
Delivered by Ingenta to: ?
IP: 130.89.216.50 On: Wed, 20 Dec 2017 09:46:17

Copyright: American Society for Photogrammetry and Remote Sensing

Motion Segmentation Using Global and
Local Sparse Subspace Optimization

Michael Ying Yang, Hanno Ackermann, Weiyao Lin, Sitong Feng, and Bodo Rosenhahn

Abstract 
In this paper, we propose a new framework for segment-
ing feature-based moving objects under the affine subspace 
model. Since the feature trajectories are high-dimensional 
and contain the noise, we first apply the sparse PCA to repre-
sent the original trajectories with a low-dimensional global 
subspace, which consists of the orthogonal sparse principal 
vectors. Then, the local subspace separation is obtained 
using automatically searching the sparse representation of 
the nearest neighbors for each projected data. In order to 
refine the local subspace estimation and deal with the miss-
ing data problem, we propose an error estimation function to 
encourage the projected data that span a same local subspace 
to be clustered together. Finally, the segmentation of differ-
ent motions is achieved through the spectral clustering on 
an affinity matrix, which is constructed with both the error 
estimation and the sparse neighbor optimization. We evalu-
ate our proposed framework by comparing it to other motion 
segmentation algorithms. Our method achieves improved 
performance on state-of-the-art benchmark datasets.

Introduction
Motion segmentation is an essential task for understanding 
the dynamic scenes and other computer vision applications 
[1].[2]. Particularly, motion segmentation aims to decompose 
a video into different regions according to different moving 
objects that tracked throughout the video. In case of feature 
extraction for all the moving objects from the video, segmenta-
tion of different motions is equivalent to segment the extract-
ed feature trajectories into different clusters. One example of 
feature-based motion segmentation is presented in Figure 1.

Generally, the algorithms of motion segmentation are classi-
fied into two categories [4]: affinity-based methods and sub-
space-based methods. The affinity-based methods focus on com-
puting the correspondences of each trajectory pair, whereas the 
subspace-based approaches use multiple subspaces to model 

the multiple moving objects in the video, and the segmentation 
of different motions is accomplished through subspace cluster-
ing. Recently, some affinity-based methods [4] [5] are proposed 
to cluster the trajectories with unlimited number of missing 
data. However, the computational cost is very high. Whereas, 
the subspace-based methods [6] [7] have been developed to 
reconstruct the missing trajectories with their sparse representa-
tion. The drawback is that they are sensitive to the real video 
which contains a large number of missing trajectories. Most of 
the existing subspace-based methods still fall their robustness 
for handling missing features. Thus, there is an intense demand 
to explore a new subspace-base algorithm that can not only 
segment multiple kinds of motions, but also handle the missing 
and corrupted trajectories from the real video.

Contributions
We propose a new framework with subspace models for 
segmenting different types of moving objects from a video 
under the affine camera. We cast the motion segmentation as 
a two stage subspace estimation: the global and local sub-
space estimation. Sparse PCA [8] is adopted for optimizing 
the global subspace in order to defend the noise and outliers. 
Meanwhile, we seek a sparse representation for the near-
est neighbors in the global subspace for each data point that 
span a same local subspace. In order to solve the missing data 
problem and refine the local subspace estimation, we build 
the affinity graph for the spectral clustering with a novel error 
estimation function. To the best of our knowledge, our frame-
work is the first one to simultaneously optimize the global 
and local subspace with sparse representation.

The remaining sections are organized as follows. The 
related works are discussed in the next Section, followed 
by the basic subspace models for motion segmentation. The 
proposed approach is described in detail followed by the ex-
perimental results are presented leading to the is conclusions.
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Figure 1. Example results of the motion segmentation on the real traffic video cars9.avi from the Hopkins 155 dataset [3].
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Related Work
During the last decades, either the subspace-based techniques 
[6] [7] or the affinity-based methods [4] [5] have been receiv-
ing an increasing interest on segmentation of different types 
of motions from a real video. 

Affinity-based methods [5] use the distances of each pair 
of feature trajectories as the measurement to build the affinity 
matrix based on a translational motion model. This method 
can segment motions with unlimited number of missing or 
incomplete trajectories, which means they are robust to the 
video with occlusions or moving camera problems. Another 
approach which is based on the affinity is called Multi-Scale 
Clustering for Motion Segmentation (MSMC) [4]. Based on 
the split and merge, MSMC uses the correspondences of two 
features between two frames to segment the different mo-
tions with many missing data. One of the general problems of 
affinity-based method is highly time-consuming. 

