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A B S T R A C T

In this work, we present a strategy for obtaining forest above-ground biomass (AGB) dynamics at a fine spatial
and temporal resolution. Our strategy rests on the assumption that combining estimates of both AGB and carbon
fluxes results in a more accurate accounting for biomass than considering the terms separately, since the cu-
mulative carbon flux should be consistent with AGB increments. Such a strategy was successfully applied to the
Qilian Mountains, a cold arid region of northwest China.

Based on Landsat Thematic Mapper 5 (TM) data and ASTER GDEM V2 products (GDEM), we first improved
the efficiency of existing non-parametric methods for mapping regional forest AGB for 2009 by incorporating the
Random Forest (RF) model with the k-Nearest Neighbor (k-NN). Validation using forest measurements from 159
plots and the leave-one-out (LOO) method indicated that the estimates were reasonable (R2 = 0.70 and
RMSE = 24.52 tones ha−1). We then obtained one seasonal cycle (2011) of GPP (R2 = 0.88 and
RMSE = 5.02 gC m−2 8d−1) using the MODIS MOD_17 GPP (MOD_17) model that was calibrated to Eddy
Covariance (EC) flux tower data (2010). After that, we calibrated the ecological process model (Biome-
BioGeochemical Cycles (Biome-BGC)) against above GPP estimates (for 2010) for 30 representative forest plots
over an ecological gradient in order to simulate AGB changes over time. Biome-BGC outputs of GPP and net
ecosystem exchange (NEE) were validated against EC data (R2 = 0.75 and RMSE = 1. 27 gC m−2 d−1 for GPP,
and R2 = 0.61 and RMSE = 1.17 gC m−2 d−1 for NEE). The calibrated Biome-BGC was then applied to produce
a longer time series for net primary productivity (NPP), which, after conversion into AGB increments according
to site-calibrated coefficients, were compared to dendrochronological measurements (R2 = 0.73 and
RMSE = 46.65 g m−2 year−1). By combining these increments with the AGB map of 2009, we were able to
model forest AGB dynamics. In the final step, we conducted a Monte Carlo analysis of uncertainties for inter-
annual forest AGB estimates based on errors in the above forest AGB map, NPP estimates, and the conversion of
NPP to an AGB increment.

1. Introduction

Forest above-ground biomass (AGB) plays an important role in
carbon and water cycles in the terrestrial biosphere. AGB impacts gross
(GPP) and net primary production (NPP), the radiation balance, water
interception, and even air quality (Houghton et al., 2000). Forest AGB,
in turn, is affected by these processes (Vanderwel et al., 2013). The

significance of the interactions between AGB and climate are better
understood if spatially and temporally explicit knowledge of forest
AGB, as well as its dynamics, is available. Such knowledge is of great
value for understanding processes and for accomplishing scientific and
practical tasks in forest management.

Forest AGB dynamics can be described as continuous or gradual
(i.e., growth) and discontinuous or abrupt (i.e., disturbance) variations
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(Wulder et al., 2007) that, together, result in variations in the pro-
ductivity and carbon fluxes of forests (Misson et al., 2005; Main-Knorn
et al., 2013). Disturbances include fires and other natural disasters, and
tree felling or planting. For this study, we focused on gradual changes in
forest AGB.

At present, several techniques exist for quantifying changes and
either making use of direct estimates for changes in AGB or analyzing
the fluxes of CO2 between air and land surfaces. The traditional method
utilized for detecting forest AGB dynamics has been inventory-based
forest sample surveys. However, obtaining reliable dynamic estimates
with a satisfactory spatial and temporal resolution requires a con-
siderable investment in labor and supplies (Riemann et al., 2010).

The Eddy Covariance (EC) technique provides estimates of CO2,
water, and energy fluxes between the biosphere and atmosphere that
are essential for characterizations and dynamic analyses of forest eco-
system processes (Lee, 1998; Lee et al., 1999). In spite of this, EC
techniques provide net CO2 flux measurements over specific footprint
areas, so it is impossible to upscale flux observations to large areas
(Osmond et al., 2004).

The remote sensing of biophysical variables has been key for
quantifying forest structure, stem volume, AGB, physiology, and carbon
fluxes in forests (Goetz and Prince, 1996; Solberg et al., 2013; Liang
et al., 2015), especially for situations where a finer temporal-interval
and a spatial-resolution assessment of forest AGB and its dynamics are
required for environmental protection (Neeff et al., 2005). Two types of
remote sensing methods can be applied for estimating forest AGB dy-
namics. One is the repeat acquisition of remote sensing data for esti-
mating AGB changes in carbon pools (Main-Knorn et al., 2013). The
other is applying an ecological model for carbon flux simulations driven
by vegetation indices (e.g. leaf area index (LAI) and the fraction of
photosynthetically active radiation (fPAR), etc.) (Prince and Goward,
1995; Veroustraete et al., 2002). Models for carbon fluxes with detailed
ecological processes contain vegetation functional mechanisms for gas
exchange, photosynthesis, biomass allocation (Thornton et al., 2002),
and forest responses to climate change (Braswell et al., 2005; Ueyama
et al., 2009). However, exploiting the strength of these models is not
easy because the models themselves require a large number of input
variables and site specific calibration (White et al., 2000).

The limitations of the above mentioned methods and data sources
(EC, process models, field inventories, and remote sensing data) can be
partly alleviated using synergistic integration. Process models and EC
measurements of carbon fluxes provide a continuous time series.
Process models also constrain (gradual) AGB increments to physically
realistic limits. Field inventory data are required in order to para-
meterize and calibrate process models, and to provide an AGB map,
although output is unresolved in the temporal domain. Remote sensing
data such as LAI also provide a means for constraining estimates of AGB
increments through a relationship to carbon fluxes.

