by

Definition 2. Define ∆ as a universal upper bound on the coefficient of variation of the pro-

cessing time of any job on any machine, that is

∆ := max
i,j

CV[Pij]
2 .

Observe that ∆ = 0 for deterministic processing times, and ∆ = 1 for processing times that follow

exponential distributions. Next, for any given solution y of (S) or (P), define

H(y) :=
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

yijs .

Let yS denote an optimal solution to (S) and recall that OPT is the expected total weighted

completion time of an optimal non-anticipatory algorithm. By constraints (5),

H(yS) =
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

ySijs ≤
∑
j∈J

wjC
S
j = zS(yS)≤OPT .

The following lemma establishes the relation between the two relaxations and is crucial for our

analysis.

Lemma 2. The optimal solution values zP and zS of the linear programming relaxations (P)

and (S) fulfill

zP ≤
(
1 +

∆

2

)
zS .

Proof. Let yP be an optimal solution to (P) and yS be an optimal solution to (S). Clearly, yS is

a feasible solution also for (P) which is less constrained. Hence we get the following, where zP (yP )

is the value of yP on LP (P).

zP = zP (yP )≤ zP (yS)

= zS(yS) +
∑
j∈J

wj
∑
i∈M

∑
s∈Z≥0

CV[Pij]
2

2
ySijs

≤ zS(yS) +
∆

2
H(yS)

≤
(
1 +

∆

2

)
zS(yS) .

(7)

Note that the second-to-last inequality only uses the definitions of ∆ and H(·). The last inequality

holds because H(yS)≤ zS(yS). �
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Recalling that (S) is a relaxation for the stochastic scheduling problem, we conclude the following.

Corollary 1. The optimal solution value zP of the linear programming relaxation (P) is

bounded by the expected performance of an optimal scheduling policy by

zP ≤
(
1 +

∆

2

)
OPT .

The dual program of (P) will have unconstrained variables αj for all j ∈ J and nonnegative variables

βis for all i∈M and s∈Z≥0:

max zD =
∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βis

s.t.
αj

E[Pij]
≤ βis +wj

(
s+ 1

2

E[Pij]
+

1

2

)
for all i∈M,j ∈ J, s∈Z≥0 ,

βis ≥ 0 for all i∈M,s∈Z≥0 .

(D)

Like the analysis in [1], we will define a feasible solution for the dual (D), such that this solution

corresponds to the schedule created by an online greedy algorithm for the original stochastic

scheduling problem. Similar greedy algorithms have been used before, both in deterministic and

stochastic scheduling on parallel machines, e. g. in [2, 20, 21].

4. Greedy Algorithm & Analysis for the Online-List Model

In this section the online-list model is considered. Assume without loss of generality that the jobs

are presented in the order 1,2 . . . , |J |. On any machine i, let H(j, i) denote the set of all jobs that

have higher priority than j according to their order in non-increasing ratios wj/E[Pij], breaking

ties by index. That is,

H(j, i) := {k ∈ J |wk/E[Pik]>wj/E[Pij]}∪ {k ∈ J | k≤ j,wk/E[Pik] =wj/E[Pij]}.

Let L(j, i) := J \H(j, i). Let k→ i denote that a job k has been assigned to machine i by the

algorithm.

Greedy Algorithm: Whenever a new job j ∈ J is presented to the algorithm, compute for

each of the machines i ∈M the instantaneous expected increase in the total weighted completion

time if j is assigned to i and the jobs already present on each machine were to be scheduled in

non-increasing order of the ratios weight over expected processing time. This is,

EI(j→ i) :=wj

( ∑
k→i,k≤j,k∈H(j,i)

E[Pik]

)
+ E[pij]

∑
k→i,k<j,k∈L(j,i)

wk .

The greedy algorithm assigns the job to one of the machines where this quantity is minimal. That

is, a job is assigned to machine i(j) := argmini∈M{EI(j→ i)}; ties broken arbitrarily. Once all jobs



Author: Article Short Title
10 00(0), pp. 000–000, c© 0000

have arrived and are assigned, the jobs assigned to a fixed machine are sequenced in non-increasing

order of their ratio of weight over expected processing time. This ordering is optimal conditioned

on the given assignment [28].

The analysis of this greedy algorithm will proceed by defining a dual solution (α,β) in a way

similar to that done in [1]. Let

αj := EI(j→ i(j)) for all j ∈ J .

That is, αj is defined as the instantaneous expected increase in the total weighted completion time

on the machine job j is assigned to by the greedy algorithm. Let

βis :=
∑

j∈Ai(s)
wj ,

where Ai(s) is defined as the total set of jobs assigned to machine i by the greedy algorithm, but

restricted to those that have not yet been completed by time s if the jobs’ processing times were

their expected values E[Pij]. In other words, βis is exactly the expected total weight of yet unfinished

jobs on machine i at time s, given the assignment (and sequencing) of the greedy algorithm.

It is now shown that these dual variables are feasible for the dual linear program. Later this fact

will allow us to relate the variables to the optimal solution’s objective.

Fact 1. The solution (α/2, β/2) is feasible for (D).

