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Twomarginal one-parameter item response theory models are introduced, by integrating out the latent
variable or random item parameter. It is shown that both marginal response models are multivariate (pro-
bit) models with a compound symmetry covariance structure. Several common hypotheses concerning the
underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a uni-
dimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated
by testing the covariance components. The posterior distribution of common covariance components is
obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This poste-
rior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced
prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and
to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes
factor tests have good properties for testing the underlying covariance structure of binary response data.
The method is illustrated with two real data studies.
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1. Introduction

In the one-parameter item response theory (IRT) model, the natural heterogeneity in item
responses is modeled through a latent variable and item parameters. This latent variable, also
referred to as a randomeffect (e.g., van der Linden&Hambleton, 1997; Skrondal&Rabe-Hesketh,
2004), represents a person’s effect on the probability of a correct response. Conditional on the
latent variable, person’s responses are assumed to be conditionally independently distributed,
which is known as the assumption of local or conditional independence. By integrating out the
latent variables the item responses can be modeled jointly with a structured covariance matrix. In
this paper, a new Bayesian framework is proposed for estimating and testing covariance structures
that are induced by latent variables or random item parameters in IRT models.

A marginal item response model is considered, where the latent variable is integrated out.
Under this marginal item response model, (fractional) Bayes factor (BF) tests are proposed to
make inferences about the dependency structure of item response data. The BF tests can be used
to investigate whether a (unidimensional) latent variable can explain the correlation between
responses or whether assumptions of local independence hold. The test results can also be used in
model building to justify any conditional independence assumptions. For instance, it can provide
evidence for amultidimensional scale or verify a testlet (Wainer et al., 2007) or a random itemeffect
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structure (e.g., Verhagen & Fox, 2013a). More generally, the proposed method results in a default
quantification of the relative evidence in the data between (marginal) IRT models with different
covariance structures, without needing subjective proper priors. To the best of our knowledge,
there is no method that can do this. The proposed (fractional) BF tests can quantify evidence in
favor of a null hypothesis, representing, for instance, the assumption of local independence or
(full) measurement invariance. The test method is consistent and will select the true covariance
structure with probability one, when the sample size goes to infinity. Furthermore, the method is
based on observed data and does not depend on large-sample theory. The quantification of the
relative data evidence between two possible IRT models is accurate for any sample size. The
description of the method is limited to one-parameter IRT models, but a generalization of the
method to more complex IRT models is treated in the discussion.

A new approach is presented to define (fractional) BF tests to investigate the dependency
structure of the item response data. Latent responses of the marginal IRT model are transformed
in order to obtain the posterior distribution of the covariance parameter in closed form. An orthog-
onal (Helmert) transformation matrix is used to partition the total sum of squares of the latent
responses into between and within-group sum of squares (e.g., Lancaster, 1965). The posterior
distribution of the covariance parameter will be referred to as a shifted-inverse-gamma distribu-
tion, due to its resemblance with the inverse-gamma distribution. As a result, the resulting low-
dimensional integrals, for calculating BFs, are efficiently computed using MCMC. It is shown
that the proposed BF methods can also be used to test for random item effects (De Jong et al.,
2007; De Boeck, 2008; Fox, 2010; Verhagen & Fox, 2013a, b). In a marginal modeling frame-
work, item responses from group members are more strongly correlated than those from different
groups, and this item covariance structure can be directly modeled and tested using the proposed
method.

For estimating the parameters, a non-informative improper prior for the covariance parameter
is proposed. The BFs can be sensitive to the choice of priors (Kass & Raftery, 1995; Sinharay
& Stern, 2002). Therefore, a parameterization is required, which supports the specification of
default priors for testing the covariance structure. For the marginal IRT model two default priors
are proposed for testing the covariance structure: a fractional Bayes factor (FBF) in combination
with an improper (non-informative) reference prior, and a proper balanced prior with a shifted-
inverse-gamma distribution, which provides equal weight to positive and negative covariances.
The FBF approach of O’Hagan (1995) is used to avoid the dependency of the Bayes factor (BF)
on unknown constants due to using an improper prior. The FBF methods are evaluated using
simulation studies. It is shown that the proposed methods have good properties for testing the
underlying covariance structure of dichotomous item response data. Furthermore, in comparison
with theMantel–Haenszel (MH) test, it is shown that the BF tests have muchmore power to detect
a dependence between item pairs.

In contrast to the proposed marginal approach, estimating the latent variable and making
inferences about latent variable variance can be challenging. A random effects variance of zero is
often of specific interest, but this point lies on the boundary of the parameter space. Classical test
procedures such as the likelihood ratio test can break down (Pauler et al., 1999). In the Bayesian
framework, the computation of a marginal likelihood can involve high-dimensional integrals,
since a latent variable is assigned to each subject. The integrals are usually not available in closed
form, and approximations are required. Laplace integrations and Taylor series approximations
are commonly used, but these methods are computationally demanding and lack accuracy (Kass
& Raftery, 1995). The Bayesian information criterion (BIC) can be used, but it may fail when
the parameter lies on the boundary of the parameter space (Pauler et al., 1999; Hsiao, 1997). It is
also not clear how to define the penalty term of the BIC (Spiegelhalter et al., 2002). The BIC is
an approximation to the Bayes factor, which is equal to the ratio of marginal distributions of the
data for two hypothesis. Saville & Herring (2009) proposed a low-dimensional approximation to
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the Bayes factor using a Laplace approximation, but they considered a re-parameterization of the
linear mixed effect model. This avoids testing parameters on the boundary of the parameter space,
but requires the specification of (default) priors for a different parameterization of the model, and
it remains an approximation to the Bayes factor test. For the BIC, a normal approximation of the
likelihood function is considered, which is typically skewed for covariance parameters, and this
approximation is expected to be inaccurate for small sample sizes. The proposed fractional Bayes
factor (FBF) tests on the other hand are exact, and no prior information is needed.

Furthermore, Bayesian estimation (MCMC) methods have been proposed to test a latent
variable variance (Albert & Chib, 1997; Cai & Dunson, 2006; Kinney & Dunson, 2008; Sinharay
& Stern, 2002). They are computationally intensive and rely on subjective prior choices, which
specify the degree of support for a random effect. For example, Cai & Dunson (2006) proposed
selection-type mixture priors, where a positive probability is assigned to a zero variance of the
random effects or to parameters in a decomposition of the random effects covariance. Subse-
quently, MCMC methods are used to obtain posterior samples from different models, where the
mixture prior arranges movements between models. Although multiple models can be compared,
the method is generally time-consuming and can lack accuracy in high dimensions. The proposed
FBF tests on the other hand are easy to compute, and again (arbitrary) prior specification of the
existence of random effects is not needed.

The paper is organized as follows: Amarginal IRTmodel is introduced using a latent response
variable. In a similar way, a marginal IRT model with random item effects is introduced. Then,
a Helmert transformation of the latent responses is described to define the posterior distribution
of the covariance parameter. An MCMC method is described to estimate the model parameters.
Subsequently, FBF tests are proposed to test the underlying covariance structure, where different
simulation studies are represented to show the good performance of the proposed tests. Two real
data studies are given to illustrate the (fractional) BF methods. Finally, a discussion of the results
is given.

2. Marginal IRT

Two marginal IRT models are considered. First, the one-parameter IRT model is marginal-
ized with respect to the latent variable using the normal population distribution, which leads to
a marginal ability model. This marginal model is used to test the data support for a unidimen-
sional factor structure. Second, the one-parameter IRT model with random difficulty parameters
is marginalized with respect to the random item difficulties. This marginal model is referred to as
the marginal random difficulty model, which is used to test measurement invariance.

2.1. A Marginal Ability Model

Consider the one-parameter IRT model for dichotomous observations yi j , where i refers to
respondent i(i = 1, . . . , n) and j to item j ( j = 1, . . . , p). The probability of a correct response
is given by

P
(
Yi j = 1 | θi , b j

) = �
(
θi − b j

)
. (1)

Furthermore, the ability parameters are assumed to be normally distributed according to θi ∼
N (μθ , τ ). The difficulty parameters also follow a normal distribution given by b j ∼ N (μb, ω

2
b).