In Subspace-Based Methods the existing work based on 
subspace models can be divided into four categories: algebra-
ic, iterative, sparse representation, and subspace estimation. 

Algebraic approaches, such as Generalized Principal Com-
ponent Analysis (GPCA) [9], use the polynomials fitting and 
differentiation to obtain the clusters. GPCA can segment the 
rigid and non-rigid motions effectively. However, when the 
number of moving objects in the video increases, its computa-
tional cost increases and the precision decreases at the same 
time. The general procedure of an iterative method contains 
two main aspects: finding the initial solution and refining 
the clustering results to fit each subspace model. RANdom 
SAmple Consensus (RANSAC) [10] selects randomly the num-
ber of points from the original dataset to fit the model. RANSAC 
is robust to the outliers and noise, but it requires good initial 
parameter selection. Specifically, it computes the residual of 
each point to the model within a threshold. Sparse Subspace 
Clustering (SSC) [6] is one of the most popular motion seg-
mentation methods based on the sparse representation. SSC 
exploits the fact that each point can be linearly represented 
with a sparse combination of the rest of other data points. The 
limitation is that the computational cost of SSC is very high. 
Another popular algorithm based on the sparse representation 
is Agglomerate Lossy Compression (ALC) [7], which uses com-
pressive sensing on the subspace model to segment the video 
with the missing trajectories. However, ALC cannot guarantee 
to find the global maximum with the greedy algorithm.

Our work combines the subspace estimation and sparse 
representation methods. The subspace estimation algorithms, 
such as Local Subspace Affinity (LSA) [11LSA], first projects the 
original data set with a global subspace. Then, the projected 
global subspace is separated into multiple local subspaces with 
K-nearest neighbors (KNN). After calculating the affinities of 
different estimated local subspaces with principle angles, the 
final clusters are obtained through spectral clustering. The is-
sue is that the KNN policy may overestimate the local subspaces 
due to noise and improper selection of the number K, which 
is determined by the rank of the local subspace. LSA uses the 
model selection (MS) [12] to estimate the rank of global and lo-
cal subspaces, but the MS is sensitive to the noise level. 

Multi-Body Motion Segmentation with Subspace Models
In this section, we introduce the motion structure under the 
affine camera model. Subsequently, we show that under the 
affine model segmentation of different motions is equivalent 
to separate multiple low-dimensional affine subspaces from a 
high-dimensional space.

Affine Camera Model
Most of the motion segmentation algorithms assume the affine 
camera model [LSA], which is the orthographic camera model 
and has a simple mathematical form. Under the affine camera, 

the general procedure for motion segmentation is started from 
translating the 3-D coordinates of each moving object to its 

2-D locations in each frame. Assume that
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represents one 2D tracked feature point p of one moving ob-
ject at frame f, its corresponding 3D world coordinate is 
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. The pose of the moving object at frame f can 

be represented with Rf,Tf, where Rf and Tf are the rotation and 
the translation, respectively. Therefore, each 2D point xfp can 
be described as [11]:
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Subspace Models for Motion Segmentation Under the Affine View
The general input for the subspace-based motion segmenta-
tion under the affine camera can be formulated as a trajectory 
matrix containing the 2D positions of all the feature trajecto-
ries tracked throughout all the frames. Given 2-D locations 
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of the tracked features on a rigid moving 

object, the corresponding trajectory matrix can be formulated as: 
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Under the affine model, the trajectory matrix W2F×P can be 
further reformulated as 
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(3)

We can rewrite this equation as follows 

 W2F×P = M2F×4 S
T
P×4 (4)

where M2F×4 is called motion matrix, whereas SP×4 is structure 
matrix. According to Equation 4, the rank of trajectory matrix 
W2F×P of a rigid motion is no more than 4. The global subspace 
transformation is to reduce the dimensionality of the trajec-
tory matrix with a low-dimension representation. Then, each 
projected trajectory from the global subspace lives in a local 
subspace. The task of multi-body motion segmentation is to 
separate these underlying local subspaces from the global 
subspace, which means the segmentation of different motions 
is related with segmenting different subspaces.

