

C.I. van Emmerik^{1,*}, S.M. Martinussen¹, J.Mu¹, Dijkstra¹, and S.M. García-Blanco^{1,**}

RENOS Project

Rare Earth Novel On-chip Sources

Goal: development of high-contrast waveguide fabrication technique in KY(WO₄),

Why?

- High refractive index (n≈2 @ 1550 nm)
- Long inter-ionic distance for RE ions (<d>≈0.5 nm)^[1] and high cross-sections for RE ions ^[2]
- High Raman yield ^[3]

Challenges

- Impossible to grow
 - on most substrates
- Small waveguide dimensions
- Defect free layers

Hybrid integration of $KY(WO_{4})_{2}$

Material

- $KY(WO_4)_2$ crystal 1.0 cm by 1.0 cm, 1.0 mm thick
- SiO₂ substrate 2.0 cm by 2.0 cm, 0.5 mm thick

Goal

Hybrid integration of $KY(WO_4)_2$ crystal with a final layer thickness of ~1 μ m.

 $KY(WO_4)_2$ bonded on a SiO₂ substrate with 6.0 μm wide pillars separated 500.0 μm

Polishing stop

Bonding

Requirements

- Round beveled KYW edges (to avoid chipping of the edges)
- Low temperature adhesive
- High precision ($\pm 0.1 \,\mu$ m) z-direction

Finetech Fineplacer Lamda precision flip-chip bonder with 0.5 µm X-Y positioning accuracy.

Logitech PM5 precision lapping and polishing system

	Stage	Material
	Grinding	400/ 800/ 1000 SiC paste
	Lapping	9/3/1 μ m Al ₂ O ₃ suspension on cast iron disk
	Polishing	$3 \mu m CeO_2 / 40 nm SiO_2$ on polyurethane disk

H_{layer} H_{adh}

KYW Adhesive SiO₂ PVD-xxO₂

> Schematic representation of a bonded KYW sample with the polishing stop.

> > Process

Pulsed laser deposition of e.g. TiO₂, Al_2O_3 at ~25 °C

Fabrication of polishing stop

Requirements

- Hard material
- Room temperature process (to minimize stress due to CTE mismatch of the layers)
- High precision $(H_{layer} \approx 1.0 \pm 0.1 \,\mu m)$

Results

- Layer as thin as the polishing stop
- Acceptable planarity
- Reduction of polishing speed by 3-4 times
- Higher yield expected

Outlook

- Increase surface quality (RMS < 2.0 nm) for low transmission losses
- Etching of waveguides on thin layer

[1] M. C. Pujol, X. Mateos, R. Sole, J. Massons, J. Gavalda, X. Solans, F. Dı´az, and M. Aguilo, "Structure, crystal growth and physical anisotropy of KYb(WO₄)₂, a new laser matrix," J. Appl. Crystal- logr., no. 35, pp. 108–112, 2002. [2] Y.-S. Yong, S. Aravazhi, S. A. Vázquez-Córdova, J. J. Carjaval, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, "Temperature-dependent absorption and emission of potassium double tungstates with high ytterbium content," Opt. Express, vol. 24, no. 23, p. 26825, Nov. 2016.

[3] A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V Butashin, R. F. Klevtsova, and A. A. Pavlyuk, "Optical and nonlinear laser properties of the $\chi(3)$ -active monoclinic α -KY(WO₄)₂ crystals," Crystallogr. Reports, vol. 46, no. 4, pp. 665–672, Jul. 2001.

- 1. Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
- E-mail: c.i.vanemmerik@utwente.nl
- ** E-mail: s.m.garciablanco@utwente.nl