The difficulty parameters can be identified, when the μθ equals zero or when the sum of the
difficulty parameters is restricted to zero. The μθ is included to explain all model components
and to avoid a description of the marginal model under a specific identification restriction. In the
simulation study and real data studies, the μθ equals zero to identify the model.
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According to the one-parameter IRT model in Equation (1), consider a latent response vari-
able, which is normally distributed and positively (negatively) truncated when the corresponding
response equals one (zero). A latent response variable can be defined for the marginal response
model by plugging in the population distribution for the ability parameter and merging the error
terms in the equation for the latent response variable. To see this, consider the one-parameter
IRT model for the latent response and integrate over the population distribution of the ability
parameter. It follows that

Zi j = θi − b j + ei j ,

= μθ + eθi − b j + ei j
= μθ − b j + ẽi j , (2)

where ei j ∼ N (0, 1) and eθi ∼ N (0, τ ). The error, ei j , in the latent response distribution and
the error, eθi , of the population distribution of ability are conditionally independently distributed.
Therefore, the sum of the error terms, ẽi j , is normally distributed with mean zero and variance
1 + τ .

The latent responses of person i are no longer independently distributed, since the conditional
independence assumption no longer holds for themarginal IRTmodel, represented inEquation (2).
The implied dependency structure, after integrating out the latent variable, follows by considering
the covariance between two latent responses, say of person i to item j and of person k to item l.
It follows that

Cov
(
Zi j , Zkl

) = Cov
(
μθ − b j + eθi + ei j , μθ − bl + eθk + ekl

)

= Cov
(
eθi + ei j , eθk + ekl

)

= Cov
(
eθi , eθk

)+ Cov
(
ei j , ekl

)

=
⎧
⎨

⎩

τ + 1 if i = k, j = l
τ if i = k, j �= l
0 if i �= k.

This dependency structure is known as compound symmetry (CS), representing a common covari-
ance between latent responses of each person and a common variance component across item
responses.

In a slightly different way, it can be shown directly that after marginalization, a multivariate
probit model is obtained. Therefore, consider the IRT model defined in Equation (1) and integrate
out the latent variable,

P
(
Yi j = 1 | b j , μθ , τ

) = Eθ

[
�
(
θi − b j

)]

= Eθ

[
P
(
Zi j ≤ θi − b j | θi

)]

= P
(
Zi j + eθi ≤ μθ − b j

)

= �

(
μθ − b j√
1 + τ

)
, (3)

where the random error term eθi represents the random difference between the person’s ability,
θi , and the population average level of ability, μθ , which is normally distributed with mean zero
and variance τ .

It follows that a latent response variable can be defined for the marginal response model,
represented by the marginal success probability given in Equation (3). Let � be the covariance
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matrix of the latent responses, which has a compound symmetry (CS) structure. Each latent
response vector zi is truncated multivariate normally distributed, where the vector lies in the set

�(yi ) = {zi : zi j ≤ 0 if yi j = 0, zi j ≥ 0 if yi j = 1}. (4)

The distribution of each response vector yi can be expressed as a multivariate probit model. It
follows that the marginal response model can be expressed as

P
(
Yi = yi | b, μθ ,�

) =
∫

�(yip)
. . .

∫

�(yi1)
�p (zi | b, μθ ,�) dzi .

Albert & Chib (1993), Chib & Greenberg (1998), and Edwards & Allenby (2003) developed
a framework for estimation through data augmentation. In a more general data augmentation
approach Hoff (2009, chap. 12) showed the estimation of the Gaussian copula model for ordinal
data.

2.2. A Marginal Random Item Effect Model

In large-scale surveys, items are often not invariant and may show differential item function-
ing. Item response models with random item parameters have been developed to account for the
random variation in item functioning across clusters (e.g., countries, schools). Following the work
of De Jong et al. (2007), De Boeck (2008), Fox (2010), and Verhagen & Fox (2013a, b), in a con-
ditional IRT modeling approach, the random item parameters are considered to be random (item)
effects. This random item effect modeling approach has the advantage that items are allowed to
be non-invariant and that anchor items are not needed to identify the scale of the latent variable
while accounting for group-specific differences in the latent variable.

Verhagen & Fox (2013a) developed BFs to test the hypothesis of invariant items using the
random item effect IRT model. They used an encompassing prior modeling approach (Klugkist
& Hoijtink, 2007). The prior for the restricted measurement invariant model is constructed by
restricting the encompassing prior, representing measurement variance, to the specification of
measurement invariance. In this conditional approach, the objective is to evaluate whether the
variance parameter, representing the variability in item functioning, equals zero. This parameter
value is on the boundary of the parameter space. Therefore, the (item effect) variance parameter
is not identified under the measurement invariance hypothesis. By using a null hypothesis rep-
resenting approximate measurement invariance, the variance parameter is also defined under the
null hypothesis.

In a marginal modeling approach, the random item effect variance is represented by the
covariance of latent responses of the same cluster (e.g., country and region) to an item. When
this covariance parameter is equal to zero, the item responses are not clustered, and the item
does not function differently over clusters. A covariance value of zero is not on the boundary
of the parameter space, which makes it possible to test differential item functioning given a
non-informative prior for the covariance parameter. Furthermore, the random item effect IRT
model assumes a population of clusters, and the observed data stem from sampled clusters. In
the marginal IRT model, the selection of clusters is not explicitly modeled, only the implied
dependency structure.

Let observation yi jg refer to the response of respondent i in cluster g to item j . According
to a random item effect IRT model, the conditional success probability is given by

P
(
Yi jg = 1 | θi , b̃ jg

)
= �

(
θi − b̃ jg

)
,
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where the effect of a nesting of respondents in clusters is ignored. The random difficulty parameter
b̃ jg is assumed to be normally distributed with mean b j and variance σb j . Consider the random
item effect IRTmodel for the latent responses, which ismarginalized by integrating out the random
difficulty parameter. It follows that

Zi jg = θi − b̃ jg + ei jg
= θi − b j + εb jg + ei jg
= θi − b j + ẽi jg, (5)

where ei jg ∼ N (0, 1) and the sum of the error terms is again normally distributed, ẽi jg ∼
N (0, 1 + σb j ), since both error terms in the sum are independently distributed. In relation to the
marginal ability model, the difficulty parameters can be identified by restricting the μθ or the sum
of the difficulty parameters to zero. When estimating the model parameters, the μθ is restricted
to zero.

The implied dependency structure by integrating out the random difficulty parameter follows
by considering two responses to the same item j ; that is,

Cov
(
Zi jg, Zkjl

) = Cov
(
θi − b j + εb jg + ei jg, θk − b j + εb jl + ek jl

)

= Cov
(
εb jg + ei jg, εb jl + ek jl

)

= Cov
(
εb jg , εb jl

)+ Cov
(
ei jg, ek jl

)

=
⎧
⎨

⎩

σb j + 1 if g = l, i = k
σb j if g = l, i �= k
0 if g �= l.

Within each cluster g, a common covariance between responses to the same item is specified,
which can be recognized as a CS covariance structure.

The marginal probability of success is equal to the expected conditional success probability,
and it follows that

P
(
Yi jg = 1 | θi , b j , σb j

) = E
(
�
(
θi − b̃ jg

))

= E
(
P
(
Zi jg ≤ θi − b̃ jg | b̃ jg

))

= P
(
Zi jg + εb jg ≤ θi − b j

)

= �

(
θi − b j√
1 + σb j

)

. (6)

The marginal IRT model, represented by Equation (6), is again a normal ogive IRT model. It
follows that each vector of latent continuous responses to item j of cluster g is multivariate
normally distributed with mean θ g − b j and a CS covariance matrix with non-diagonal elements
equal to σb j and diagonal elements 1+σb j . Subsequently, the distribution of y jg can be expressed
as a multivariate probit while taking into account the region of support similar to Equation (4).

3. Posterior Distribution of the CS Parameter

To make inferences about the dependency structure under the marginal IRT model, interest
is focused on the covariance parameter. As shown in Equation (2) and Equation (5), the marginal
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IRTmodel for the latent responses can be represented as amultivariate probit with a CS covariance
structure. The object is to define a prior and posterior distribution for the covariance parameter and
to define a (fractional) BF test for evaluating the dependency structure. It will be shown that after
an orthogonal transformation of the latent responses, the posterior distribution of the covariance
parameter can be obtained in closed form.

To explain the methodology, consider multivariate normally distributed random variable
zi = (zi1, . . . , zip)t ∼ N (

μ1p,�
)
for i = 1, . . . , n. It is assumed that the covariance matrix has

a compound symmetry structure and is represented by � = σ 2Ip + τJp, which equals

� =

⎡

⎢⎢
⎢
⎣

σ 2 + τ τ · · · τ

τ σ 2 + τ · · · τ
...