In this work, we propose a method for modeling a space-time series
of forest AGB dynamics together with forest carbon fluxes in both the
temporal and spatial domain. The proposed method is particularly re-
levant to our study area: an oasis in the central Asian continent whose
water originates from a forest covered mountain range. Forests in the
area are scattered and difficult to access. Yet, understanding the dy-
namics of the area is important for sustainable management. The
method presented may be suitable for other areas. For the proposed
method, all of the techniques and the data mentioned above were used
in synergy and included: (i) forest inventory measurements (tree height,
DBH, LAI, core rings, etc.); (ii) EC measurements (GPP, NEE, etc.); (iii)
remotely sensed data (Landsat Thematic Mapper 5 (TM)) and refined
products (MODIS LAI, fPAR, etc.); and (iv) refined meteorological es-
timates (temperature, solar radiation, precipitation, etc.). All of the
steps in the method were essential for obtaining AGB estimates that
were differentiated in space and time.

Key to our method was combining forest AGB estimations on one
hand and accumulated carbon flux simulations on the other. For forest

AGB estimations, the Random Forest (RF) method was applied to pre-
select the most relevant remotely sensed features. Selected features
were then employed in optimizing the k-nearest neighbor (k-NN) con-
figuration. Combining RF and k-NN improves the efficiency for esti-
mating regional forest AGB using high-dimensional, multi-mode remote
sensing information by: (i) reducing the complexity of computation for
prediction, (ii) removing information redundancy (cost savings), and
(iii) avoiding the issue of overfitting (Li et al., 2011). For forest carbon
flux simulations, an existing remotely sensed GPP model, MODIS
MOD_17, was refined and was then employed to globally calibrate the
process-based model, the Biome-BioGeochemical Cycles (Biome-BGC).
The process model provided a time series of maps for AGB increments.
This incorporation was capable of suppressing model ill-behaviors and,
strengthening model robustness, and made the model more resistant to
the impacts of environmental variability and forest stand diversity that
tend to create bias in simulations.

Although the proposed modeling methodology has the above ad-
vantages, models and data from multiple sources cascaded together,
leading to a very complex result. Therefore, in practice, strict quality-
control for each model and dataset in this systematic modeling strategy
should be conducted because each introduces uncertainty in model
performance. To date, most studies have assessed uncertainties in es-
timated forest AGB or carbon storage/density over broad scales (Monni
et al., 2007; Gonzalez et al., 2010, 2015). To assess modeled forest AGB
dynamics at the pixel scale, which can clearly indicate error sources and
their contribution rates, we applied a Monte Carlo analysis.

The specific objectives of our study were as follows: (i) to explore an
effective method for estimating regional forest AGB using high-di-
mensional, remotely sensed information; (ii) to strengthen the robust-
ness, generality, and applicability of the process-based ecological model
for obtaining reliable forest carbon fluxes; (iii) to model continuous
forest AGB dynamics at a fine spatio-temporal scale through the in-
novative and consistent integration of AGB with carbon fluxes; and (iv)
to quantitatively assess the uncertainty of modeled forest dynamics at
the pixel scale.

2. The study area and observations

2.1. The study area

The Heihe River Basin (HRB), one of the largest and most important
inland river basins in the arid region of northwestern China, is com-
posed of the following three major geomorphic components: (i) the
southern Qilian Mountains, (ii) the middle Hexi Corridor, and (iii) the
northern Alxa Highland. The landscapes are diverse and include gla-
ciers, frozen soils, alpine meadows, forests, irrigated crops, riparian
ecosystems, and deserts (Fig. 1) (Li et al., 2009). The Qilian Mountains
(the conserved forested area) were selected as our study area because
they are the source of water that sustains both natural ecosystems and
∼500,000 people within the large oasis (Li et al., 2013).

The Qilian Mountains span an area of 10,400 km2 and consist of
72% alps, 27% fluvial areas, and 1% oasis with elevations ranging from
1500 to 6000 m above sea level. The area has a typical temperate
continental mountainous climate. The diurnal difference in temperature
is dramatic and precipitation largely occurs during the summer (with
annual rates of 350–495 mm). Dominant vegetation includes mountai-
nous pastures, shrubs, and forests. Forests, mainly composed of Picea
crassifolia mixed with a small fraction of Sabina przewalskii, only survive
on shady slopes (from altitudes of 25003300 m) while sparse grass in-
habits sunlit slopes.

2.2. Observations and the study data

A portion of the measurements employed in this study was collected
under the framework of Water Allied Telemetry Experimental Research
(WATER), a multi-scale and simultaneous airborne, spaceborne, and
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ground-based remotely sensed experiment conducted in the HRB (Li
et al., 2009). WATER, which began in 2007 and ended in 2011, es-
tablished a network of Automatic Weather Stations (AWS) and EC
stations. Only observations from the mountainous forest site (the
Guantan EC station, 100°15′E, 38°32′N, 2835 m) were used in this
study. The forest EC system consisted of a 3-dimensional sonic anem-
ometer (CSAT-3, Campbell Inc., USA), CO2 and H2O gas analyzers (LI-
7500, LI-COR Inc., USA), a heat flux plate (HFP01, Campbell Inc., USA),
a four-component radiometer (CM3 and CG3, Kipp and Zonen, USA), a
temperature and relative humidity probe (HMP45C, Vaisala Inc., Fin-
land), a wind speed sensor (014A and 034B, Met One Instruments Inc.,
USA), and a data logger (CR5000, Campbell Inc., USA).