Proof. This proof shows that

αj
E[Pij]

≤ βis +wj

(
s

E[Pij]
+ 1

)
(8)

holds for all i∈M , j ∈ J , and s∈Z≥0. This implies the feasibility of (α/2, β/2) for (D). Fix a job

j and machine i, and recall that k→ i denotes a job k being assigned to machine i by the greedy

algorithm. By definition of αj and by choice of i(j) as the minimizer of EI(j→ i), for all i it is the

case that

αj
E[Pij]

≤ EI(j→ i)

E[Pij]
=wj +wj

∑
k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij]
+

∑
k→i,k<j,k∈L(j,i)

wk . (9)

Next, we are going to argue that the right-hand-side of (9) is upper bounded by the right-hand

side of (8), from which the claim follows. Observe that the term wj cancels. Observe that any job

k→ i, k 6= j, can appear in the right-hand side of (9) at most once, either with value wk, namely

when k ∈L(j, i), or with value wjE[Pik]/E[Pij]≤wk when k ∈H(j, i). We show that each of these

values in the right-hand-side of (9) is accounted for in the right-hand side of (8), for any s≥ 0.
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Fix any such job k→ i. First consider the case that the time s is small enough so that our job

k→ i is still alive at time s, so s <
∑

`→i,`∈H(k,i) E[Pi`]. Then, wk is accounted for in the definition

of βis.

Now consider the case that s≥∑`→i,`∈H(k,i) E[Pi`], which means that job k is already finished

at time s. In this case, we distinguish two cases.

Case 1 is k ∈ L(j, i): In this case, job k contributes to the right-hand side of (9) a value of wk,

but as s≥∑`→i,`∈H(k,i) E[Pi`], the term wj(s/E[Pij]) in the right-hand side of (8) contains the term

wj(E[Pik]/E[Pij])≥wk.
Case 2 is k ∈ H(j, i): In this case, job k contributes to the right-hand side of (9) a value of

wj(E[Pik]/E[Pij]), which is exactly what is also contained in the term wj(s/E[Pij]), because s ≥∑
`→i,`∈H(k,i) E[Pi`]. �

In the following lemma, the online algorithm’s objective is expressed in terms of the dual vari-

ables, which directly follows more or less directly from the definition of the dual variables (α,β).

Let us denote by ALG the total expected value achieved by the greedy algorithm.

Lemma 3. The total expected value of the greedy algorithm is

ALG=
∑
j∈J

αj =
∑
i∈M

∑
s∈Z≥0

βis .

Proof. For the first equality, recall that αj is the instantaneous increase in ALG’s expected total

weighted completion time. Summing this over all jobs gives exactly the total expected value of

ALG’s objective. For a formal proof of this, see for example [21, Lemma 4.1] for the case of parallel

identical machines. That lemma and its proof can directly be applied to the case of unrelated

machines.

The second equality follows from the fact that the (expected) total weighted completion time of

any schedule can be alternatively expressed by weighting each period of time by the total weight

of yet unfinished jobs. The equality is true here, because β was defined on the basis of the same

distribution of jobs over machines as given by ALG, and because each job k’s weight wk, given

k→ i, appears in βis for all s up to a job k’s expected completion time, given jobs’ processing times

are fixed to their expected values. This is exactly what happens also in computing the expected

completion times under the greedy algorithm, because it is a “fixed assignment” algorithm that

assigns all jobs to machines at time 0, and sequences the jobs per machine thereafter. �
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5. Speed Augmentation & Analysis

The previous analysis of the dual feasible solution (α/2, β/2) yields a dual objective value equal

to 0 by Lemma 3. This is of little help to bound the algorithm’s performance. However following

[1], define another dual solution which has an interpretation in the model where all machines run

at faster speed f ≥ 1, meaning in particular that all (expected) processing times get scaled down

by a factor f−1.

Define ALGf as the expected solution value obtained by the same greedy algorithm, except that

all the machine run at a speed increased by a factor of f . Note that ALG= fALGf , by definition. We

denote by (αf , βf ) the exact same dual solution that was defined before, only for the new instance

with faster machines. The following establishes feasibility of a slightly modified dual solution.

Lemma 4. Whenever f ≥ 2, the solution (αf , 1
f
βf ) is a feasible solution for the dual (D) in the

original (unscaled) problem instance.

Proof. By definition of (αf , 1
f
βf ), to show feasibility for (D) it suffices to show the slightly

stronger constraint that

αfj
E[Pij]

≤ 1

f
βfis +wj

(
s

E[Pij]
+

1

2

)
for all i, j, s. Indeed, in the above inequality we have only dropped the nonnegative term

wj/(2E[Pij]) from the right-hand side of (D), hence the above implies the feasibility of (αf , 1
f
βf )

for (D). By definition of α we have αj = fαfj . So the above is equivalent to

αj
E[Pij]

≤ βfis +wj

(
f · s
E[Pij]

+
f

2

)
. (10)

As the assumption was that f ≥ 2, (10) is implied by

αj
E[Pij]

≤ βfis +wj

(
f · s
E[Pij]

+ 1

)
. (11)

But now observe that βfis = βi(f ·s), so (11) is nothing but inequality (8) with variable s replaced

by f · s. The validity of (11) therefore directly follows from (8) in our earlier proof of Fact 1 to

demonstrate the feasibility of (α/2, β/2) for (D). �

The first main theorem of the paper is now established.