Proposed Framework
Our proposed framework extends the LSA [11] with sparse 
optimization for both the global and local parts. As shown 
in Figure 2, given the trajectory matrix, we first transform it 
into a global subspace with sparse PCA [8], which is robust to 
noise and outliers. Instead of using the KNN estimation, we 
use the sparse neighbors to automatically find the projected 
data points spanning a same subspace. To correct the overes-
timation, we propose an error estimation function to build the 
affinity matrix for spectral clustering. 
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Global Subspace Transformation
In order to contain the orthogonality of projected vectors in 
the global subspace, we apply the generalized power method 
for sparse PCA [13] to transform the global subspace. Given the 
trajectory matrix W w wF P F

T
2 1× =  , , where 

w R f Ff
P∈ =×2 1, , ,  contains all the tracked P 2D feature 

points in each frame f. We can consider a direct single unit 
form as follows to extract one sparse principal component 
z*∈RP [8][13]. 
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where y denotes an initial fixed data point from the unit 
Euclidean sphere BP={y∈RP|yTy≤1}, and γ>0 is the sparsity 
controlling parameter. If project dimension is m,1<m<2F, 
there are more than one sparse principal components needed 
to be extracted in order to enforce the orthogonality for the 
projected principal vectors. [13] extends Equation 5 to block 
form with a trace function: 
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where γ = [γ1, …, γT
m] is a positive m-dimensional sparsity 

controlling parameter vector, and parameter matrix N = 
Diag(μ1, μ2, …, μm) with setting distinct positive diagonal 
elements enforces the vectors Z* to be orthogonal, SP

m = 
{Y∈RP×m|YTY= Im} represents the Stiefel manifold1. Subse-
quently, Equation 6 is completely decoupled in the columns 
of Z*(γ) as follows 
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Obviously, the objective function in Equation 7 is not 
convex. But the solution Z*(γ) can be obtained after solving a 
convex problem: 
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which under the constraint that all γ µj j i iw> 2
2

2
max . In [13], a 

gradient scheme has been proposed to efficiently solve the con-
vex problem in Equation 8. Therefore, the sparsity pattern I for 
the solution Z* is defined by Y* under the following criterion. 
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The seeking sparse vectors Z*∈SP
m are obtained after iterative-

ly solving Equation 8. After normalization, the global projected 
subspace Wm×P = normalize(Z*)T is achieved, which is embedded 
with multiple orthogonal underlying local subspaces. 

Local Subspace Estimation
In order to cluster the different subspaces according to the 
different moving bodies, we need to find out the multiple 
underlying local subspaces from the global subspace. Gener-
ally, the estimation of different local subspaces can be ad-
dressed as the extraction of different data sets, which contain 
only the projected trajectories from the same subspace. One 
traditional approach is the local sampling [11], which uses 
the KNN. Specifically, the underlying local subspace spanned 
by each projected data is found by collecting each projected 
data point and its corresponding K nearest neighbors, which 
are calculated by the distances [11][14]]. However, the lo-
cal sampling cannot ensure that all the extracted K nearest 
neighbors span one same subspace, which means an overesti-
mation, especially for the video that contains many degener-
ated motions or missing data. Moreover, [15] shows that the 
selection of number K is sensitive to the rank estimation. To 
avoid the searching for only nearest neighbors and solve the 
overestimation problem, we adopt the sparse nearest neighbor 
optimization to automatically find the set of the projected 
data points that span a same local subspace. 

The assumption of sparse nearest neighbors is derived 
from SMCE [16], which can robustly cluster the data point 
from a same manifold. Given a random data point xi that 
draws from a manifold Ml with dimension dl, under the SMCE 
assumption, we can find a relative set of points Ni = xj, j≠i 
from Ml but contain only a small number of non-zero ele-
ments that pass through xi. This assumption can be math-
ematically defined as: 

 
c x x x x s t ci i P i

T
i1 2

− −[ ] ≤ =, , , . . ε 1 1
 

(10)1. Stiefel manifold: the Stiefel manifold Vk(Rn) is the set of all ortho-
normal k-frames in Rn.

Figure 2. Overview of the proposed framework.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING November  2017  771



Delivered by Ingenta to: ?
IP: 130.89.216.50 On: Wed, 20 Dec 2017 09:46:17

Copyright: American Society for Photogrammetry and Remote Sensing

where ci contains only a few non-zero entries that denote the 
indices of the data point that are the sparse neighbors of xi 
from the same manifold, 1Tci = 1 is the affine constraint and P 
represents the number of all the points in the entire manifold. 