To obtain half-hour flux data, data quality control processes were
applied to the raw 10 Hz EC data. Processing steps included despiking,

coordinate rotation, time lag correction, frequency response correction,
WPL correction, and gap filling (Wang et al., 2014). Due to low data
quality and too many gaps, measurements from 2008 and 2009 could
not be utilized. Measurements obtained from 2010 and 2011 were used
to optimize and validate the MOD_17 and Biome-BGC models.

Two forest inventory surveys were conducted from June to August
during 2007 and 2008. The first survey was conducted in 52 permanent
forest plots (25 m× 25 m) and 69 rectangular forest plots with two
sizes (20 m× 20 m and 25 m× 25 m); and the second survey was
conducted in 58 circular forest plots (with diameters ranging from 10 to
28 m). Obtained measurements included LAI (measured by LAI2000),
tree height (m) (measured with a Laser Rangefinder-Trupulse 200), and
the diameter at breast height (DBH) (cm) (measured with a DBH ta-
peline). We selected a total of 159 forest plots from the measurement

Fig. 1. The location, sub-reaches, and land cover of
the Heihe River Basin (HRB).
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database using the following criteria: (i) forest plots that were geo-
graphically independent, required to avoid spatial autocorrelation; and
(ii) forest plots dominated by Picea crassifolia, which occupies 99.27%
of total measured trees according to our inventory records. The 159
selected plots included a variety of different terrains (slope, aspect,
altitude) and stand (age, crown coverage, AGB level) conditions. Thus,
minimal bias existed for the various ecological gradients.

To validate the interannual forest AGB increment, an additional
forest inventory, consisting of collecting dendrochronological mea-
surements, was conducted during May 2014. We sampled a total of 22
forest plots that differed in hydrothermal, terrain, and forest stand (age,
AGB class, crown coverage) conditions. To avoid spatial autocorrelation
according to the 1 km resolution of the computing grid within the
ecological models used in this study, the minimum distance between
the plots was 3 kilometers. Tree cores, DBH, and tree height were also
measured. Coring was performed at breast height (1.30 m) in two
perpendicular directions for trees with a DBH>5 cm and three tree
core samples were collected for each DBH level (six DBH levels for each
plot, as follows: 5–10 cm, 10–15 cm, 15–20 cm, 20–25 cm, 25–30 cm,
and>30 cm). Core samples were protected and transported to the la-
boratory where they were mounted and finely sanded for cross-dating
and annual ring width measurements. Following a surface treatment of
samples, the ring width of each core was measured at an accuracy of
0.001 mm using the Lintab5 measuring system (a digital positioning
table for measuring the increment of cores as well as the stem disk). The
geometric method developed by Duncan (1989) was employed for es-
timating the pith location when a partial core passed close to the pith.
Possible measurement errors and/or dating were checked using the
COFECHA program (Holmes 1983). Interannual forest AGB dynamics
were then calculated as the difference in AGB estimates between suc-
cessive years. Based on growth models (the Law of Allometric Growth)
as proposed by Wang et al. (1998), AGB was calculated for each year
using the corresponding DBH (measured from the dendrochronological
width) and regressive height based on a fitted relationship between
ground measured DBH and ground measured height (H = 0.89DBH0.85,
R2 = 0.88, RMSE = 2.06 m).

Four scenes of TM images (L1T products from 17 July 2009, 1
August 2009, and two on 11 August 2009) fully spanning the Qilian
Mountains were downloaded from the USGS (http://glovis.usgs.gov).
Corresponding ASTER GDEM V2 (GDEM, 30 m) products were acquired
from the Japan Aerospace Exploration Agency (JAXA) (http://gdem.
ersdac.jspacesystems.or.jp). We conducted the same pre-processes as
those found in Tian et al. (2014), including radiometric terrain and
atmospheric corrections, normalization, and forest/non-forest classifi-
cation.

Forcing data for the MOD_17 model included the vapor-pressed
deficit (VPD), daily minimum air temperature (Tmin), and absorbed
photosynthetically active radiation (APAR, MJ day−1). Employed VPD
and Tmin were obtained from downscaled (to 1 km), long-term
(2000–2012) weather research and forecasting (WRF) model simula-
tions (Pan and Li, 2011) that included maximum and minimum tem-
peratures (Tmax and Tmin, respectively), precipitation, relative humidity,
and solar radiation. Global LAnd Surface Satellite (GLASS) LAI products
from time-series (years 2000–2012) MODIS data obtained using general
regression neural networks (GRNNs) (Xiao et al., 2014) were applied in
order to derive fPAR so we could initially optimize the MOD_17 model.
Optimized estimations were compared with MODIS GPP products (level
4, 8-day products, 1 km) obtained from the NASA LAADS Web (http://
ladsweb.nascom.nasa.gov).

Major input variables for the Biome-BGC model included meteor-
ological data, vegetation, eco-physiological parameters, and site con-
dition parameters. Meteorological inputs were also obtained from
downscaled WRF simulations. Default eco-physiological parameters for
the needle tree (Picea crassifolia), as found in the Biome-BGC lookup
table, were first applied and then calibrated using GPP estimates ob-
tained from the optimized MOD_17 model. The soil map from

Shangguan et al. (2012) was reclassified based on the 1:1,000.000 scale
soil map of China and 8595 soil profiles from the Second National Soil
Survey.

3. Methodology

The method for estimating a space-time series of forest AGB con-
sisted of four steps (Fig. 2). In the first step, an AGB map was produced
from field inventory and remotely sensed data. A Random Forest (RF)
model was applied in order to select features with various types of re-
motely sensed information. The optimizing configuration of the k
Nearest Neighbor (k-NN) was applied for mapping regional forest AGB
for 2009.