Theorem 1. The greedy algorithm is a (4 + 2∆)-competitive algorithm for online scheduling of

stochastic jobs to minimize the expectation of the total weighted completion times E[
∑

j wjCj].
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Proof. We know from Corollary 1 that zD(αf , 1
f
βf )≤ zD = zP ≤

(
1 + ∆

2

)
OPT , given that f ≥ 2.

Next, recall that ALGf =
∑

j∈J α
f
j =

∑
i∈M

∑
s∈Z≥0

βfis by Lemma 3, and ALG= fALGf . The theorem

now follows from evaluating the objective value of the specifically chosen dual solution (αf , 1
f
βf )

for (D), as

zD(αf ,
1

f
βf ) =

∑
j∈J

αfj −
1

f

∑
i∈M

∑
s∈Z≥0

βfis =
f − 1

f
ALGf =

f − 1

f2
ALG .

Putting together this equality with the previous inequality yields a performance bound equal to

f2

f−1
(1 + ∆

2
), where we have the constraint that f ≥ 2. This term is minimal and equal to (4 + 2∆),

exactly when we choose f = 2. �

We end this section with the following theorem, which we believe was unknown before.

Theorem 2. The greedy algorithm is a 4-competitive algorithm for deterministic online schedul-

ing to minimize the total weighted completion times
∑

j wjCj on unrelated machines, and this bound

is tight.

Proof. The upper bounds follows as a special case of Theorem 1 as ∆ = 0. As to the lower

bound, we use a parametric instance from [7], which we briefly reproduce here for convenience. The

instances are denoted Ik, where k ∈N. There are m machines, with m defined large enough so that

m/h2 ∈ N for all h= 1, . . . , k. There are jobs j = (h, `) for all h= 1, . . . , k and all `= 1, . . . ,m/h2.

The processing times of a job j = (h, `) on a machine i is defined as

pij =

{
1 if i≤ ` ,
∞ otherwise .

In other words, job j = (h, `) can only be processed on machines 1, . . . , `. All jobs have weight

wj = 1. As jobs have unit length on the machines on which they can be processed, we assume that

the greedy algorithm breaks ties on each machine so that jobs with larger second index ` go first.

The optimal schedule is to assign all jobs j = (h, `) to machine `, resulting in m/h2 jobs finishing

at time h, for h= 1, . . . , k, and hence a total cost m
∑k

h=1 1/h. Now assume that the online sequence

of jobs is by decreasing order of their second index. Then, as this is the same priority order

as on each of the machines, the greedy algorithm assigns each job at the end of all previously

assigned jobs. That means that the greedy algorithm assigns each job j to one of the machines

that minimizes its own completion time Cj. Here we assume that ties are broken in favour of lower

machine index. It is shown in [7] that the resulting schedule, which is in fact a Nash equilibrium

in the game where jobs select a machine to minimize their own completion time, has a total cost

at least 4m
∑k

i=1 1/i−O(m ). The lower bound of 4 follows by letting k→∞. �
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6. The Online Time Model

This section adresses the online-time model where jobs arrive over time. A job j arrives at release

date rj ≥ 0. Assume w.l.o.g. jobs are indexed such that rj ≤ rk for j < k.

This section introduces a new algorithm, which is an adaptation of an analogous algorithm

considered in [21] for the parallel identical machines setting. In the greedy algorithm described

below, each job j will be irrevocably assigned to a machine upon time rj, but once assigned to a

machine, we work with modified release dates for the scheduling of jobs per machine. Indeed, in

order to get reasonable performance bounds even for single machine problems, it is well known

that long jobs with small release dates must be delayed to avoid blocking short jobs with larger

release dates; see, e.g. [20] for corresponding examples.

Because we will need to consider several variants of a given problem instance, and correspondingly

different modified release dates, for what follows it will be convenient to refer to a stochastic

scheduling instance by the tuple ({rj}j∈J ,{Pij}i∈M,j∈J), or ({rj},{Pij}) for short. Moreover, for

any such instance, let us use the notation ({rj},{Pij})−{rij} to mean that the greedy algorithm

uses modified release times rij ≥ rj for the scheduling of jobs per machine.

Greedy Algorithm:

1. Assignment of jobs to machines: At time rj, the algorithm computes for each of the machines

the quantity EI(j→ i) in a slightly different way as for the case without release times. Specifically,

for problem ({rj},{Pij}) and modified release dates rij that will be defined subsequently, let

EI(j→ i) :=wj

(
2rij +

∑
k→i,k≤j,k∈H(j,i)

E[Pik]

)
+ E[pij]

∑
k→i,k<j,k∈L(j,i)

wk ,

and job j is assigned to any machine i that minimizes EI(j→ i).

2. Job Processing: For job j assigned to machine i at time rj, the algorithm modifies its release

date to

rij := max{frj,E[Pij]}

for a speed-up parameter f ≥ 1. Later we choose f = 2. If a machine i falls idle at a time t, among

all unfinished jobs j assigned to machine i where rij ≤ t, the algorithm finds the job k with the

highest ratio wk/E[Pik]. Now the algorithm inserts even more forced idleness than done in prior

work, as it forces the machine to remain idle for another E[Pik] units of time, and only then begins

the actual processing of job k.