We apply the sparse neighbor estimation to find the un-
derlying local subspaces in the transformed global subspace. 
As illustrated in Figure 3, with the 6-nearest neighbor estima-
tion, there are four triangles selected to span the same local 
subspace with observed data αi. Whereas the sparse neighbor 
estimation looks for only a small number of data point close 
to αi, in this way most of the intersection area between the 
different local subspaces can be eliminated. In particular, we 
constrain the searching area of the sparse neighbors for each 
projected trajectory from the global subspace with the normal-
ized subspace inclusion (NSI) distances [17]. NSI can give us a 
robust measurement between the orthogonal projected vectors 
based on their geometrical consistency, which is formulated as 
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tr
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j j
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where the input is the projected trajectory matrix Wm×P = [α1, 
…, αP], and αi, αj, i, j= 1, …, P represent two different projected 
data. The reason of using NSI distances to constrain the sparse 
neighbors searching area is the geometric property of the pro-
jected global subspace. Nevertheless the data vectors which 
are very far away from αi definitely cannot span the same local 
subspace with αi. 

Furthermore, all the NSI distances are stacked into a vector 
Xi = [NSIi1, …, NSIiP]T, the assumption from SMCE in Equa-
tion 10 can be solved with a weighted sparse L1 optimization 
under the affine constraint, which is formulated as follows: 
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where Qi is a diagonal weight matrix
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The effect of the positive-definite matrix Qi is to encourage 
the selection of the closest points for the projected data αi 
with a small weight, while the points that are far away to αi 
will have a larger weight. The optimization problem is solved 
with Alternating Direction Method of Multipliers (ADMM) [18].

We obtain the sparse solution CP×P = [c1, …, cP]T with a few 
number of non-zero elements that contain the connections 
between the projected data point and its estimated sparse 
neighborhood. As shown in SMCE [16], in order to build the 
affinity matrix with sparse solution CP×P, one can formulate a 
sparse weight matrix ΩP×P with vector ωi, with 

ω ωi ij
ij ij

it ti

c X

c X

t i

j i= =

≠

≠
∑

0,
/

/
, . The weight matrix ΩP×P 

contains only a few non-zero entries in column. These non-
zero entries give the indices of all the estimated sparse neigh-
bors and the distances between them. We collect each data αi 
and its estimated sparse neighbors Ni into one local subspace 
Si according to the non-zero elements of i.

Error Estimation
The local subspace estimation after the sparse neighbor 
searching is illustrated in Figure 4. The estimated local 
subspaces are not completely spanned by each observed data 

Figure 3. Illustration of six-nearest neighbor policy and sparse nearest neighbor policy. The circles and triangles represent the 
data points from two different local subspaces, respectively. The red points denote the estimated neighbors for the observed 
data αi from the same local subspace under the determinate searching area.i

Figure 4. The geometrical illustration of incorrect local 
subspace estimation with sparse neighbors. S1, S2, S3, S4 are 
four estimated local subspaces spanned by the observed 
data α1, α2, α3, α4, respectively.
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and its corresponding sparse neighborhood. There are some 
neighbors spanning two different local subspaces, so-called 
overlapping estimation problem. 

In order to resolve the overlapping estimation problem, we 
propose the following error function: 

 
e I t Pit i i t= −( ) =+β β α

2

2
1, , ,

 
(13)

where βi∈Rm×m is the basis of estimated local subspace Si, mi 
= rank(Si), βi

+ is the Moore-Penrose inverse of βi, and I∈Rm×m 
is the identity matrix. The geometrical meaning of this er-
ror function eit is the distance between the estimated local 
subspace and the projected data. If the projected data αt comes 
from the local subspace Si, the corresponding error eit should 
have a very small value. After computing the corresponding 
error vector ei = [ei1, …, eiP] for each estimated local subspace 
Si, an error matrix eP×P = [e1, …, eP] is constructed, which 
contains the connection between the projected data spanning 
a same local subspace.

By combining the estimated error matrix eP×P and the sparse 
weight matrix ΩP×P, we construct the affinity graph G=(V,E). 
The nodes V represent all the projected data points and edges 
E denote the distances between them. In the affinity graph, the 
connection between two nodes αi and αj is determined by both 
eij and ωij. Therefore, the constructed affinity graph contains 
only several connected elements, which are related to the data 
points spanning a same subspace. Formally, the adjacency 
matrix of the affinity graph is formulated as follows 
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where the Γ∈Rp×p is an arbitrary permutation matrix. The 
normalized spectral clustering [19] is performed on the sym-
metric matrix A, and the final clusters are obtained with each 
cluster representing one moving object.