In the second step, the two models were coupled in order to reduce
uncertainties in estimating regional forest carbon fluxes. A remote
sensing model for GPP, the MODIS MOD_17 GPP model (MOD_17)
(Running et al., 1999), was optimized at the EC site within the study
area for 2010. Time series optimized MOD_17 model GPP estimates of
30 pixels (1 km) were carefully selected, and these representative plots
were used to calibrate the process-based ecological Biome-BGC (Biome-
BioGeochemical Cycle) model (Thornton et al., 2002).

In the third step, for the sake of obtaining forest AGB dynamic in-
formation, the calibrated Biome-BGC model was spatially applied in
order to obtain simulations of regional carbon fluxes. The GPP and net
ecosystem exchange (NEE) produced by the Biome-BGC were validated
to EC data at the site. Interannual forest AGB increments were calcu-
lated based on the simulated fluxes of net primary productivity (NPP).
AGB increments were compared to dendrochronological (tree ring)
data, and were combined with earlier derived AGB values for 2009 in
order to model forest AGB dynamics from 2000 to 2012.

Each model and dataset used in this study induces uncertainty into
final estimates. Potential errors and variations in remote sensing data,
simulated carbon fluxes, and conversion coefficients all require a
careful evaluation (quantification) of uncertainty. To quantify un-
certainty in forest carbon research, the Intergovernmental Panel on
Climate Change (IPCC, 2006) and a few additional studies have re-
commended a Monte Carlo analysis (Monni et al., 2007; Gonzalez et al.,
2010, 2015). So, in the final step, we applied a Monte Carlo analysis, a
typical method used for computing error propagation and evaluating
influential factors (Smith and Heath 2001; Li et al., 2012), to quantify
uncertainties in modeled interannual forest AGB dynamics.

3.1. Description of the models

3.1.1. Random forest
The non-parametric regression tree method of RF is a popular and

widely used ensemble approach to feature selections for “small n, large p
problems” (Li et al., 2011), where n indicates the number of samples and
p indicates input features. The method is designed to generate robust
predications without over-fitting data while, at the same time, being
insensitive to outliers and noise in comparison to single classifiers. RF
has roots in classification and regression trees (CART) and consists of a
collection of tree-structured classifiers that dictate how input is related
to a predictor variable.

To construct an ensemble of decision trees with a defined variance,
the “bagging” or “bootstrap aggregating” idea and a random selection
of features were embedded into the RF algorithm. Using a different
subset, each tree was typically guided using a training set in order to
improve the generalization ability of the classifier (Mahapatra 2014).
Following training, predictions for the targets could be generated by
taking a majority (or average) vote. Votes were determined using a
binary test with user-defined thresholds placed at each internal tree
node from the root to each leaf. The procedure has been proven to be an
efficient predictor (or classifier), especially when the number of de-
scriptors is very large (Latifi and Koch, 2012).

Nevertheless, for noisy or unbalanced inputs that exist amongst
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trees, RF suffers from instability and may not remove certain variables
contained within multiple trees (Li et al., 2011). Moreover, black box
prediction is vague and difficult to interpret in terms of underlying
features (Song and Horvath, 2013).

3.1.2. k-Nearest neighbor
The k-NN technique is a non-parametric, multivariate approach that

does not assume any parametric form and is, therefore, unaffected by
distributional assumptions. Another important advantage of k-NN is
that missing values can easily be assigned (Fazakas et al., 1999; Li et al.,
2011; McRoberts et al., 2007). The performance of k-NN is impacted by
the following factors: (i) feature space variables; (ii) multidimensional
distance measures (very common distances include the Euclidean Dis-
tance (ED), the Mahalanobis Distance (MD), and the Fuzzy Distance
(FD)); (iii) the number of k nearest neighbors; and (iv) the size of the
sampling window (Chirici et al., 2008; Tian et al., 2012). To constitute
the optimal configuration of k-NN, various feature types and the
mathematical setup should be added to the algorithm. Normally, the
optimizing process generates thousands of configurations and consumes
a large amount of computation time, especially in the presence of nu-
merous feature types composed of multi-sourced, remotely sensed data
because feature type combinations can be complicated and the im-
portance of each feature type is unknown in advance.

3.1.3. The MOD_17 model
The MOD_17 model is based on the radiation conversion efficiency

concept of light use efficiency (LUE) (Monteith, 1972). A detailed

description can be found in Running et al. (1999). In the MOD_17
model, GPP is estimated, as follows:

= × × × ×GPP ε f VPD f T PAR fPAR( ) ( )max m (1)

where εmax is the maximum LUE, f(VPD) is the scalar of daily VPD, f
(Tm) is the scalar of daily Tmax and Tmin, and PAR is photosynthetically
active radiation.

fPAR is calculated as follows:

= −
− ×fPAR e1 k LAI( ) (2)

where k is the light extinction coefficient.
Four potential sources for uncertainties in the MOD_17 model are:

(i) meteorology inputs (i.e., air temperature, relative humidity), (ii)
radiometry inputs (solar radiation), (iii) biophysical inputs (εmax), and
(iv) model representation limitations Meteorological errors specifically
arise from the coarse scale meteorology of the NASA Data Assimilation
Office (DAO). Errors in radiometry can cause miscalculations in the
fPAR algorithm, and biophysical misclassifications can lead to land
cover classification problems. The lack of representation of soil
moisture within the algorithm leads to errors in estimating GPP and to
difficulties in capturing seasonal dynamics, particularly for water-lim-
ited areas (Coops et al., 2007).

3.1.4. The Biome-BGC model
The Biome-BGC model combines scaled-up representations of basic

plant biology and geochemistry with ecosystem dynamics and functions

Fig. 2. An overall flowchart for this study.
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to simulate processes including the fluxes of carbon, water, and ni-
trogen on broader temporal and spatial scales (White et al., 2000;
Thornton et al., 2002). Since its original development on the basis of
the FOREST-BGC model (Running and Coughlan, 1988; Running and
Gower, 1991), the Biome-BGC model has been applied with success to a
variety of forest ecosystem types in different regions (Churkina et al.,
2003; Chiesi et al., 2005; Chiesi et al., 2007; Maselli et al., 2009). For
this study, we used Biome-BGC version 4.2.