The reason to introduce (more) forced idle time than earlier work is twofold. First, in the analysis

to follow we again work with a speed scaling argument, where all machines work at speed f . To
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get the necessary scaling argument work out, we define the modified release time of a job j by

max{frj,E[Pij]} (and not max{rj,E[Pij]} which was used in earlier work [21]). Next, note that

the additional, forced idle time of E[Pik] right before the actual processing of a job k on machine

i means that the job will be started after that forced idle time, even if other jobs with higher

priority get released in the meantime. Effectively this extends the processing time of any job by its

expected processing time, and increases the performance bound by no more than a factor two. This

additional, forced idle time however, allows us to bound the expected remaining processing time of

a job that potentially could block a machine at a modified release time rij (see Lemma 5 and its

proof). In comparison to earlier work, specifically [29] and [31], this is necessary because we use a

greedy algorithm and have otherwise neither control on the amount of jobs that precede a given

job j, nor on the expected remaining processing time of a potential blocking job2. That problem

does not arise in the papers [29] and [31], because those algorithms are steered by corresponding

(linear programming) relaxations. Finally in [21], which also analyzes a greedy algorithm, the

expected remaining processing time of potential blocking jobs explicitly appears in the performance

bounds. By means of the additional forced idle time, we here avoid that. That comes at at the

expense of increasing the constant in the performance bound. In fact note that our analysis also

works if instead of the forced idleness E[Pik] we modify the processing time of any job k on machine

i to max{Pik,E[Pik]}. This is strictly better e.g. when ∆ = 0, but does not improve our analysis in

general. The main result of this section is:

Theorem 3. For the stochastic online scheduling problem on unrelated parallel machines with

release dates, the greedy algorithm is (72 + 36∆)-competitive.

The complete section that follows is devoted to proving this theorem.

7. Proof of Theorem 3.

The paper first gives a proof outline to provide an overview; the details are given in Section 7.2.

7.1. Proof Outline.

Define the expected total cost of the greedy algorithm as ALGS and the expected total cost of the

optimal non-anticipatory policy as OPT. The goal is to prove ALGS ≤ (72 + 36∆)OPT.

2 Consider the following single machine example to illustrate this point: There are n2 “bad” jobs of weight ε� 1
released at time 0 with i.i.d. processing requirements Pbad = 0 with probability 1−1/n2 and Pbad = n with probability
1/n2, and one “good” job released at time 1 with weight 1 and deterministic processing time of 1. With forced idleness
we can schedule at most n bad jobs before the good job is released, as E[Pbad] = 1/n. That yields E[Cgood] = O( 1 ).
However without forced idleness, the greedy algorithm keeps scheduling bad jobs until there are none (if all are of
size 0), or a rare long bad job is encountered. That yields E[Cgood] = Ω(n), which turns out to be problematic for our
subsequent analysis.



Author: Article Short Title
16 00(0), pp. 000–000, c© 0000

Step 1: As in the online-list model, the core of the argument proceeds via an instance where

the machines speeds are augmented by factor f ≥ 1. Given instance ({rj},{Pij}), define instance

({rj},{P f
ij}) parameterized by speedup parameter f ≥ 1, which has the same release times rj but

processing times

P f
ij := Pij/f .

Denote by ALGfS the expected cost of the greedy algorithm for ({rj},{P f
ij})− {max{rj,E[P f

ij]}},
that is, using the modified release dates

rfij := max{rj,E[P f
ij]} .

Then a simple time scaling argument shows

ALGS = f ·ALGfS.

In fact, the equality holds even in distribution and not just for expectations.

Step 2: For the stochastic instance ({rj},{P f
ij}), define a corresponding deterministic instance

({rj},{E[P f
ij]}) where the processing time of job j on machine i is non-stochastic and equals E[P f

ij].

For this instance, define the greedy online algorithm as before, except that the algorithm begins

processing a job as soon as a machine is idle. That is, there is no additional forced idleness before

scheduling a job, yet modified release dates are still equal to max{rj,E[P f
ij]}. Let ALGfD denote the

total cost of this greedy algorithm on this instance. The proof will establish that

ALGfS ≤ 6 ·ALGfD.

Step 3: As in Section 3, define an LP relaxation of the online stochastic machine scheduling

problem. Let zSo denote the optimal solution to this stochastic LP. The only difference compared

to the LP given earlier in Section 3 is that the decision variables yijs are forced to be 0 for all times

s≤ rj. Also, let zPo be the optimal solution value of a modification of that LP as described earlier

in Section 3, by simply dropping the term −CV[Pij]
2. As before, it can be established that,

zPo ≤
(

1 +
∆

2

)
zSo ≤

(
1 +

∆

2

)
OPT.

The proof will then proceed with a dual fitting argument to show that for speedup parameter f ≥ 2

ALGfD ≤
3f

f − 1
zPo .

Combining these three steps now shows that ALGS = fALGfS ≤ 6f ·ALGfD ≤ 18f2/(f − 1) · zPo ≤
18f2/(f − 1) (1 + ∆/2) ·OPT. Choosing f = 2 completes the proof of Theorem 3.
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7.2. Proof details.

Now we provide the complete proof of Theorem 3 by following the outline described above.