...
. . .

...

τ τ · · · σ 2 + τ

⎤

⎥⎥
⎥
⎦

. (7)

An orthogonal matrix, represented by H, can be used to partition the sum of squares of a
vector of p observations, z, into components of sums of squares. The total sum of squares remains
the same after an orthogonal transformation, since ztz = ztHtHz = zt Iz. In “Appendix A,” the
properties of the orthogonal Helmert matrix are shown, which will be used to derive the posterior
of the CS parameters.

When applying the Helmert transformation, z̃i = Hzi , the first component of the Helmert
transformed random variables, z̃i , is normally distributed with mean

√
pμ and variance σ 2 + pτ .

The remaining components are independently normally distributed with mean zero and variance
σ 2. This is shown in “Appendix B.”

Consider n repeated observations on a p-variate random variable, which are stored in amatrix
z = (z1, . . . , zn) of dimension p by n. Each column of z is assumed to be p-variate distributed
with mean μ and variance �. Let z̃ denote the Helmert transformed representation of z, which
follows from z̃ = Hz. From “Appendix B” follows that the conditional distribution of the first
row of z̃, z̃1 = (z̃11, . . . , z̃n1) = (

√
pz̄1, . . . ,

√
pz̄n) is given by

p
(
z̃1 | μ, σ 2, τ

)
= p−n/2

(
2π(σ 2/p + τ)

)−n/2
exp

(
−S2B/2

(σ 2/p + τ)

)

, (8)

where S2B =∑n
i=1 (zi − μ)2 is the between-group sum of squares.

From the expression in Equation (8), it follows that the term σ 2/p + τ is restricted to be
positive. As a result, τ is greater than −σ 2/p (with σ 2/p restricted to be positive) and the
covariance parameter is restricted to the interval τ ∈ (−σ 2/p,∞). Thus, when considering the
IRT model in Equation (1), the ability parameter is assumed to be normally distributed with
variance τ > 0. This causes the observations in the response patterns of each individual to be
positively correlated. When integrating out the ability parameter, a marginal model is obtained
(Equation (2)), where τ has become a covariance parameter in the compound symmetry covariance
matrix (Equation (7)). In this alternative representation, it is possible to loosen the restriction on
τ , from τ > 0 to τ > −σ 2/p. However, only when τ > 0, the IRT model and the marginal IRT
model are equivalent; when τ = 0 or −σ 2/p < τ < 0, the item responses are not nested within
individuals (i.e., the data do not have a multilevel structure).

Hence, three different covariance structures can be identified depending on the sign of the
covariance parameter. When τ > 0, there is a common positive covariance between the obser-
vations of each p-variate random variable zi , and this covariance structure can be described by
a latent variable with a variance of τ . When τ = 0, the observations of each p-variate random
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variable zi are independently distributed with variance σ 2. When introducing a latent variable, its
variance would be equal to zero, since the observations are independently distributed.

When the covariance parameter is negative, −σ 2/p < τ < 0, the mean response-pattern
scores, zi , showeven less variation than the variation inmean scores of patternswith independently
generated responses, which corresponds to the situation with τ = 0. This means that in the
distribution of zi in Equation (8), the between-group sum of squares, S2B , representing the sample
heterogeneity among response patterns, would be even lower than the one for τ = 0, when there is
no heterogeneity across response patterns. A negative correlation between responses implies that
those observations do not share any common information, which would be necessary to measure
a latent variable. In scale analysis, the negative covariance between responses cannot lead to the
measurement of a latent variable, since the latent variable always implies a positive covariance
between responses. The marginal model, after integrating out the latent variable, represents a
wider parameter space for τ , including a negative support. This property proves to be beneficial
for constructing conditionally conjugate priors for τ , and for evaluating hypotheses on τ , which
will be discussed below.

3.1. Marginal Ability Model

Given the model in Equation (2), interest is focused on the posterior distribution of the
covariance parameter τ . This posterior can be analytically derived given the Helmert transformed
observations.

A non-informative reference prior for τ can be derived according to Jeffreys’ rule, which
states that the prior is chosen proportional to the square root of Fisher’s information measure.
In the multivariate probit model, σ 2 = 1 to identify the model. Using the likelihood for τ in
Equation (8), it can be shown that the information measure is equal to

E

(
d log p (z̃1 | μ, τ)

dτ

)2

∝
(
p−1 + τ

)−2
,

where the expectation is taken with respect to the distribution p (z̃1 | μ, τ).
It follows that the non-informative reference prior is given by

p (τ ) ∝
(
p−1 + τ

)−1
. (9)

Box & Tiao (1973, chap. 5) also considered this prior for the variance parameter of a random
effect and considered extensions to describe a multiparameter prior.

Given the prior in Equation (9), the posterior distribution of parameter τ can be expressed as

p (τ | z̃1, μ) = c
(
p−1 + τ

)−(n/2+1)
exp

(
−S2B/2

p−1 + τ

)

, (10)

where S2B = ∑
i

(
zi − (μθ − b

))2
and b = ∑

j b j/p. The kernel of the posterior resembles the
inverse-gamma distribution, but the τ is shifted downward by 1/p. The normalizing constant can
be computed using the kernel representation of the inverse-gamma distribution while taking into
account that τ + 1/p > 0,

c−1 =
∫ ∞

τ=−1/p

(
p−1 + τ

)−(n/2+1)
exp

(
−S2B/2

p−1 + τ

)

dτ
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=
∫ ∞

λ=0
λ−(n/2+1) exp

(
−S2B/2

λ

)

dλ

= �(n/2)

(S2B/2)n/2
.

The posterior of τ will be referred to as a shifted-inverse-gamma distribution, due to its
resemblance with the inverse-gamma distribution except for the shift operation. The shifted-
inverse-gamma density can be expressed as

p (τ ;α, β, γ ) = βα

�(α)
(τ + γ )(−α−1) exp

( −β

τ + γ

)
, (11)

with shape parameter α, scale parameter β, and location (shift) parameter γ . The density function
is defined over the support τ > −γ with γ > 0. The density function will also be referred to as
shifted-IG (α, β, γ ).

As a result, the posterior distribution of τ given z̃1 in Equation (10) can be stated as a shifted-

IG
(

n
2 ,

S2B
2 , 1

p

)
. If τ has a shifted-inverse-gamma distribution, then 1/(τ + γ ) has a gamma

distribution. This relationship can be used to express the cumulative distribution function (CDF)
of the shifted-inverse-gamma in terms of the CDF of the gamma distribution and, subsequently,
as an incomplete gamma function.

The CDF of the shifted-IG
(

α = n
2 , β = S2B

2 , γ = 1
p

)
can be expressed as

P (τ ≤ x | α, β, γ ) = βα

�(α)

∫ x

−γ

(τ + γ )−α−1 e−β/(τ+γ )dτ

= βα

�(α)

∫ x+γ

0
t−α−1e−β/t dt(t = γ + τ)

= βα

�(α)

∫ ∞
1

x+γ

vα−1e−βvdv(v = 1/t)

= φ (α, β/(x + γ ))

�(α)
, (12)

where φ (α, β/(x + γ )) denotes the upper incomplete gamma function with parameters α and
lower integration bound β/(x + γ ).

Furthermore, in Equation (12) the CDF of the shifted-inverse-gamma is expressed in terms
of the CDF of the gamma distribution, since v = 1/(τ + γ ) is gamma distributed with shape
parameter α and rate parameter β. To make this more explicit, let G(α, β) denote the CDF of the
gamma distribution with shape parameter α and rate parameter β. Let v = (τ + γ )−1 be gamma
distributed. Then, from Equation (12) follows that

P (τ ≤ x | α, β, γ ) = P

(
v ≥ 1

x + γ
| α, β, γ

)

= 1 − βα

�(α)

∫ 1
x+γ

0
vα−1e−βvdv

= 1 − G

(
1

x + γ
;α, β

)
. (13)
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Thus, the CDF of the shifted-IG
(

n
2 ,

S2B
2 , 1

p

)
, represented by F

(
τ ; n

2 ,
S2B
2 , 1

p

)
, can be expressed

by the CDF of the gamma distribution represented by G

(
1

τ+p−1 ; n
2 ,

S2B
2

)
, where

S2B
2 is the rate

parameter.