3.2. The execution of models

3.2.1. Incorporating random forest with k-nearest neighbor
For prediction models using multi-parameter remote sensing data,

one key issue to avoid in the context of over-fitting is the selection of
sensitive feature types from various types of remotely sensed informa-
tion. RF is a tool that is capable of providing a variable ranking me-
chanism, but it typically generates black box predictions that are vague
and difficult to interpret (Song et al., 2013).

In contrast, k-NN is simple but highly explicit and flexible. However,
since forward feature selection normally brings out information re-
dundancy or deficiency, feature combination prior to configuration
construction comes at an unacceptably high cost. Therefore, a critical
issue is how to develop methods that can optimally combine features to
obtain high modeling efficiency. Such is especially the case for high
dimensional datasets.

The idea of incorporating RF with k-NN was motivated by the
strength of both methods, and an idea that incorporation had the po-
tential to significantly improve performance in terms of both compu-
tational complexity and accuracy. To our knowledge, few studies have
incorporated RF with k-NN in classification applications (i.e., gene
discrimination) (Li et al., 2011). We are currently not aware of any
published studies that have used this strategy for quantitative remote
sensing applications (i.e., forest AGB).

In this study, RF was first used for selecting the composition of
optimal feature types. Then, selected feature types were employed in
the k-NN in order to construct an optimal configuration. For example,
the varying mathematical setup included the k value, the distance
measure, and the extracting window size. The performance of each k-
NN configuration was evaluated using leave-one-out (LOO) cross-vali-
dation. Optimal k-NN values were determined using the highest
Pearson correlation index (R) and the lowest root mean square error
(RMSE) principle for pixel-wise accuracy (Franco-Lopez et al., 2001;
Chirici et al., 2008; Dusseux et al., 2015). In the final step, we used the
outperforming configuration for k-NN for estimating forest AGB over
the study area.

The wrapper-based RF was applied to select features (Breiman,
2001). The same feature types (a total of 88 feature types) as applied in
our previous study (Tian et al., 2014) and the training dataset (forest
AGB from 159 plots) were used as input into the RF in order to perform
feature type selection. According to previous studies (Fayad et al.,
2014) and our dataset, we employed the wrapper-based feature selec-
tion using parameters of 10 trees, 100 nodes, and tenfold.

The seven most relevant feature types (as defined in the paragraph
below) were determined by RF: TCB, TCG, TCW, DEM, S4, M5, and IRI.
TCW, TCG, and TCB are the tasseled cap wetness, the greenness, and
the brightness of a TM image, respectively. These components are im-
portant spectral variables for maximizing the separation of soils and
forests (Crist and Cicone, 1984; Cohen et al., 1995) and display a high
correlation with forest stand attributes (Cohen and Spies, 1992). In our
study area, the altitude dependent temperature and precipitation (Zhao
et al., 2005; Pan and Li, 2011) of the forest stand largely impacts forest
growth. TCW was the most robust index (responding to spatial and
temporal variations in canopy moisture), while TCG yielded a very
strong relationship to forest structural information (i.e., canopy height,
canopy openness, basal area, LAI) (Czerwinski et al., 2014). DEM is the
altitude from the GDEM product and is also related to forest growth.

The local forest represents an obvious ecological gradient due to dif-
ferent altitude-dependent hydrothermal conditions. S4, M5, and IRI are
the second moment texture of Band 4, the mean texture of Band 5, and
the infrared index of the TM image, respectively. Texture measures
derived from the near- and mid-infrared bands of TM allow for a finer
distinction of the structural detail (i.e., canopy height, canopy open-
ness, basal area, LAI) of forests. These measures can maximize the
discrimination of spatial information independent of tone, thereby po-
tentially increasing the range of biomass to higher levels (Kuplich et al.,
2005; Luckman et al., 1997; Latifur and Janet, 2011). Additionally, IRI
has proved to be sensitive to photosynthetic activity and, thus, to
growing stock volume or biomass (Hardisky et al., 1983; Chirici et al.,
2008).

3.2.2. Incorporating the MOD_17 model with the biome-BGC model
Integration of the MOD_17 and Biome-BGC models was motivated

by the specific advantages and disadvantages of the two models.
MOD_17 takes advantage of time-series remote sensing data, which
ensures that the model is applicable for the space-continuity domain
within certain time intervals (i.e., eight days for MODIS). However, the
MOD_17 model relies on the applicability (i.e., data without con-
tamination of cloudy and rainy conditions) and explicability (i.e., the
accuracies of retrievals) of remotely sensed data. The model also relies
on empirical relationships/constants (i.e., LUE) and then loses some of
the intrinsic characteristics of ecological processes, resulting in vague
depictions for time-continuity ecosystem variations and corresponding
environmental causes.

On the other hand, the process-based model, Biome-BGC, has
strength based on its state-of-the-art knowledge of major ecological,
biophysical, biochemical, and hydrological processes but suffers from
high complexity, difficult calibrations, and great computational in-
tensity. The model has good performance at the site scale after elabo-
rate calibrations, although dubious results occur over large areas for
space-continuity applications.

Previous studies yielding reliable results have indicated the possi-
bility of incorporating remote-sensing-based models (the C-Fix model
(Veroustraete et al., 2002)) with process-based models (the Biome-BGC)
for simulating carbon fluxes over Mediterranean forest ecosystems
(Chiesi et al., 2007, 2011; Maselli et al., 2008). However, the feasibility
of this integration strategy is not understood for water-limited forest
ecosystems located within arid and cold regions.