Experimental Results
Our proposed framework is evaluated on the Hopkins 155 
dataset [3] and the Freiburg-Berkeley Motion Segmentation 
Dataset [5]. 

Implementation Details
Most popular subspace-based motion segmentation methods 
[6][11][7][4][5][assume that the number of motions has been 
known already. For the Hopkins 155 dataset, we give the ex-
actly number of clusters according to the number of motions, 
while for the Berkeley dataset we set the number of clusters 
with seven for all the test sequences. In this paper, the area 
for searching the sparse neighbors is set to 20. In our experi-
ments, we have applied the PCA and sparse PCA for evaluating 
the performance of our framework on estimating the multiple 
local subspaces from a general global subspace with dimen-
sion m=5. The sparsity controlling parameter for sparse PCA 
is set to γ=0.01 and the distinct parameter vector (μ1, …, μm) is 
set to [1/1,1/2, …,1/m]. 

The Hopkins 155 Dataset
The Hopkins 155 dataset [3] contains three different kinds 
of sequences: checkerboard, traffic, and articulated. For each 
of them, the tracked feature trajectories are provided in the 

ground truth and the missing features are removed as well, 
which means the trajectories in the Hopkins 155 dataset are 
fully observed and there is no missing data. We have computed 
the average and median misclassification error for our method 
and other state-of-the-art methods: SSC [6], LSA [11], ALC [7], 
and MSMC [4], as shown in Table 1, Table 2, and Table 3. Table 
4 shows the computational cost of our method comparing with 
two sparse optimization based methods: ALC and SSC.  

Table 1. Mean and median of the misclassification (%) on the 
Hopkins 155 dataset with two motions.

Method ALC SSC MSMC LSA Ourpca Ourspca

Articulated, 11 sequences

 mean 10.70 0.62 2.38 4.10 2.67 0.55

median 0.95 0.00 0.00 0.00 0.00 0.00

Traffic, 31 sequences

 mean 1.59 0.02 0.06 5.43 0.2 0.48

median 1.17 0.00 0.00 1.48 0.00 0.00

Checkerboard, 78 sequences

 mean 1.55 1.12 3.62 2.57 1.69 0.56

median 0.29 0.00 0.00 0.27 0.00 0.00

All 120 sequences

 mean 2.40 0.82 2.62 3.45 1.52 0.53

median 0.43 0.00 0.00 0.59 0.00 0.00

Table 2. Mean and median of the misclassification (%) on the 
Hopkins 155 dataset with three motions.

Method ALC SSC MSMC LSA Ourpca Ourspca

Articulated, 2 sequences

 mean 21.08 1.91 1.42 7.25 3.72 3.19

median 21.08 1.91 1.42 7.25 3.72 3.19

Traffic, 7 sequences

 mean 7.75 0.58 0.16 25.07 0.19 0.72

median 0.49 0.00 0.00 5.47 0.00 0.19

Checkerboard, 26 sequences

 mean 5.20 2.97 8.30 5.80 5.01 1.22

median 0.67 0.27 0.93 1.77 0.78 0.55

All 35 sequences

 mean 6.69 2.45 3.29 9.73 2.97 1.94

median 0.67 0.20 0.78 2.33 1.50 1.30

Table 3. Mean and median of the misclassification (%) on all 
the Hopkins 155 dataset.

Method ALC SSC MSMC LSA Ourpca Ourspca

all 155 sequences

 Mean 3.56 1.24 2.96 4.94 1.98 0.70

Median 0.50 0.00 0.90 0.75 0.00

Table 4. Computation time (sec) on all the Hopkins 155 dataset.