Step 1. Linking ALGS to a stochastic instance with machine speedup f . Recall that the

instance with speedup f was defined to be ({rj},{P f
ij}), and ALGfS denotes the expected objective

value of the greedy algorithm for ({rj},{P f
ij}) − {max{rj,E[P f

ij]}}, that is, each job j is made

available to be processed at time rfij = max{rj,E[P f
ij]} if the job is assigned to machine i. Note

that for the original stochastic instance ({rj},{Pij}), the time at which job j is made available to

be scheduled on machine i by the greedy algorithm is rij = max{frj,E[Pij]}. Hence, rfij = rij/f .

Therefore, all parameters that are used to compute EI(j→ i) for the assignment of jobs to machines

in the variant with speedup f are scaled consistently, hence the assignments of jobs to machines

are identical for both algorithms. That results in the fact that the schedules are identical, only

the time axis is compressed by a factor f for ALGfS on instance ({rj},{P f
ij}). This shows that

ALGS = fALGfS, even in distribution.

Step 2. Upper bound on the performance of ALGfS by a deterministic counterpart.

For the moment consider an arbitrary stochastic instance with release times rj, that is ({rj},{Pij}).
Consider the greedy algorithm (including the additional, forced idleness before actually processing

any job), however using as modified release dates any value Rij ≥max{rj,E[Pij]}. In the following

we show how to upper bound the expected completion time of any job j. This upper bound actually

rests on the use of the additional, forced idle time before the actual processing of any job, and

without it, we are not aware how to derive such upper bound.

Lemma 5. For the stochastic instance ({rj},{Pij}), if a job j is assigned to machine i under

the greedy algorithm, and Rij ≥max{rj,E[Pij]} is used as the modified release date, the expected

completion time of job j is bounded as follows.

E[Cj | j→ i]≤ 4Rij + 2
∑

k→i,k∈H(j,i)

E[Pik] .

Proof. Job j becomes available on machine i at time Rij. Let the random variable X denote

the remaining processing time of a job j − 1 being processed at time Rij, if any such job exists.

Note that X also includes the forced idle time before (j− 1)′s actual processing. Job j will not be

started until job j− 1 and any available job with higher priority is completed. In any case we can

bound the expectation of the completion time Cj of job j by

E[Cj | j→ i] ≤ Rij +E[X] + 2
∑

k→i,k∈H(j,i)

E[Pik] . (12)
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Note that the factor 2 comes from the idleness that is inserted before the actual processing of jobs.

Let us first assume that X = 0, so machine i is idle at time Rij. Then we immediately see that

the even stronger inequality

E[Cj | j→ i]≤Rij + 2
∑

k→i,k∈H(j,i)

E[Pik]

holds and we are done. So let us assume that X > 0. In fact, the only difficulty in bounding E[X]

lies in bounding the expected remaining processing time of job j − 1 when j − 1 has started its

actual processing before Rij, as otherwise E[X]≤ 2E[Pij−1]≤ 2Rij−1 ≤ 2Rij, and then

E[Cj | j→ i]≤ 3Rij + 2
∑

k→i,k∈H(j,i)

E[Pik] .

To bound the term E[X] in case there is a job j−1 that has started its actual processing before

time Rij and is still in process at Rij, we define a sequence of random variables Y1, Y2, · · · where Yk

measures the time interval between the completion time of the (k−1)st job and that of the kth job

completed on machine i. Let Ik denote the “true” idle time of machine i within this interval, and

define Ak to be the sum of Ik and the expected processing time of the kth job completed. Figure 1

illustrates these definitions for job j. Under the greedy algorithm, for all k we have

j − 2 j − 1 j

Ij−1 E[Pi,j−1] X E[Pi,j ]

Cj−2 Ri,j−1 Ri,j Cj−1 Cj

Aj−1 Aj

Yj−1 Yj

idle

Figure 1 Illustration for the definitions used in the proof of Lemma 5. Note that Ij = 0.

Yk ≥Ak w.p. 1, and E[Yk |Y1, . . . , Yk−1]≤ 2Ak ,

as Yk =Ak+Pik and E[Yk |Y1, . . . , Yk−1] = 2E[Pik]+Ik ≤ 2Ak. Here, note that Ik is in fact determin-

istic given the history Y1, . . . , Yk−1. Define the Rij−stopping time τ with respect to the sequence

Y1, Y2, . . . as

τ := min{k : Y1 +Y2 + · · ·+Yk ≥Rij} .
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In the case we consider, as also illustrated in Figure 1, note that we have τ = j − 1, and hence it

holds that Ak ≤Rij for all k = 1, . . . , τ . Therefore we can use Lemma 10 from Appendix A (with

stopping time T =Rij), which yields

Rij +E[X] =E[Y1 +Y2 + · · ·+Yτ ]≤ 4Rij .

Hence, plugging that into (12) yields

E[Cj|j→ i]≤ 4Rij + 2
∑

k→i,k∈H(j,i)

E[Pik] .

�

Recalling our definition of modified release dates rfij = max{rj,E[P f
ij]}, we derive an upper

bound on the cost ALGfS of the greedy algorithm for the stochastic instance ({rj},{P f
ij})− {rfij}

in terms of the cost ALGfD of the greedy algorithm for the corresponding deterministic instance

({rj},{E[P f
ij]})−{rfij}.

