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Abstract

The facility location problem is an NP-hard optimization problem. Therefore,
approximation algorithms are often used to solve large instances. Probabilistic
analysis is a widely used tool to analyze such algorithms. Most research on proba-
bilistic analysis of N"P-hard optimization problems involving metric spaces, such as
the facility location problem, has been focused on Euclidean instances, and also in-
stances with independent (random) edge lengths, which are non-metric, have been
researched. However, we would like to extend this knowledge to other, more gen-
eral, metrics.

We investigate the facility location problem using random shortest path metrics.
We analyze some probabilistic properties for a simple heuristic which gives a solu-
tion to the facility location problem: opening a certain number of arbitrary facilities
(with that certain number only depending on the facility opening cost). We show
that, for almost any facility opening cost, this heuristic yields a 14+ o0(1) approxima-
tion in expectation. In the remaining few cases we show that this heuristic yields
an O(1) approximation in expectation.

Keywords: Facility location, Random shortest paths, Random metrics, Approxi-
mation algorithm

1 Introduction

The (uncapacitated) facility location problem can be described as follows: given a (complete)
graph G = (V, E), facility opening cost f; for each vertex v; € V and a distance d(u, v) between
each pair of vertices u,v € V, find a subset U C V of vertices at which you open facilities such
that the total cost is minimized. Here, the total cost is given by the sum of the opening cost
fi for all vertices v; € U and the sum of the ‘connection’ cost min,ey d(v,u) for all vertices
veV\U.

This problem is known to be NP-hard [2]. Therefore research on the facility location
problem (and other A'P-hard problems) has been focused on different heuristics, ranging from
straightforward to rather sophisticated, and their worst-case performance (for instance [4, 7]).

So far, probabilistic analysis of heuristics for optimization problems like the facility loca-
tion problem has been focused on instances either using Euclidean space or on (non-metric)
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instances with independent (random) edge lengths, since such instances are technically rela-
tively easy to handle. However, we would like to apply probabilistic analysis to more general
metric instances. To do so, we use so-called ‘random shortest path metrics’, which have also
been used by Bringmann et al. [1], who initiated this research.

Random shortest path metrics are defined as follows. Consider an undirected complete graph
G = (V,E) on n vertices. For any edge e € F, let w(e) ~ Exp(1) be the weight of edge e,
independently drawn from the standard exponential distribution. Then, the distances d(u,v)
between each pair of vertices u,v € V are defined as the minimum total weight of any u, v-path
P in G. The underlying model of random shortest path metrics is also known as first-passage
percolation.

Many structural properties of random shortest path metrics are known, such as the expected
shortest path length (In(n)/n in expectation as n — o0o0) [1, 3, 6], and the number of edges on
the shortest path between any two vertices [5].

We consider instances of the facility location problem for which the distances d are randomly
generated using the principle of random shortest path metrics and for which every vertex has
the same nonnegative facility opening cost f, i.e. f; = f > 0 for all ¢ € V. This implies that
the total cost of any solution @ # U C V is given by

cost(U) = f - |U| + Z mi(led(v,u).
ven\u €

Although we do not mention it explicitly, the facility opening cost f does depend on the size
of the instance, i.e., we have f = f(n). It makes sense to do this, since the expected distance
between two arbitrary vertices also depends on n when using random shortest path metrics.

We show that the most trivial procedure of opening a fixed number of arbitrary facilities
(with that fixed number only depending on the facility opening cost f) yields a 1 + o(1)
approximation in expectation unless f € ©(1/n). If f € ©(1/n), then this procedure is shown
to yield a O(1) approximation in expectation.

2 An intuitive approach

Intuitively, we observe that the optimal solution for our problem will satisfy |U| ~ n when
the facility opening cost f is (almost) 0. On the other hand, the optimal solution will satisfy
|[U| = 1 when the facility opening cost is relatively large. And when the facility opening cost
f are neither ‘relatively small’ nor ‘relatively large’, |U| will be neither close to n nor close to
1 for the optimal solution.