3.1.1. A Balanced Prior Approach Besides the improper prior defined in Equation (9), a
balanced (proper) prior is defined,whichhas the keyproperty that the prior probability of a negative
effect is equal to the prior probability of a positive effect, i.e., P (τ < 0 | Hu) = P (τ > 0 | Hu) =
.5 where Hu : τ �= 0. The balanced prior originally dates back to Jeffreys (1961). The use of
a balanced prior is recommended when testing hypotheses with inequality constraints, such as
one-sided tests (e.g., Mulder et al., 2010).

Here, a balanced prior is proposed for testing the covariance parameter τ . Let p(τ ;α, β0, γ )

be a shifted-inverse-gamma balanced prior with shape parameter α = 1/2 and shift parameter
γ = p−1. The scale parameter β0 can be derived from the balanced informative property of the
prior. It follows that

P (τ ≤ 0 | β0, γ ) = 1

�
( 1
2

)
∫ ∞

β0
γ

v
1
2−1 exp(−v)dv

= 2√
2π

∫ ∞
(
2β0
γ

) 1
2
exp

(
−w2

2

)
dw(v = w2/2)

= 2

(

1 − �

(
2β0

γ

) 1
2
)

= 1

2
.

The prior’s shape parameter β0 can be solved from the last equation, and β0 = �−1
(
3
4

)2

2p , where

�−1(.) is the inverse of the cumulative normal distribution function.

3.2. Marginal Random Difficulty Model

Consider the truncated multivariate distribution of z jg ∼ N
(
θ g − b j ,�

)
, where θ g =

(θ1g, . . . , θmg)
t , according to the model in Equation (6). Here, the posterior distribution of the

covariance parameter σb j is of specific interest. It follows that each vector of latent continuous
responses to item j of cluster g is multivariate normally distributed with mean θ g − b j and a CS
covariance matrix, � with non-diagonal elements equal to σb j and diagonal elements 1 + σb j .
Subsequently, the distribution of z jg can be expressed as a multivariate probit model while taking
into account the region of support similar to Equation (4).

Let z̃ j1 represent the first component of the Helmert transformed latent response data,Hz jg
(g = 1, . . . ,G). This Helmert transformed latent response vector contains the information about
the covariance parameter σb j , and the conditional distribution of z̃ j1 is represented by

p
(
z̃ j1 | θ, b j , σb j

) ∝ (1/m + σb j )
−G/2 exp

(
−S2B

2(1/m + σb j )

)

, (14)

where S2B = ∑G
g=1

(
z jg − μg

)2 is the between-group sum of squares, with μg = θ g − b j , with

σb j > −1/m, where m is the common cluster size and θ g the average score in group g. The
posterior distribution for σb j is a shifted-IG (G/2, S2B/2, 1/m

)
, when using a non-informative

reference prior.
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4. MCMC Method

Given the latent response data, the population parameters and the item parameters can be
directly sampled from their full conditional distributions using results from the multivariate nor-
mal model. However, the covariance matrix has a specific structure, and it is not correct to use an
inverse-Wishart distribution as a prior, which assumes an unrestricted covariance matrix. Azevedo
et al. (2016) developed a general MCMC algorithm to sample from a multivariate normal distri-
bution with a restricted covariance matrix. In this approach, a non-informative prior is specified
for the unrestricted covariance matrix, and priors are not directly specified for the parameters of
the restricted covariance matrix. In the present approach, a non-informative reference prior for τ

is specified while taking into account the CS structure of the covariance matrix.
Consider themarginal ability model, Equation (2), where the augmented data are multivariate

normally distributed, zi ∼ N (μθ − b,�). Then, the conditional distribution of the augmented
data z can be simplified, since the inverse of the CS matrix can be obtained in closed form (Fox,
2010, pp. 151–152). Let zi,− j denote the vector of augmented responses of subject i excluding
the j th response. Furthermore, for covariance matrix � = Ip + τJp, let � j,− j = τ1tp−1 denote
the j th row of the covariance matrix excluding the j th value, and let �− j,− j = Ip−1 + τJp−1
denote the covariance matrix excluding row j and column j . The conditional distribution of zi j
given zi,− j is normal with mean

E
(
zi j | �, zi,− j , μθ ,b

) = μθ − b j + � j,− j�
−1
− j,− j

(
zi,− j − μ− j

)

= μθ − b j + τ1tp−1

(
τJp−1 + Ip−1

)−1 (zi,− j − μ− j
)

= μθ − b j + τ

1 + (p − 1)τ
1tp−1

(
zi,− j − μ− j

)
, (15)

where μ− j = μθ − b− j , and variance

Var
(
zi j | �, zi,− j

) = � j, j − � j,− j�
−1
− j,− j�− j, j

= 1 + pτ

1 + (p − 1)τ
. (16)

When conditioning on the information that z ∈ �( y), Equation (4), the components of vari-
able zi are independently (truncated) normally distributed with each mean and variance given in
Equation (15) and (16), respectively.

Given the latent response data, z, the remaining parameters can be sampled directly from
their full conditionals. The conditional posterior distribution of each item parameter j is normally
distributed with mean

E
(
b j | z j , τ, μb, ω

2
b

)
=
(

n

τ + 1
+ 1

ω2
b

)−1 (
n
(−z j + μθ

)

τ + 1
+ μb

ω2
b

)

(17)

and variance

Var
(
b j | z j , τ, μb, ω

2
b

)
=
(

n

τ + 1
+ 1

ω2
b

)−1

. (18)

According to the identification constraint, hyperprior parameter μθ is restricted to 0. The
μb and ω2

b are given a normal-inverse-gamma prior, and the posterior distributions are given by,
respectively,
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μb | ω2
b,b ∼ N

(
p0

p + p0
μ0 + p

p + p0
b,

ω2
b

p + p0

)

(19)

ω2
b | b ∼ IG

(
g1 + p

2
, g2 + SS

2

)
, (20)

where scale parameter SS =∑ j

(
b j − b

)2 + p p0
p+p0

(
b − μ0

)2
and b =∑ j b j/p.

Let z̃1 denote the first components of the Helmert transformed representation of the aug-
mented variable z. The between-group sum of squares can be expressed in terms of the Helmert
transformed data and the latent response data z (“Appendix A”). It follows that

pS2B =
∑

i

(
z̃i1 − √

p(μθ − b)
)2

= p
∑

i

(
zi − (μθ − b)

)2
, (21)

where b = ∑ j b j/p. The posterior distribution of τ is a shifted-IG(n/2, S2B/2, 1/p) according
to Equation (10). Values can be sampled from the shifted-IG using a variable transformation. At
MCMC iteration l, sample λ(l) = τ + 1/p from the inverse-gamma distribution, IG(n/2, S2B/2),
to obtain a draw τ (l) = λ(l) − 1/p.

For themarginal random item effect model, the distribution of the transformed latent response
data is given inEquation (14).Values can be drawn from the posterior distribution ofσb j , which is a
shifted-IG. AtMCMC iteration l, sample σ (l) = σb j +1/m from the inverse-gamma distribution,

IG(G/2, S2B/2), to obtain a draw σ
(l)
b j

= σ (l) − 1/m.

5. Fractional Bayes

To evaluate the assumption of local independence, the implied covariance structure is eval-
uated under the marginal ability model, as given by Equation (3). Several hypotheses will be of
specific interest. The hypothesis H0 : τ = 0 assumes that the response observations of a person are
uncorrelated. Under this null hypothesis, there is no latent variable which explains the correlation
between responses. The hypothesis H1 : τ < 0 states that the covariance between responses is
less than zero. It is theoretically possible that the responses of a pattern show less correlation than
expected under a random assignment of responses to response patterns. The unrestricted hypoth-
esis H2 : τ > 0 states that there is a common positive covariance between a subject’s responses,
which implies that a unidimensional latent variable can explain the correlation between responses.
Finally, let Hu : τ �= 0 define the unrestricted hypothesis for τ .

To determine which hypothesis is mostly supported by the data, the marginal distribution
of the data under each hypothesis needs to be computed. This marginal distribution of the data
represents the support of the data for the hypothesis.

For hypothesis Ht (t ∈ 0, 1, 2 or u), the marginal distribution of the response pattern of
person i is represented by

p (yi | Ht ) =
∫

zi∈�(yi )
p (zi | Ht ) dzi

=
∫

zi∈�(yi )

∫

τ∈Ht

p (zi | τ, Ht ) p(τ | Ht )dτdzi ,
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where p(τ | H0) has a point mass at τ = 0. The �(yi ) defines the set for each latent response
vector zi , according to Equation (4).