Lemma 6. Given the definitions of ALGfS and ALGfD, we have

ALGfS ≤ 6ALGfD .

Proof. Let Cf
j denote the completion time of job j of the greedy algorithm for the stochastic

instance ({rj},{P f
ij})−{rfij}. Using Lemma 5 with Rij = rfij we see that

ALGfS =E[
∑
j

wjC
f
j ] =

∑
i

∑
j:j→i

wjE[Cf
j | j→ i]

≤
∑
i

∑
j:j→i

4wjr
f
ij + 2wj

∑
k→i,k∈H(j,i)

E[P f
ik]


≤ 4

[∑
i

∑
j:j→i

wj(rj +E[P f
ij])

]
+ 2

∑
i

∑
j:j→i

wj
∑

k→i,k∈H(j,i)

E[P f
ik]

 ,
where the last inequality follows because rfij ≤ rj+E[P f

ij]. Next we want to argue that each of the six

terms on the right-hand side is a lower bound for ALGfD. Since wj(rj+E[P f
ij]) is a trivial lower bound

for the completion time of a job assigned to machine i, and since
∑

j:j→iwj
∑

k→i,k∈H(j,i) E[P f
ik] is the

value of the optimal solution for the jobs assigned to machine i without considering release times

[28], indeed each of the six terms is a lower bound for ALGfD as long as the jobs are assigned to the

same machines for both ALGfS and ALGfD. But this is true because the assignment of jobs to machines

only depends on the ordering of the original release dates, expected processing times of jobs, and

the modified release dates. These are indeed the same, as the instances are ({rj},{P f
ij})− {rfij},

respectively ({rj},{E[P f
ij]})−{rfij}. �
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Step 3.1 LP Relaxation Analogous to the earlier linear programming relaxation (S), we will

define the LP relaxation for the instance ({rj},{Pij}). We omit writing out this LP relaxation in

detail as it is exactly the same as (S), except that the variables yijs are defined only for s≥ rj. Let

us call this LP “So” and its optimal solution value zSo . Similarly, analogous to (P) we can write

the LP relaxation for the deterministic version ({rj},{E[Pij]}) by dropping all terms −CV[Pij]
2.

Let us call this deterministic LP relaxation “Po” with optimal solution value zPo . Lemma 2 and

Corollary 1 apply to zPo and zSo in exactly the same way. That is,

zPo ≤
(
1 +

∆

2

)
zSo ≤

(
1 +

∆

2

)
OPT .

Step 3.2. Lower bound on zPo. To lower bound the cost of the deterministic Primal LP

relaxation Po, we will define a feasible solution to its dual LP, which is:

max zDo =
∑
j∈J

αj −
∑
i∈M

∑
s∈Z≥0

βis

s.t.
αj

E[Pij]
≤ βis + wj

(
s+ 1

2

E[Pij]
+

1

2

)
for all i∈M,j ∈ J, s∈Z≥rj ,

βis ≥ 0 for all i∈M,s∈Z≥0 .

(Do)

To define a feasible solution for (Do), we consider the greedy algorithm ALGfD for the instance

({rj},{E[P f
ij]})−{rfij}. Recall that this variant of the greedy algorithm does not insert additional,

forced idle time before actually processing a job.

For job j ∈ J , we define αfj as an upper bound on the expected increase of the expected objective

value when job j is assigned to machine i. That is,

αfj := min
i

2wjr
f
ij +wj

∑
k→i,k≤j,k∈H(j,i)

E[P f
ik] + E[P f

ij]
∑

k→i,k<j,k∈L(j,i)

wk

 .
For a machine i and time s, we denote by Afi (s) the total set of jobs assigned to machine i that

have not been completed by time s. Define βfis as the total weight of jobs in Afi (s), i.e.,

βfis :=
∑

j∈Afi (s)

wj.

Lemma 7. The values ({αj},{βis}) :=

(
{α

f
j

3
},{β

f
is

3f
}
)

are feasible for (Do).

Proof. Fix job j and machine i. We need to show that

fαfj
E[Pij]

≤ βfis + 3fwj

(
s+ 1

2

E[Pij]
+

1

2

)
(13)
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holds for all i∈M , j ∈ J , and s≥ rj. By the definition of αfj , for any machine i, we have

αfj ≤ 2wjr
f
ij +wj

∑
k→i,k≤j,k∈H(j,i)

E[P f
ik] + E[P f

ij]
∑

k→i,k<j,k∈L(j,i)

wk .

As rfij ≤ rj +E[P f
ij], we get after multiplication with f/E[Pij]

fαfj
E[Pij]

≤ 2wjf(rj +E[P f
ij])

E[Pij]
+wj

∑
k→i,k≤j,k∈H(j,i)

E[Pik]

E[Pij]
+

∑
k→i,k<j,k∈L(j,i)

wk

≤ wj

(
2

fs

E[Pij]
+ 3

)
+wj

∑
k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij]
+

∑
k→i,k<j,k∈L(j,i)

wk ,

where the last inequality follows by the fact that rj ≤ s. Therefore to prove that (13) holds, assuming

f ≥ 2 it suffices to show that

wj
∑

k→i,k<j,k∈H(j,i)

E[Pik]

E[Pij]
+

∑
k→i,k<j,k∈L(j,i)

wk ≤ βfis +wj
fs

E[Pij]
. (14)

Let Df
ij(s) denote the set of jobs k < j assigned to machine i and completed by time s, and U f

ij(s)

be the set of jobs k < j assigned to machine i and still unfinished (alive) at time s (including those

are assigned but not available according to modified release times rfij). Observe that U f
ij(s)⊂Afi (s).