Let OPT denote the total cost of the optimal solution to the facility location problem.
Furthermore, for k € [n] := {1,...,n}, let OPT}, denote the total cost of the optimal solution
to the corresponding k-median problem. Then it follows that

OPT = z%gVCOSt(U) = @%gv f-|0|+ .E;\Uznellr}d(wu) = l?elgzl] (f-k+OPTg).

Moreover, based on the results of Bringmann et al. [1, Sect. 5] we know that Uy, := {v1,...,vx}
is a good approximation for the optimal solution to the k-median problem (whenever k is not
too large), and that the expected cost of this solution is given by E[costy (Uy)] = In(n/k)+0O(1).
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So, intuitively we see that

E[OPT] =E |min (f - k4 OPTy)| ~ min (f - k + E[OPTy])
ke(n] ke[n)

~ min (f - k + E[cost(Uy)]) = min (f - k + In(n/k) + 6(1)) .
k€[n] ke(n]

Finally, we observe that the function g(k) = f -k + In(n/k) is minimal for k = 1/f, resulting

in E[OPT] ~ 1+ In(nf) + ©(1). Combining this observation with the foregoing intuitive

arguments, it seems likely that any arbitrary solution U to the facility location problem with

|U| =~ 1/f yields a good approximation for OPT.

3 Main results

We are interested in the expected approximation ratio of an algorithm that opens approxi-
mately 1/f arbitrary facilities. In order to analyze this, we use the rather trivial algorithm
which opens exactly &k := min{[1/f],n} randomly chosen facilities. Let TRIV denote the total
cost of the solution computed by this algorithm, and let OPT denote the total cost of an op-
timal solution to the facility location problem. Then, using a result from Bringmann et al. [1,
Sect. 5], we can derive the probability distribution of TRIV.

Lemma 1. If k = n, then TRIV has a degenerate probability distribution with P(TRIV = nf) =
1. Otherwise, the distribution of TRIV is given by

n—1

TRIV ~ k- f+ > Exp(i),
i=k

where the Exp(i) are independent exponentially distributed random variables with parameter i.

Observe that we can use our intuitive approach to show that E[TRIV] ~ E[OPT]. However,
using a more thorough analysis, in which we combine this probability distribution with some
bounds for OPT, we can show that TRIV yields either a constant or an asymptotically optimal
approximation ratio. This is summarized in the following theorem.

Theorem 2. Let OPT denote the total cost of the optimal solution to the facility location
problem, and let TRIV denote the total cost of the solution which opens exactly min{[1/f],n}
randomly chosen facilities. Then, it follows that

o[ -ow

Moreover, if either f € o(1/n) or f € w(1/n), then it follows that

[TRIV

CPT}:1+mn.

In order to prove this theorem, we divide the range of possible (asymptotic) facility opening
costs f in three (slightly overlapping) intervals, corresponding to the three intuitive cases
mentioned above: opening all facilities (f < (2 — €)/n), opening exactly one arbitrary facility
(f > 1/n%), and opening some arbitrary facilities ((1+¢)/n < f < M/n®). For each case we
have found a threshold such that conditioning the expected approximation ratio on the events
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OPT is larger relatively smaller than this threshold, allows us to prove the bounds mentioned
in Theorem 2.

These thresholds are chosen in such a way that for the case in which OPT is larger than the
threshold, it is relatively easy to bound the conditional expected approximation ratio. On the
other hand, the thresholds are also chosen in such a way that the probability of OPT being
smaller than the threshold becomes sufficiently small. By doing so, we are able to show that
the (relatively) large conditional expected approximation ratio in this case becomes negligible
when multiplied with that probability.

4 Final remarks

As far as we are aware, these results form only a second step into the research of the behavior
of (combinatorial) optimization problems using random shortest path metrics (the first step
being the results in by Bringmann et al. [1]). Even though random shortest path instances are
more difficult to analyze than Euclidean instances or instances with independent random edge
lengths, we were able to derive some good results when analyzing the facility location problem
on it.

It would be interesting to see whether it is possible to prove similar results when using more
sophisticated heuristics that aim to solve the facility location problem. Furthermore, there are
many other N'P-hard (combinatorial) optimization problems involving metric spaces for which
it would be interesting to know how they behave on random shortest path metrics.
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