In this study, EC measurements, refined time-series downscaled
WRF meteorological data, and MODIS fPAR products from GLASS LAI
were used in order to optimize the MOD_17 model. Integration of the
MOD_17 and Biome-BGC models was performed by calibrating the
Biome-BGC using GPP simulations from the MOD_17 model. Prior to
calibration, to effectively determine optimal configurations for the
Biome-BGC model over the forest ecosystem, we performed a sensitivity
analysis (results not shown here). Some parameters were found to be
sensitive factors (Table 1). In general, these factors controlled the re-
sponses of forests to summer drought by regulating water loss (Chiesi

Table 1
Calibrated parameter settings for optimal configuration of the Biome-BGC model.

Parameters Value Unit

Fine root C:leaf C 2.4 –
C:N of leaves 40 kgC kgN−1

C:N of fine roots 90 kgC kgN−1

Specific leaf area 12 m2 (kgC)−1

Fraction of leaf in rubisco 0.08 –
Maximum stomatal conductance 0.0022 m s−1

Cuticular conductance 0.000022 m s−1

Boundary layer conductance 0.09 m s−1

Vapor pressure deficit: Start of conductance reduction 600 Pa
Vapor pressure deficit: Complete conductance

reduction
3900 Pa
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et al., 2007). Runs containing various configurations of the Biome-BGC
model were compared to GPP simulations from the optimized MOD_17
GPP model. Four sampling schemes (with 10 plot intervals added
progressively from 10 to 40 plots) for MOD_17 model GPPs of the local
monotonous tree species (Picea crassifolia) were applied for calibration.
These plots were selected by considering various stand conditions such
as: (i) slope and aspects of the terrain; (ii) the age, height, and AGB
levels of trees; (iii) locations near other wet (reservoir, river) or dry
(bared soil, shrubs, or pasture) land cover types; and (iv) climate con-
ditions (rainfall, temperature, VPD, etc.). An optimal fit relationship
between the MOD_17 and Biome-BGC GPPs was found in the scheme of
30 plots. Eight-day GPP estimates during the growing season (from
April to September) for the validation year (2011) were computed for
all of the conditions by applying the optimized MOD_17 model that was
used as a reference for calibrating Biome-BGC configurations. A total of
690 (30 plots × 23 layers/plot/year × 1 year) GPPs from the Biome-
BGC were compared to reference values from the MOD_17 model. When
an optimal fit was determined, an optimal configuration for the Biome-
BGC was established.

3.2.3. Simulations of carbon fluxes and the conversion of NPP estimates to
AGB increments

Following the calibration process, climate, vegetation eco-physio-
logical parameters, and site condition parameters were applied in order
to run the improved Biome-BGC model for the Picea crassifolia forest
ecosystem over the Qilian Mountains. Resolution of the model grid was
set to 1 km, the same as for the forest AGB reference map and GPP
outputs from the MOD_17 model. Following a spin-up simulation for
6000 years, the Biome-BGC began to simulate daily forest carbon fluxes
over 13 years (from 2000 to 2012). Daily NPP simulations were then
aggregated into the annual NPP summation. The annual summation
was further divided into annual below-ground NPP (BNPP) and above-
ground NPP (ANPP) according to the carbon allocation ratio of Picea
crassifolia (6.05% and 93.95% of total NPP, respectively) as concluded
from field measurements (Wang et al., 2000).

The ratio of litter fall to total carbon sequestration was set to 39%
(Wang et al., 2000) and mortality was set to 3% y−1 (Zhong and Yin,
2008). Afterward, annual AGB was calculated by multiplying annual
ANPP by the ratios of 1-0.39 and 1-0.03. The annual forest AGB in-
crement was finally estimated by dividing the carbon content factor
(the ratio between carbon storage and biomass) of Picea crassifolia
(52.43%) (Wang et al., 2000) into the carbon amount for the annual
AGB increment.

3.2.4. Analysis of uncertainties using the monte carlo method
We used a Monte Carlo analysis to quantify the uncertainties of

modeled forest AGB dynamics from three error sources: (i) errors in the
forest AGB basis, (ii) errors in NPP estimates, and (iii) variations in the
conversion of NPP to an AGB increment.

For the analysis, interannual forest AGB dynamics was defined as:

= + − + ×

= + × −

− −

−

B B Bi B Bi f

B Bi f

( )

( ) (1 )
year N year N year N year N year N m

year N year N m

( ) ( 1) ( ) ( 1) ( )

( 1) ( ) (3)

where Byear(N) is the forest AGB in year N to be estimated, Byear(N−1) is
forest AGB in year N−1, Biyear(N) is the forest AGB increment in year N,
and fm is the mortality ratio.

The modeled error of interannual forest AGB dynamics can be ex-
pressed as:

Byear(N)′ = Byear(N−1) + XByear(N−1) × SEByear(N−1) + Biyear(N)
+ XBiyear(N)SEBiyear(N) × (1 − (fm + XfmSEfm) (4)

where Xvariable is a random number (different for each variable) from a
normal distribution with a mean = 0 and a standard deviation = 1,
and SEvariable is the standard error of the variable. Since

Biyear(N) was converted from modeled NPP during year N, Eq. (5) can
be expressed as:

Byear(N)′ = Byear(N−1) + XByear(N−1) × SEByear(N−1)

+ ((NPPyear(N) × fANPP + XANPP(N) × SEANPP(N))
× (fc + Xfc × SEfc)) × (1 − (fm + XfmSEfm) (5)

where fANPP is the ratio of ANPP to NPP and fc is the carbon content
(%) in biomass.