Hence by the definition of βfis, ∑
k∈Ufij(s)

wk ≤
∑

k∈Afi (s)

wk = βfis. (15)

Here ∑
k∈Dfij(s)

E[Pik]

f
≤ s. (16)

Note that if k ∈H(j, i), wj
E[Pik]

E[Pij ]
≤wk, and if k ∈ L(j, i), wj

E[Pik]

E[Pij ]
>wk. Then we can upper bound

the left-hand side (LHS) of (14) as follows:

LHS of (14) =
∑

k∈H(j,i)∩Dfij(s)

wj
E[Pik]

E[Pij]
+

∑
k∈L(j,i)∩Dfij(s)

wk

+
∑

k∈H(j,i)∩Ufij(s)

wj
E[Pik]

E[Pij]
+

∑
k∈L(j,i)∩Ufij(s)

wk

≤
∑

k∈H(j,i)∩Dfij(s)

wj
E[Pik]

E[Pij]
+

∑
k∈L(j,i)∩Dfij(s)

wj
E[Pik]

E[Pij]

+
∑

k∈H(j,i)∩Ufij(s)

wk +
∑

k∈L(j,i)∩Ufij(s)

wk

=
wj

E[Pij]

∑
k∈Dfij(s)

E[Pik] +
∑

k∈Ufij(s)

wk
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≤ wj
E[Pij]

fs+βfis,

where the last inequality follows from (15)-(16). �

As the so-defined variables ({α
f
j

3
},{β

f
is

3f
}) are feasible for the dual (Do), their objective value provides

a lower bound for the optimal solution of the primal (Po) by duality, and we note the following.

Corollary 2. The optimal solution of the deterministic LP relaxation (Po) is bounded by:

zPo ≥ 1

3

(∑
j∈J

αfj −
1

f

∑
i∈M

∑
s

βfis

)
.

Step 3.3 Upper bound on ALGfD . Finally, to complete the proof, we show that the dual

variables (αf , βf ) can be linked to the cost ALGfD of the greedy algorithm for the deterministic

instance ({rj},{E[P f
ij]}) − {rfij}. This in turn allows us to upper bound ALGfD in terms of the

optimal value of the deterministic LP relaxation zPo .

Lemma 8. The total weighted completion time of the greedy algorithm ALGfD on instance

({rj},{E[P f
ij]})−{rfij} satisfies

ALGfD ≤
∑
j∈J

αfj , ALGfD =
∑
i∈M

∑
s∈Z≥0

βfis .

Combined with Corollary 2, the above yields

ALGfD ≤
3f

f − 1
zPo .

Proof. For each job j, let ij denote the machine to which it is assigned by ALGfD. By the same

argument as that for (12), we can obtain the following upper bound on the completion time of

job j

Cj ≤ rfijj +X +
∑

k→ij ,k∈H(j,ij)

E[P f
ijk

] ,

where X is the (deterministic) remaining processing time of a job j − 1 in process at time rfijj,

if any such job exists; otherwise X has value 0. Next observe that X ≤ rfijj: This clearly holds if

machine i is idle at rfijj. Assume that job j − 1 is being processed at time rfijj. Then it must be

true that max{rj,E[P f
ijj−1]}= rfijj−1 ≤ rfijj. Hence X ≤E[P f

ijj−1]≤ rfijj. Therefore, we have

ALGfD =
∑
j

wjC
f
j ≤ 2

∑
j

wjr
f
ijj

+
∑
j

wj
∑

k→ij ,k∈H(j,ij)

E[P f
ijk

]. (17)

By applying the following standard index rearrangement,∑
j

wj
∑
k→ij

k∈H(j,ij)
k>j

E[P f
ijk

] =
∑
j

E[P f
ijj

]
∑
k→ij

k∈L(j,ij)
k<j

wk,
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we can rewrite the second part of the right hand side of (17) as∑
j

wj
∑
k→ij

k∈H(j,ij)

E[P f
ijk

] =
∑
j

wj
∑
k→ij

k∈H(j,ij)
k≤j

E[P f
ijk

] +
∑
j

E[P f
ijj

]
∑
k→ij

k∈L(j,ij)
k<j

wk.