When considering the improper prior for τ , Equation (9), the marginal distribution of the
data is proportional to a unknown normalizing constant. If improper priors are specified under
both hypotheses, the ratio of marginal distributions will depend on the ratio of two unknown
normalizing constants.

To avoid the dependencyof theBFonunknownconstants, the fractionalBayes factor approach
of O’Hagan (1995) is followed. The marginal distribution of the data under the hypothesis will be
normalized using a minimal information sample. Therefore, the marginal distribution is divided
by the marginal distribution taken to the power of s, where s denotes the minimal (likelihood)
information to deal with the improper prior. It follows that

m0 (y, s) =
∫
z∈�(y)

∫
τ∈H0

p (z | τ, H0) p(τ | H0)dτdz
∫
z∈�(y)

∫
τ∈H0

p (z | τ, H0)
s p(τ | H0)dτdz

,

and subsequently, the FBF can be defined as

BF
0u = m0(y, s)

mu(y, s)
=
∫
z∈�(y) m0(z, s)dz
∫
z∈�(y) mu(z, s)dz

, (22)

where mu(y, s) is the normalized marginal distribution of the data under hypothesis Hu : τ �= 0.
The marginal distribution under the unconstrained hypothesis can be obtained using the

Helmert transformation such that (z̃2, . . . , z̃p) are independently normally distributed and τ given
z̃1 is shifted-inverse-gamma distributed. Let s = 1/n to deal with the improper prior for τ ;
subsequently, the denominator in the BFF

0u can be expressed as

mu(z, s = n−1) = p
(
z̃2, . . . , z̃p | b) ∫

τ∈Hu
p (z̃1 | τ,b, Hu) p(τ )dτ

∫
τ∈Hu

p (z̃1 | τ,b, Hu)
1/n p(τ )dτ

= (2π)
−n(p−1)

2 exp
(
−S2W /2

) ∫
τ∈Hu

p (z̃1 | τ,b, Hu) p(τ )dτ
∫
τ∈Hu

p (z̃1 | τ,b, Hu)
1/n p(τ )dτ

= (2π)
−(np−1)

2 exp
(
−S2W /2

) �(n/2)
(
p
(
S2B/2

))−n/2

�(1/2)
(
p
(
S2B/2n

))−1/2 ,

where S2W =∑n
i=1
∑p

j=1

(
zi j − zi

)2.
Both integrals were solved using the fact that the kernel of the posterior distribution of τ

resembles the inverse-gamma distribution. The numerator of the FBF in Equation (22) can be
obtained directly. It follows that

m0(z, s = n−1) = p
(
z̃2, . . . , z̃p | b,

)
p (z̃1 | τ,b, H0)

p (z̃1 | τ,b, H0)
1/n

= (2π)
−np
2 exp

(− 1
2

(
S2W + pS2B

))

(2π)
−1
2 exp

(−pS2B/2n
)

= (2π)
−(np−1)

2 exp

(
−1

2

(
S2W + pS2B

(
1 − 1

n

)))
,
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which represents the marginal distribution of the data for τ = 0. The minimum information
sample of s = n−1 is used to define a normalizing constant for the improper prior for τ .

The FBF defined in Equation (22) can be expressed as,

BF
0u = m0(y, s)

mu(y, s)
= �

( 1
2

)

�
( n
2

)
∫

z∈�(y)

exp
(− 1

2

(
pS2B

(
1 − 1

n

)))

(
p
(
S2B/2

))
)−n/2

(
p
(
S2B/(2n)

))1/2 dz, (23)

where the integrand can be evaluated as a closed expression in the MCMC algorithm for the
marginal ability model.

In the sameway, the FBF to evaluate hypothesis H2 : τ > 0 to Hu : τ �= 0 can be derived. The
terms of the unrestrictedmarginal distribution of the data cancel out, and the FBF can be expressed
in terms of the CDF of the shifted-inverse-gamma distribution, and according to Equation (13),
also in terms of the CDF of the gamma distribution. Subsequently, the BF

2u equals

BF
2u = m2(y, s)

mu(y, s)
=
∫

z∈�(y)

1 − F
(
n/2, S2B/2, 1/p

)

1 − F
(
1/2, S2B/2n, 1/p

)dz.

The restriction of τ < 0 referred to as hypothesis H1 compared to Hu leads to a comparable FBF.
In this case, a ratio of cumulative probabilities is evaluated of τ assigned to the interval (−1/p, 0),

BF
1u = m1(y, s)

mu(y, s)
=
∫

z∈�(y)

F
(
n/2, S2B/2, 1/p

)

F
(
1/2, S2B/2n, 1/p

)dz.

The ratio of both FBFs can be used to evaluate the hypothesis H1 : τ < 0 to H2 : τ > 0, which
equals

BF
12 = m1(y, s)

m2(y, s)
=
∫

z∈�(y)

F
(
n/2, S2B/2, 1/p

)

F
(
1/2, S2B/2n, 1/p

)

[
1 − F

(
1/2, S2B/2n, 1/p

)

1 − F
(
n/2, S2B/2, 1/p

)

]

dz.

Note that it would also be possible to compute the ratio of posterior probabilities of τ < 0 to
τ > 0, but this would assume that τ �= 0. In this case, the multiple hypothesis testing problem is
considered to evaluate τ = 0 versus τ < 0, and versus τ > 0.

6. Simulation Studies

First, a parameter recovery study is given, which shows that the parameters of the marginal
IRT model can be accurately estimated under different conditions. Second, results are reported
of simulation studies in which the performance of the (fractional) BF tests for different prior
specifications and different sample sizes was investigated. Third, a comparison is made between
the FBFs and the Mantel–Haenszel statistic to identify a dependence between item pairs.

6.1. Parameter Recovery

A total of 100 data sets were simulated to evaluate the performance of the MCMC algo-
rithm for estimating the marginal IRT model parameters. We considered 100 and 1000 subjects
responding to 10 and 15 items. Themarginal model with the (improper) reference prior (9) and the
balanced prior for τ was considered. For each data set, difficulty parameters were sampled from
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a normal distribution with a mean of 0 and a standard deviation of .1 and 1 for the sample of 100
and 1000 subjects, respectively. For the sample size of 100, the standard deviation was specified
to be smaller in order to avoid bias in the posterior mean estimates of the difficulty parameter due
to shrinkage.

The latent response datawere assumed to bemultivariate normally distributedwith a common
covariance parameter τ equal to .1 and .5, and a compound symmetry covariance structure,
according to Equation (7), where σ 2 = 1 to identify the variance of the scale. The μθ was fixed to
0 to identify the mean of the scale. Dichotomous response data were generated according to the
marginal IRT model defined in Equation (3). A normal-inverse-gamma prior was specified for the
hyperprior parametersμb andω2

b, and values were drawn from the posterior distributions specified
in Equation (19) with μ0 = 0 and p0 = 1, and Equation (20) with g1 = 1/2 and g2 = 1/2,
respectively. This hyperprior specification ensured that the posterior mean and variance of the
item difficulty parameter were almost completely determined by the data (see Equations (17) and
(18)).

The MCMC algorithm was ran for 5000 iterations, and a burn-in period of 1000 iterations
was used. Trace plots of MCMC iterations showed a very rapid convergence and efficient mixing
of the chains. Furthermore, convergence and autocorrelations plots and diagnostics were used to
investigate the convergence of the chains using the R package coda (Plummer et al., 2006). They
did not show any irregularities.

For each condition, 100 data sets were simulated and the average parameter estimates over the
100 data sets are shown in Table 1. For each data set the posterior means (Mean) and the posterior
standard deviation (SD) were calculated. The average bias, denoted as Bias(b), and the average
mean squared error, denoted as MSE(b), were computed for the difficulty parameter estimates.

For 100 persons, under the balanced prior, the covariance estimates are slightly smaller to
those under the reference prior, since more weight is given to negative covariance values under
the balanced prior.

For 100 persons, the sampling variability is large, but the covariance estimates were signif-
icantly different from zero, when considering the 95% highest posterior density intervals. When
increasing the sample size, from 10 to 15 items and/or from 100 to 1000 persons, the accuracy of
the estimates improved. The estimated posterior standard deviations were smaller, and the mean
estimates closer to the true values.