Method ALC SSC Ourpca Ourspca

Run time [sec.] 88831 14500 1066 1394

Table 1 and Table 2 show that the overall error rate of ours 
with sparse PCA projection is the lowest for both 2 and 3 mo-
tions. Generally, the PCA projection has a lower accuracy than 
sparse PCA projection for the articulated and checkerboard se-
quences. However, the traffic video with PCA projection reach-
es a better result than the sparse PCA projection. The reason 
is that the PCA projection is more robust to represent the rigid 
motion, while the sparse PCA projection is more robust to 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING November  2017  773



Delivered by Ingenta to: ?
IP: 130.89.216.50 On: Wed, 20 Dec 2017 09:46:17

Copyright: American Society for Photogrammetry and Remote Sensing

represent the independent and non-rigid motions. The check-
erboard data is the most significant part of the entire Hopkins 
dataset. It has many intersection problems between different 
motions. Our framework with sparse PCA projection gives the 
most accurate results for the checkerboard sequences, for both 
two and three motions, which means that our method is most 
accurate for clustering different intersected motions. Table 3 
shows that our method achieves the lowest misclassification 
error for all the sequences from the Hopkins dataset in com-
parison with all the other algorithms. We evaluate our method 
with sparse PCA projection in comparison with LSA [11], SSC 
[6], MSMC [4], GPCA [9], RANSAC [10] and MSMC [4] in Figure 5 
and Figure 6 on the Hopkins 155 dataset. Note that MSMC has 
not been evaluated on the checkerboard sequences.

Freiburg-Berkeley Motion Segmentation Dataset
In this section, our method is evaluated on the Freiburg-
Berkeley Motion Segmentation dataset [5] to test the per-
formance on the real video sequences with occlusion and 
moving camera problems. This dataset contains 59 sequences 
and all the feature trajectories are tracked densely. All the 
missing trajectories have not been removed. The parameters 
for evaluation are precision (%) and recall (%). Our method 
is compared with SSC [6], ALC [7], and Ochs et al. [5], which 
is based on the affinity of the trajectories between two frames. 
The results on all the training set and test set of the Berkeley 
dataset are shown in Table 5. 

Table 5. Results on the Entire Freiburg-Berkeley Motion 
Segmentation Dataset [5]

Ochs ALC SSC Ourpca Ourspca

Precision 82.36 55.78 64.55 72.12 70.77

Recall 61.66 37.43 33.45 66.52 65.42

As shown in Table 5, the PCA projection outperforms the 
sparse PCA on this dataset. More specifically, our method with 
PCA projection obtains the highest recall comparing with the 
others, which indicates our assigned clusters can cover the 
most parts of the different ground truth regions. However, 
compared with Ochs et al. [5], which is based on the affinity, 
our method is lower with respect to the precision. It means 
that our method can detect the boundaries of different regions 
correctly, but cannot complete segmenting the moving objects 
from the background. Figure 7 shows the examples of our 
results with PCA projection. Our method has high quality 
segmentation of the primary foreground moving objects. In 
comparison with SSC and ALC, our method has a superior 
performance on the precision and the recall. Figure 8 shows 
some additional segmentation results. The typical failure seg-
mentation is shown in the bottom row marple1.avi.

Conclusions
In this paper, we propose a subspace-based framework for 
segmenting multiple moving objects from a video sequence 
with the global and local sparse subspace optimization meth-
ods. The sparse PCA performs the data projection from a high-
dimensional subspace to a global subspace with the sparse 
orthogonal principal vectors. We seek a sparse representation 
for the nearest neighbors in the global subspace for the data 
point spanning a same local subspace. Furthermore, we pro-
pose an error estimation function to refine the local subspace 
estimation for the missing data. The limitation of our work is 
the number of the motions should be known. We evaluate our 
proposed framework by comparing it to other motion segmen-
tation algorithms. Our method achieves improved perfor-
mance on two state-of-the-art benchmark datasets. 
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Figure 5. Comparison of our method with the ground truth and the other approaches on the 1RT2RC video: (a): Ground 
Truth; (b): GPCA, error: 44.98%; (c): LSA, error:1.94%; (d): RANSAC, error: 33.66%; (e): SSC, 0%; (f): Ours, 0% on the 1RT2TC 
sequence from the Hopkins 155 dataset.
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Figure 6. Comparison of our method with the ground truth and the other approaches on the 1RT2RC video: (a): Ground Truth; 
(b): GPCA, error: 19.34%; (c): LSA, error:46.23%; (d) MSMC, error: 46.23%; (e) SSC, 0%; and (f): Ours, 0%.
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Figure 7. Our segmentation results on Freiburg-Berkeley Motion Segmentation Dataset in comparison with the ground truth 
segmentation [5]: (a) :bear01, (b): marple4, (c): cars8.
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Figure 8. Additional segmentation results of Freiburg-Berkeley Motion Segmentation Dataset [5].
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