We thus obtain

ALGfD ≤
∑
j

2wjr
f
ijj

+wj
∑

k→ij ,k∈H(j,ij),k≤j
E[P f

ijk
] +E[P f

ijj
]

∑
k→ij ,k∈L(j,ij),k<j

wk


=
∑
j

(
1

f
EI(j→ ij)

)
=
∑
j

αfj ,

where the first inequality follows from the definition of EI(j→ i) and the second equality follows by

the fact that ij also minimizes EI(j→ i). This is true because the assignment of jobs to machines is

the same for both, the greedy algorithm ALGS for the original, stochastic instance ({rj},{Pij})−
{frfij}, and the greedy algorithm ALGfD for the deterministic instance ({rj},{E[P f

ij]})−{rfij}. Here,

note that we have frfij = max{frj,E[Pij]}.
Finally, the proof for the identity ALGfD =

∑
i

∑
s β

f
is is exactly the same as that of Lemma 3,

and therefore omitted. �

8. Conclusions

The main result of this paper is to show that simple, combinatorial online algorithms can be worst-

case analyzed even for the most general of all machine scheduling models and uncertain job sizes.

Even if the competitive ratio for the case where jobs are release over time is obviously far from

being tight, all performance bounds that we derive for the greedy algorithm are O(∆ ), which is

the same order of magnitude as earlier bounds for offline problems on unrelated machines [31], and

the same order of magnitude as earlier bounds for the online identical machines setting [21]. We

believe that the derivation of genuine lower bounds for stochastic problems that would allow to

separate from the corresponding deterministic special cases is the most interesting yet probably

challenging direction for future work.
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Appendix A: Auxiliary Lemmas

Lemma 9. We focus on a single machine and job. Let P denote the random variable for the processing

time with support Z>0. Let xt denote the probability that the job starts processing on the machine at time

slot t (t= 0,1, . . .). For a given {xt} variables, let ys denote the probability that the job is being processed on

the machine during time slot s. Then, the expected completion time of the job is given by:

C =
∑
s∈Z≥0

(
ys

E[P ]

(
s+ 1

2

)
+

1−CV[P ]2

2
ys

)
.

Proof. It is easy to see that in terms of {xt} variables, the expected completion time is:

C =

∞∑
t=0

xt(t+E[P ]).

Further, from (1),

ys =

s∑
t=0

xt ·P[P > s− t],

which also gives:
∞∑
s=0

ys =E[P ]

∞∑
t=0

xt.

Consider the following sum:
∞∑
s=0

ys

(
s+

1

2

)
=

∞∑
s=0

(
s+

1

2

) s∑
t=0

xt ·P[P > s− t]

=

∞∑
t=0

xt

∞∑
s=t

(
s+

1

2

)
P[P > s− t]

=

∞∑
t=0

xt

(
t

∞∑
r=0

P[P > r] +

∞∑
r=0

(
r+

1

2

)
P[P > r]

)
=

∞∑
t=0

xt

(
t ·E[P ] +

1

2
E[P 2]

)
=E[P ]

∞∑
t=0

xt · t+
1

2
E[P 2]

∞∑
t=0

xt

=E[P ]

(
∞∑
t=0

xt · t+
1 +CV[P ]2

2

∞∑
s=0

ys

)
or, ∑

t=0

xt · t=

∞∑
s=0

(
ys

E[P ]

(
s+

1

2

)
− 1 +CV[P ]2

2
ys

)
.

Adding
∑∞

t=0 xtE[P ] =
∑∞

s=0 ys to the above:

C =

∞∑
t=0

xt(t+E[P ]) =

∞∑
s=0

(
ys

E[P ]

(
s+

1

2

)
+

1−CV[P ]2

2
ys

)
.

�



Author: Article Short Title
00(0), pp. 000–000, c© 0000 27

Lemma 10. Let Y1, Y2, . . . , be a sequence of random variables, with Yk adapted to the filtration Fk−1 =

σ(Y1, . . . , Yk−1) for all k≥ 1. Further, let A1,A2, . . . be another sequence, with Ak adapted to Fk−1 satisfying

1. 0≤Ak ≤ T almost surely,

2. Xk ≥ αAk almost surely, and E[Yk]≤ (1 +α)Ak for some α> 0.

Define the T -stopping time of the sequence Y1, Y2, . . . as:

τ := min{k : Y1 + · · ·+Yk ≥ T} (18)

Under the assumption that the stopping time τ satisfies E[τ ]<∞, we have

E

[
τ∑

k=1

Yk

]
≤ (1 +α)2

α
T. (19)

In particular, choosing α= 1, so that E[Yk|Fk−1]≤ 2Ak and Yk ≥Ak, we have

E

[
τ∑

k=1

Yk

]
≤ 4T.

Proof. The lemma is a straightforward consequence of the Optional Stopping Theorem. We first note that

since E[Yk|Fk−1]≤ (1 +α)Ak, the sequence:

M` =

`∑
k=0

(Yk− (1 +α)Ak)

defines a supermartingale with M0 = 0. Under the assumption that E[τ ]<∞, the Optional Stopping Theorem

gives

E[Mτ ]≤M0 = 0 .

Therefore,

E

[
τ∑

k=1

Yk

]
≤E

[
(1 +α)

τ∑
k=1

Ak

]

= (1 +α)E[Aτ ] + (1 +α)E

[
τ−1∑
k=1

Ak

]

≤ (1 +α)T + (1 +α)E

[
τ−1∑
k=1

Ak

]
≤ (1 +α)T + (1 +α)

T

α

=
(1 +α)2

α
T .

Where the second inequality follows from Aτ ≤ T , and the last inequality follows from the observations:

Ak ≤ 1
α
Yk almost surely, and

∑τ−1
k=1 Yk ≤ T . �
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