The prior parameters of the difficulty parameters were accurately estimated, for the different
conditions. The item difficulty estimates were not of interest, and for each replicated data set a
different set of item difficulty parameters was used. The accuracy of the covariance estimates was
shown given the normal population distribution for the difficulty parameters. The average bias of
the difficulty estimates is close to zero, and the average MSE mainly represents the variance in
estimates due to measurement error.

In Fig. 1, the upper plot shows the posterior density estimates of τ for three different conditions
(n = 100, p = 5; n = 100, p = 10; and n = 1000, p = 5), where the true covariance value
equals .1. It can be seen that the posterior density curves for the balanced prior are more shifted
toward zero for n = 100. Under both priors, the posterior density estimates are more sharply
peaked when increasing the number of items and/or the number of persons. The lower boundary
value of the parameter space of τ equals −1/5 for the 5-item test, and −1/10 for the 10-item test,
respectively. It shows that τ = 0 is no longer a boundary value in the marginal model.

The lower plot in Fig. 1 shows the rapid convergence of the first thousand MCMC iterates
under both priors (plotted empty circles correspond to the reference prior), for n = 1000 and
p = 10 and τ = .1 the true covariance value. The trace plots show the stable behavior of the
chains, where the chains move quickly through the parameter space.
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Table 1.
Simulated and re-estimated marginal item response model parameters (100 replications).

Persons Items Par. True Reference prior Balanced prior

Mean SD Mean SD

100 10 τ .1 .11 .04 .07 .03
μb 0 .00 .01 .00 .01
σb .10 .15 .01 .14 .01

Bias(b) .003 .004
MSE(b) .018 .016

15 τ .1 .11 .03 .08 .03
μb 0 .00 .01 .00 .01
σb .10 .11 .00 .10 .00

Bias(b) .009 .007
MSE(b) .017 .018

10 τ .5 .53 .12 .43 .09
μb 0 .00 .01 .01 .01
σb .10 .15 .01 .15 .01

Bias(b) −.003 .003
MSE(b) .025 .023

15 τ .5 .55 .11 .45 .09
μb 0 .00 .01 .00 .01
σb .10 .11 .00 .11 .00

Bias(b) .009 .005
MSE(b) .022 .025

1000 10 τ .1 .10 .02 .09 .01
μb 0 .00 .03 −.01 .03
σb 1 1.09 .06 1.04 .06

Bias(b) .003 .000
MSE(b) .003 .003

15 τ .5 .50 .04 .49 .04
μb 0 .01 .03 −.03 .04
σb 1 1.10 .06 1.10 .07

Bias(b) .011 .003
MSE(b) .016 .015

The average bias and average MSE are reported for the item difficulty estimates.

6.2. Performance BF Tests

The characteristics of the BF tests for τ were evaluated. The computation of the BF tests
requires draws from the posterior distributions and does not require parameter estimates. There-
fore, it was possible to consider the performance of the BF tests for a (relatively) small data set,
which was smaller than in the parameter recovery study. Two conditions were considered: 100
persons and a 5-item test and 1000 persons and a 10-item test, for which the results are shown in
Figs. 2 and 3, respectively.

In Fig. 2, the four subplots show the true covariances value of τ on the x-axis. On the y-axis,
the logarithms of the estimated FBF using the reference prior and of the estimated BF using
the balanced prior are shown. In Fig. 2, each plotted test result is an average over 50 simulated
data sets. For the BF and FBF results, an estimated smoothing spline is drawn in each subplot to
illustrate the trend. Although the results are affected by the sampling variability, in most cases
they lead to correct decisions for both priors.
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Figure 1.
Posterior density estimates of the covariance parameter τ for different data samples, and for n = 1000 and p = 10,
MCMC trace plots for the reference (empty circles) and balanced priors.

The subplots do not show a clear difference between both priors. However, when testing
inequality constraint τ < 0 (τ > 0) against the unconstrained hypothesis and the log FBF
converged to 0, the BF with the balanced prior showed log(2) points more evidence for τ < 0
(τ > 0) if the inequality constraint is supported by the data. The FBF did not show a distinction
between the unconstrained and constrained hypothesis, where the BF based on the balanced prior
showed a clear preference for the less complex constrained hypothesis. A similar behavior was
also observed for the FBF and a balanced prior approach in the case of testing a mean parameter
(Mulder, 2014).

In Fig. 3, the results of the behavior of the tests are given for n = 1000 and 10 items averaged
over 50 simulated data sets. The decrease in sampling variability led to much more accurate test
results, but the trends of both tests are similar to the ones shown in Fig. 2. Both estimated test
results led to accurate decisions, although the BF based on the balanced prior showed log(2) to
more weight of evidence for the constrained hypothesis in those areas.

6.3. Mantel–Haenszel for Test Dimensionality

When latent variables, θi , underlie the item responses, then for each response pattern, the
conditional covariance between item pairs is assumed to be zero. So, for item responses Yi j and
Yil , the conditional covariance is zero given the latent variable θi ,

Cov
(
Yi j ,Yil | θi

) = 0. (24)

Stout et al. (1996) considered the item-pair conditional covariances to assess the test dimension-
ality. However, the covariance was conditioned on the number-correct score instead of θi and
estimated by a maximum likelihood estimator. Furthermore, an asymptotic normal distribution of
the statistic was used to quantify the extremeness of a statistic value. Sinharay et al. (2006) used
the Mantel–Haenszel (MH) statistic as a discrepancy measure in a posterior predictive check to
evaluate whether the item-pair’s conditional covariance is positive given a rest score r (i.e., the
number-correct score excluding the two items).
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Figure 2.
BF and FBF test results on τ averaged over 50 replications, for two priors and n = 100 and p = 5.

In this simulation study, the performance of the proposed FBFs is compared to that of theMH
statistic in detecting a violation of unidimensionality by evaluating the conditional covariance.
Response data were simulated under a two-dimensional one-parameter item response model,
where one latent variable, θ1, underlay all item responses and a second latent variable was only
related to the first two items. The object was to identify the presence of the second latent variable
by evaluating the conditional covariance of the responses to the first two items given the general
latent variable θ1.

When integrating out the second latent variable in the two-dimensional item response model,
a (marginal) unidimensional item response model with a CS covariance matrix, and covariance
parameter τ , is obtained. The conditional covariance in Equation (24) is tested by evaluating the
covariance parameter τ , which represents the correlation implied by the second latent variable.
When local independence holds, a second latent variable is not supported by the data and τ = 0,
representing no additional correlation between the responses. When τ > 0, a violation of local
independence is identified due to the presence of a second latent variable.

Let n j j ′,r denote the number of correct responses to item j and item j ′ for those with a rest
score r denoted as nr . Then, the MH statistic is given by,
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Figure 3.
BF and FBF test results on τ averaged over 50 replications, for two priors and n = 1000 and p = 10.

MH (y) =
∑

r n11,r n00,r/nr∑
r n10,r n01,r/nr

. (25)

A posterior predictive p-value can be computed by evaluating the extremeness of the MH statistic
for the observed data under the model, which is given by

p0 (y) = P
(
MH

(
y(rep)

)
> MH (y) | y

)
,

where y(rep) are the replicated data under the unidimensional item responsemodel, assuming local
independence between item pairs given the general latent variable θ1. The sampling distribution
of the MH statistic is not needed, since the extremeness of the observed MH value is evaluated
using replicated data.

The proposed FBFs, using the reference prior, under the marginal ability model given θ1,
were used to evaluate the conditional covariance. Therefore, the ratio of the marginal distribution
of the data under the assumption of unidimensionality (τ = 0) to the marginal distribution of the
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Table 2.
MH statistic versus the FBF to detect violations of local independence.

Model τ FBF02(τ = 0, τ > 0) MH (median)

log FBF02 FBF02 p0(MH) MH(y)

0 2.60 13.46 0.52 1.82
0.10 −3.56 0.03 0.29 2.18
0.20 −15.13 <0.00 0.14 2.60
0.30 −32.25 <0.00 0.06 2.87
0.40 −51.30 <0.00 0.03 3.23
0.50 −77.52 <0.00 0.01 3.78

Average values based on 500 replications (H0 : τ = 0, H2 : τ > 0).

data under a violation of unidimensionality was computed. In that case τ > 0, local independence
did not hold and a positive conditional covariance represented the presence of a second latent
variable.