We then calculated 10,000 realizations of Byear(N)′. For this case,
SEByear(N−1) was estimated as the standard error of the 10,000 realiza-
tions during year N−1, with the exception that SEByear(2009) was cal-
culated using a regression between forest AGBs from measurements and
remote-sensing estimates. SEANPP(N) is the standard error of the regres-
sion relationship between ANPPs from tree ring measurements and from
the incorporated model in year N. We estimated SEfc and SEfm as 5% of
the carbon content (52.43%) and the mortality ratio (3%), respectively.

The 95% confidence interval (CI) equals:

=
−CI

c c
295

97.5 2.52

(6)

where c97.5 and c2.5 are the 97.5th and 2.5th percentiles of the 10,000
realizations of Byear(N)′, respectively.

The uncertainty (UN ) of forest AGB dynamics in year N is:

=
′

U
CI
BN

N

95

(7)

where ′B N is the mean Byear(N)′ of the 10,000 realizations.

4. Results

4.1. Determination of optimal configurations for the k-nearest neighbor

The optimal configuration for k-NN was determined as k= 5, MD
measure, with a 5 × 5 window sampling size, according to error
minimization criteria (the highest R and the lowest RMSE).

4.2. The forest above-ground biomass estimation

Validated by forest measurements from 159 plots using the LOO
method, the optimal configuration of k-NN generated reasonable forest
AGB estimates (with a R2 = 0.70 and a RMSE = 24.52 t ha−1) (Fig. 3).

Fig. 3. Cross-validation for optimum k-NN estimates (the dashed line represents a 1:1 fit
and the red line represents model line fit). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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The optimal k-NN configuration was then applied for mapping the
regional forest AGB for 2009 that was used as the background for forest
AGB dynamic analyses from 2000 to 2012.

The basic forest AGB map was upscaled to 1 km by means of ag-
gregation (taking the mean value per pixel) in order to keep the same
resolution as the grids for both the MOD_17 GPP and Biome-BGC
models (see Fig. 9(a)).

4.3. Incorporation of the MOD_17 GPP model with the biome-BGC model

In advance of using GPPs from the MOD_17 model to calibrate the
Biome-BGC model, we evaluated the performance of the optimized
MOD_17 model. To analyze the effect of input parameters collected
from three sources (the biome-specific, meteorological, and fPAR
parameters) on model behavior, we compared the original MODIS GPP
products and the GPPs obtained from the optimized MOD_17 model
using the calibrated maximum LUE (εmax), downscaled WRF outputs,
and the fPAR from GLASS LAI.

To determine achieved improvement, GPPs available from two
years of EC measurements were separately used for calibration (2010)

and validation (2011). The results of the optimized MOD_17 model (a
R2 = 0.88 and a RMSE = 5.02 gC m−2 8 d−1) were much better than
the original MODIS GPP products (a R2 = 0.47 and a
RMSE = 20.27 gC m−2 8 d−1) that were significantly lower than EC
measurements (Fig. 4). Such highly underestimated performance was
also reported by Zhang et al. (2008) and Wang et al. (2013). Using site-
calibrated εmax for Picea crassifolia, refined WRF outputs, and fPAR, the
MOD_17 model agreed with EC measurements with the exception of an
overestimation during spring 2011.

The optimized behavior of the MOD_17 model gave us confidence to
calibrate the Biome-BGC using MOD_17 GPP outputs. Calibration of the
Biome-BGC (various parameterization schemes) versus GPPs in 2010
from the optimized MOD_17 model resulted in a R2 of 0.84 and a RMSE
of 13.86 gC m−2 8 d−1 (Fig. 5). Calibrated parameters are provided in
Table 1.

In a similar manner as for the overall tendency in Fig. 4, we also
found great improvement in GPP and NEE estimates using the cali-
brated Biome-BGC model as compared to the Biome-BGC model with
default driven parameters (Figs. 6–7, ). The default model highly un-
derestimated GPP and NEE over the years analyzed years. Prior to

Fig. 4. Comparisons and validations of GPPs from the original MODIS
products and the optimized MOD_17 GPP model.
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calibration, R2 = 0.65 and RMSE = 2.06 gC m−2 d−1 for GPP, and
R2 = 0.44 and RMSE = 1.98 gC m−2 d−1 for NEE. Following calibra-
tion, R2 = 0.75 and RMSE = 1.27 gC m−2 d−1 for GPP and R2 = 0.61
and RMSE = 1.17 gC m−2 d−1 for NEE. The GPPs and NEEs from the
calibrated Biome-BGC agreed well with EC measurements with two
exceptions. A slight underestimation was determined for both GPP and
NEE during the spring, and underestimations were determined for NEE
during autumn.

4.4. Simulations of annual forest carbon flux and forest AGB dynamics

Time-series (13 year) annual AGB increments were validated using
calculations from tree ring data. The simulated annual AGB increments
were largely consistent with the measurements and had a much higher
accuracy (R2 = 0.73 and RMSE = 46.65 g m−2 yr−1) than those ob-
tained from the default Biome-BGC model (R2 = 0.54 and
RMSE = 71.03 g m−2 yr−1) (Fig. 8).

Using the forest AGB map as the reference, forest AGB dynamics
information was obtained by progressively adding (after 2009) or
subtracting (before 2009) the interannual forest AGB value. For ex-
ample, forest AGB dynamics for 2008 were derived from the forest AGB
map of 2009 by subtracting regional annual forest AGB increments for
2009 from forest pixels (Fig. 9). Variations for interannual forest NPP,
ANPP fluxes, AGB increments, and total amounts are provided in
Table 2. The lowest NPP and ANPP (thus, the AGB increment) estimates
were determined for 2009 and the highest values were determined for
2003. Since there was no compensation for AGB loss due to tree mor-
tality, the forest AGB increment for 2009 was negative.