For 500 persons, a response pattern of 10 items was simulated, where the item difficulties
and latent variable θ1 were generated from a standard normal distribution. For the second latent
variable, data were simulated for different item-pair dependencies, where τ ranged from 0 (i.e.,
local independence) to .5. Given the mean structure under the assumption of local independence,
the FBFs only required the responses to the first two items. The MH statistic required a rest score,
which was computed as the number correct on the remaining 8 items. Each posterior predictive
p-value was computed using 10,000 replications, and 500 data replications were used for each
level of τ .

In Table 2, the estimated FBFs across 500 data replications are given for H0 (τ = 0) versus
H2 (τ > 0). When local independence was simulated, the average FBF resulted in strong support
for the null hypothesis, with 13.5 times more evidence for the null relative to the alternative. The
median of the computed p-values is reported. The (median) posterior predictive p-value of .52
showed no evidence to reject the null hypothesis, and the estimated average MH statistic was not
extreme (around 1.82). Note despite the similar conclusion, the advantage of the FBF is that it
provides a quantification of the relative evidence in the data that only one latent variable underlies
the item responses. The posterior predictive p-value, and p-values in general, cannot be used for
this purpose.

For data simulated with τ = .1 for the items 1 and 2, around 9% of the total factor variance
was contributed by the second latent variable. The FBF showed approximately 33 times more
evidence for hypothesis H2 (τ > 0), while the p-value of the MH statistic did not identify any
significant additional correlation in the data. It can be seen that the FBF detected each violation
of item-pair dependence. The MH statistic detected a violation of local independence, given a
significance level of .05, when τ ≥ .4 and more than 28% of the latent variable variance stemmed
from the second latent variable.

It can be concluded that the results of the FBF led to correct decisions for all conditions and
showed much more power than the MH statistic, which also required additional item responses
to determine a rest score.

7. Multidimensionality of a TerraNova Test

The TerraNova data, originally used by Yao (2010) and Sinharay (2013), were used to illus-
trate the (fractional) BF test procedure to verify a multidimensional factor structure. From 3953
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Table 3.
TerraNova test on five main content areas: covariance estimates and log BF tests under the balanced and reference prior.

Model Content Items Covariance Balanced prior Reference prior

Mean SD τ ≤ 0, τ > 0 τ ≤ 0, τ > 0

Marginal
Language 34 .472 .013 −26,134 −26,125

Mathematics 57 .398 .010 −38,541 −38,529
Reading 46 .497 .013 −38,817 −38,805
Science 40 .255 .007 −15,391 −15,385
Social 40 .422 .011 −27,644 −27,634

Conditional
Language 34 .034 .002 −788 −786

Mathematics 57 .045 .002 −2569 −2566
Reading 46 .039 .002 −1500 −1498
Science 40 .031 .002 −859 −858
Social 40 .027 .002 −701 −699
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Figure 4.
(Iterative) EAP estimates of τ for each TerraNova content domain under the conditional (one-factor) and marginalized
IRT model.

examinees responses are available on five main content areas referred to as Language (LG), Math-
ematics (MT), Reading (RD), Science (SC), and Social Studies (SS). The number of items for
each content domain is given in Table 3.

The marginal IRT model, represented in Equation (3), was fitted for each domain to esti-
mate the covariance structure. Therefore, the MCMC algorithm was ran for 2000 iterations, and
parameter estimates were computed using a burn-in period of 1000 iterations. In each MCMC
iteration, the EAP estimates of the covariance parameter τ were computed for each domain. In
Fig. 4, under the label “Marginal Model,” the upper five lines show the change in EAP estimates.
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Each plotted line of EAP estimates shows a fast convergence to a stable outcome across MCMC
iterations.

In Table 3, under the label “Marginal,” the posterior mean estimate of τ is given for each
domain. The covariance estimates show that the item responses are correlated within each domain
with the smallest covariance among responses to Science items and the highest to Reading items.
The BF tests under both priors showed much evidence in favor of a positive covariance for each
domain. Beside differences in item difficulties across domains, the estimated covariances also
differ and range from .255 to .497. Therefore, it was not likely that one common factor would
explain all covariances, including covariances among each person’s responses from different
domains.

To evaluate the multidimensionality of each domain, a general factor was measured using
all content domain items with the one-parameter IRT model. Then, for each domain, it was
investigated whether there was still a positive covariance among responses given the general
factor. Therefore, this general factor was included in the mean term of the marginal IRT model
of Equation (3). The MCMC algorithm was ran for 2000 iterations to estimate the conditional
covariance structure of item responses within each content domain given the general factor. The
trace plots of the estimated EAPs of each covariance parameter are given in Fig. 4. The lowest
five lines correspond to the conditional covariance estimates, and it can be seen that the EAP
estimates converge quickly and show not much variability between domains.

In Table 3, for each content domain, the conditional covariance estimates are given under the
label “Conditional.” The covariance estimates are much smaller than those estimated under the
marginal model, which shows that the general factor explains most of the covariances among each
person’s responses to all domain items. In each domain, a small (conditional) covariance effect
was estimated, which provided support for a second factor variable. The (fractional) BF tests
were used to estimate the amount of support in favor of the hypothesis of a positive conditional
covariance. From Table 3 follows that for all domains there was evidence for a second factor,
since sufficient support was given to the hypothesis of a positive conditional covariance.

This procedure could be extended to measure support for a third factor, and so forth. How-
ever, in this case the estimated conditional covariance estimates were already very small. When
conditioning on the two measured factors, it is highly unlikely that there would be any common
covariation left among each person’s responses.

8. Testing Differential Item Functioning in PISA

TheMathematics data from the Programme of International Student Assessment (PISA 2003)
were analyzed to investigate differential item functioning. In Fox (2010, Chapter 7.6), different
random item effect models were used to model and identify differential item functioning of 8
Mathematics items of booklet 1 over 40 countries given responses of 9796 students. Here, a subset
of 10 countries were considered to illustrate the performance of the BF tests to evaluate hypotheses
about differential item functioning. This subset was a balanced sample, where a total of 250
students were selected from each country. The proposed (fractional) BF tests required a balanced
design per item, although not necessarily balanced over items. Otherwise, the shift parameter
in the conditional distribution of the transformed latent response data given σb j , Equation (14),
would vary over countries leading to a complex mixture distribution.

In the marginal IRT model, represented in Equation (6), the covariance components, σb j ,
were used to model differential item functioning. A different covariance component was specified
for each item using the non-informative reference prior. An item did not show differential item
functioning, when the covariance component was not significantly greater than zero.
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Table 4.
PISA 2003: testing for cross-national item variation using log BF tests under the balanced and reference priors.

Item number j Difficulty Covariance Balanced prior Reference prior

Mean SD Mean SD σb j ≤ 0, σb j > 0 σb j ≤ 0, σb j > 0

1 −.77 .06 .03 .03 −20.44 −16.79
2 −.04 .10 .08 .06 −59.09 −51.21
3 −.20 .05 .01 .02 −7.66 −5.65
4 −.53 .06 .03 .02 −16.54 −13.35
5 −.13 .06 .03 .03 −20.73 −17.04
6 −1.65 .08 .04 .04 −23.95 −19.98
7 −.93 .11 .10 .07 −75.03 −65.46
8 −1.01 .06 .03 .03 −16.36 −13.23
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Figure 5.
PISA 2003: posterior densities of the covariance parameters representing differential item functioning of 8 Mathematics
items.

The clustering of students in countries was modeled using a random intercept population
model for student ability. The identification rule of the random item effect model was not needed
(which would restrict the average difficulty of the eight items to be equal across countries), since
country-specific item parameters were not parameterized. The average level of ability was fixed
to zero to identify the mean of the latent scale.

The MCMC algorithm was run for 5000 iterations, and a burn-in period of 1000 iterations
was used. The estimated average item difficulty was −.57, and the variation in difficulty across
items .41. The item difficulty estimates and standard deviations are shown in Table 4.

For each item, a positive correlation between responses of the same country was estimated
given the international item difficulty estimate while also accounting for differences in country
means. The estimated standard deviations of the covariance estimates were relatively large, but
the posterior densities of the covariance parameters were positively skewed. Each covariance
parameter was conditionally shifted-inverse-gamma distributed, with the shift parameter equal
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to the inverse of the country’s sample size. Therefore, the shift was relatively small and hardly
influenced the shape of the posterior distribution. The posterior densities are plotted in Fig. 5.
It can be seen that items 2 and 7 show the strongest correlations between country-clustered
responses while conditioning on cross-national differences in latent means and the (international)
item difficulty estimates. Item 3 showed the smallest correlation between country’s responses.

In order to check the measurement invariance assumptions, a formal testing procedure was
applied. For this reason, the (fractional) BF tests were computed using the balanced prior and
using the reference prior. The test results showed support for cross-national item variation for
all 8 items. The FBF test with the reference prior showed less evidence in favor of differential
item functioning compared to the BF test with the balanced prior. For both tests the strength of
evidence increased in favor of the hypothesis σb j > 0, when the covariance estimate was located
further away from zero.

9. Discussion

A Bayes factor approach to test the covariance structure of dichotomous item response data
has been proposed. In a marginal IRT modeling framework, the evaluation of the covariance
structure does not involve testing on the boundary of the parameter space. A simple procedure has
been proposed, where the multivariate normally distributed latent item responses are transformed
using theHelmertmatrix. It has been shown that the first Helmert transformed component contains
the information about the covariance component of the CS covariance structure. As a result, the
posterior distribution of the covariance component is a shifted-inverse-gamma given the Helmert
transformed responses.

TheHelmert transformed item responses are independently distributed such that a closed form
representation of themarginal likelihood can be obtained. For the latent response data, it facilitates
the construction of closed form expressions of (fractional) BFs for evaluating hypotheses about
the covariance component. A conjugate reference prior and an innovative balanced prior were
proposed, which provide equal weight to positive and negative covariance values. Simulation
studies showed good behavior of the BFs to make decisions about the covariance structure, when
testing conditional independence and when testing measurement invariance. Efficient procedures
have been proposed to implement the methodology in a Bayesian IRT modeling framework.

The Helmert method cannot be directly applied to more complex IRT models. For instance,
when including a discrimination parameter in the item response model, then the Helmert transfor-
mation does not lead to a closed form expression of the posterior distribution for the covariance
parameter. Consider the one-parameter model for latent responses in Equation (2) and extend this
model with a discrimination parameter. For normally distributed ability parameters with mean μθ

and variance τ , it follows that

Zi j = a jθi − b j + ei j
= a j

(
μθ + εθi

)− b j + ei j
= a jμθ − b j + a jεθi + ei j .

It can be seen that the discrimination parameter is included in the covariance matrix of the errors
due to the component a jεθi . To make this more explicit, the covariance matrix of the latent
responses of subject i is given by

Var (Zi ) = Ip + τaat ,

where a is the vector of discrimination parameters. This covariance matrix does not have a
compound symmetry structure. Subsequently, a Helmert transformation of the zi will not reveal
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within and between-group sum of squares, where the between-group sum of squares contains all
data information about τ . However, the posterior distribution of τ under the one-parameter model
can serve as a proposal distribution (i.e., importance sampling function) to sample the covariance
parameter under the two-parameter and more complex item response models through a sampling
importance resampling method. Then, the (fractional) Bayes factor could also be computed via
importance sampling. This is in linewith Perrakisa et al. (2014),who advocated the use ofmarginal
posterior distributions as an importance sampling function to estimate the marginal likelihood of
the data. The derived posterior distributions under the one-parameter response model will serve as
importance sampling functions to obtain MCMC samples from more complex response models,
and this will be a topic for future research.

For relatively small sample sizes the different priors did not influence the behavior of the
BF, and both priors lead to similar conclusions. This makes for instance the procedure also suit-
able for analyzing data retrieved from a pilot study. The dimensionality of the underlying factor
structure can be tested, and tests might identify inconsistencies in relationships between items.
Subsequently, the instrument could be appropriately adjusted before collecting more data. The
presented procedure extends the work of random effects selection in generalized linear mixed
models. For balanced response data, under a marginal modeling approach the posterior distri-
bution of the clustering effect can be derived through a Helmert transformation of the (latent)
response data. This Helmert transformation also enables the construction and computation of the
marginal likelihood of the data. Instead of an orthogonal transformation of the response data,
specific decompositions of the covariance matrix has been considered to make inferences about
the covariance structure or covariance pattern (e.g., Daniels & Pourahmadi, 2002; Cai & Dunson,
2006). The procedures are applicable to more general covariance structures, but are computation-
ally intensive and often require specific priors.

The presented method can be extended to other types of categorical data (e.g., ordinal, nom-
inal), since a data augmentation scheme can be used to generate latent continuous response data
(Fox, 2010). The generalization to more nested and non-nested clustering effects is also interest-
ing. In that case, the objective is to define orthogonal transformations to partition the total sum of
squares such that each component is a sufficient statistic for one of the covariance components.
This would provide support to a very efficient evaluation of complex covariance structures of
categorical response data.

10. Appendix A: (Orthogonal) Helmert Transformation Matrix

An orthogonal matrixH has the property thatHtH = HHt = I, where the rows ofH are mutually
orthogonal and each row has a unit norm. A particular (p × p) orthogonal matrix is the Helmert

matrix, where the first row has elements p− 1
2 , and all zeroes of the triangle above the main

diagonal and below the first row. The remaining elements below the main diagonal are positive,

where row j ( j = 2, . . . , p) has elements
[

1√
j ( j+1)

1tj ,
− j√
j ( j+1)

, 0
]
. Lancaster (1965) referred to

it as Helmertian in the strict sense and showed various properties of Helmert matrices (see also,
Searle, 1971, pp. 31–33). Subsequently, the Helmert matrix of order p is given by

H =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

1√
p

1√
p

1√
p · · · 1√

p
1√
2

− 1√
2

0 · · · 0

1√
6

1√
6

− 2√
6

. . .
...

...
...

...
. . . 0

1√
p(p−1)

1√
p(p−1)

1√
p(p−1)

· · · − p−1√
p(p−1)

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

. (26)
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11. Appendix B: Helmert Transformed Normal Random Variables

Consider amultivariate normally distributed randomvariable zi = (zi1, . . . , zip)t ∼ N (
μ1p,�

)
,

where the covariancematrix has a compound symmetry structure represented by� = σ 2Ip+τJp.
The zi are transformed using Helmert, and the transformed variable is given by z̃i = Hzi . The
components of the transformed variable z̃i are independently normally distributed. The first com-
ponent of the Helmert transformed variable, z̃i1, is normally distributed with mean and variance
equal to,

E (z̃i1) = E
(√

pz̄i
) = √

pE
(∑

zi j/p
)

= √
pμ

Var (z̃i1) = Var
(√

pz̄i
) = pVar (z̄i ) = Var

⎛

⎝
p∑

j=1

zi j

⎞

⎠ /p

=
⎡

⎣
p∑

j=1

(
σ 2 + τ

)
+

p∑

k=1

∑

j �=k

τ

⎤

⎦ /p

=
[
p(σ 2 + τ) + p(p − 1)τ

]
/p = σ 2 + pτ,

respectively.
Consider a sample z = (

zt1, . . . , z
t
n

)t , where the components are identically and independently
multivariate normally distributed. Subsequently, let λ = σ 2+ pτ , the probability density function
of the first Helmert transformed component, z̃1, is given by

p (z̃1 | μ, λ) = (2πλ)−n/2 exp

(
−∑i

(
z̃i1 − μ

√
p
)2

/2

λ

)

= (2πλ)−n/2 exp

(
−p
∑

i (zi − μ)2 /2

λ

)

= (2πλ)−n/2 exp

(
−pS2B/2

λ

)

,

where S2B = ∑
i (zi − μ)2. The probability density function of the z̃1 can be expressed as the

density of zi given σ 2 and τ . It follows that

p
(
z1, . . . , zn | σ 2, τ, μ

)
=
(
2π(σ 2 + pτ)

)−n/2
exp

(
−pS2B/2

σ 2 + pτ

)

= (2πp)−n/2
(
σ 2/p + τ)

)−n/2
exp

(
−S2B/2

σ 2/p + τ

)

,

where τ > σ 2/p, since λ = σ 2 + pτ > 0 when considering σ 2 a constant.
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The remaining n(p − 1) components
(
z̃2, . . . , z̃p

)
are distributed according to

p
(
z̃2, . . . , z̃p | μ, σ 2

)
=
(
2πσ 2

)−n(p−1)/2
exp

(−∑n
i=1
∑p

j=2 z̃
2
i j

2σ 2

)

=
(
2πσ 2

)−n(p−1)/2
exp

(
−S2W
2σ 2

)

where S2W =∑n
i=1
∑p

j=2 z̃
2
i j =∑n

i=1
∑p

j=1

(
zi j − zi

)2.
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