4.5. Uncertainties in interannual forest AGB dynamics

Table 3 provides uncertainties for interannual forest dynamics ob-
tained from the Monte Carlo method (Eqs. (3)–(7)). In general, inter-
annual uncertainties increased from 2009 (before and after). Un-
certainties in Monte Carlo error propagation slightly differed due to
varying interannual forest AGB increments that were relatively small as

compared to total forest AGB amounts (Table 2). In other words, the
main contributor of uncertainties resulted from the stand error for
forest AGB (variation coefficient = 17.99%, with a stand er-
ror = 20.15 t ha−1 and a mean = 112.02 t ha−1, see Fig. 3). The cal-
culation for forest AGB standard error at the pixel-by-pixel level pro-
duced considerably higher estimates of uncertainty than did estimates
calculated for mean forest AGB (estimates mean: 110.72 t ha−1; mea-
surement mean: 112.02 t ha−1). When we replaced pixel-by-pixel level
stand error (20.15 t ha−1) by the relative mean error (1.16%) between
measurements and remote-sensing estimates on a forest basis, un-
certainties from the Monte Carlo analysis were largely alleviated. The
result suggests that the method we used is more appropriate for model
assessment of forest AGB dynamics at a finer tempo-spatial scale.

5. Discussion

In general, determination of best feature composition is time-con-
suming, scenario-dependent, and sometimes requires a priori knowl-
edge (Camps-Valls and Bruzzone, 2005). Most studies rely on stepwise
variable selection (Næsset, 2002; Heurich and Thoma, 2008) or sensi-
tivity analyses (Tian et al., 2012). Nevertheless, studies such as these
are based on statistical assumptions of regressions that may not be
suitable for non-parametric methods that normally contain flexible as-
sumptions, especially for spectral signatures with spatial variability.

As compared to original MODIS GPP products, GPPs from the op-
timized MOD_17 model agreed much better with EC measurements.
Improvement was obtained using three sources of refinement for the
input parameters. The first refinement consisted of a calibrated εmax for
Picea crassifolia obtained from site measurements. The second refine-
ment consisted of climate driven forces downscaled from WRF simu-
lations, and the third and final refinement consisted of fPAR generated
from the GLASS LAI product using a Beer’s Law approach (Jarvis and
Leverenz, 1983). WRF and GLASS estimates (the second and third re-
finements) have been determined to be reliable (Pan and Li, 2011; Xiao
et al., 2014).

Nevertheless, understanding critical ecological processes requires
more complex simulations for forest ecophysiology and forest eco-hy-
drology. Process-based models such as the Biome-BGC can depict the
main processes of forest ecosystems (e.g., carbon, nitrogen, and water
flux dynamics). The main drawback of these models is a requirement
for abundant input information and accurate calibrations for each
biome type (Chiesi et al., 2012). For such a model, input data must be
expanded in order to characterize forest processes over large areas and
to satisfy the spatial and temporal resolution requirements needed for
describing local environmental variability, particularly in complicated
mountainous areas such as those found within our study area.

Due to extreme fluctuations in meteorological and environmental
conditions within our study area, calibrations of process-based models
should fully consider ecosystem spatial variability. Site measurements
can fix variability during the calibration process but it is difficult to
extrapolate model results. Based on space-continuity representations of
ecosystem characteristics, the optimized MOD_17 GPP model (fulfilling
the premise of good performance for simulating forest carbon fluxes, in
this case GPPs), was coupled with the Biome-BGC model in order to
create an innovative calibration tool.

On the whole, carbon fluxes (including GPPs, NEEs) simulated using
the calibrated Biome-BGC model were consistent with EC measure-
ments. Nevertheless, as compared with EC measurements, NEEs during
the autumn of 2011 were largely underestimated. The most likely
reason is that respiration in the soil and forest floor was overestimated.
As determined by Zheng et al. (2014), due to higher land surface
temperatures and less soil moisture, the respiration of underlying moss
(generally more than 10 cm thick) and soil was less during the autumn
of 2011 as compared to the same season during 2010. Since it is a

Fig. 5. The optimal fit relationship between the GPPs from the Biome-BGC and MOD_17
model, eight day outputs (P < 0.001) (The dashed line represents a 1:1 fit and the red
line represents a linear regression of Biome-BGC GPPs versus MOD_17 GPPs). (For in-
terpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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pervasive issue for process-based models, future research should focus
on improving the respiration simulation.

Dendrochronological measurements took the spatial variability
(various climate, environmental, and stand conditions) of forests into
account and, overall, were good at representing ecosystem character-
istics. Good agreement for carbon fluxes were validated using EC
measurements (with a fine time resolution) and, as an independently
validated data source, dendrochronological measurements (with so-
phisticated considerations for the spatial variability of forest processes)
made the incorporated tool credible and replicable.

Combining all (sparsely) available information regarding AGB, as
we have in this study, has, to our knowledge, not been previously
proposed. The configuration proposed gave us the option of cir-
cumventing the problem of scarce field data because we were able to
describe specific forest processes in various biomes and under various
environmental conditions. The result was a model: (i) that was more
globally representative, (ii) that was more resistant to the impacts of
environmental variability and forest stand diversity, (iii) that sup-
pressed poor performance in individual models, and (iv) that
strengthened applicability and robustness. Nevertheless, since the pro-
posed configuration relies on multi-disciplinary knowledge and data

(i.e., ecophysiology, meteorology, micrometeorology, remote sensing
and forestry), it also has drawbacks. Integrating models and data from
multiple sources also makes it difficult to rigorously assess un-
certainties. Although we checked our data and the models using high
quality control and systematically validated them using comprehensive
remote sensing campaign datasets, estimates for AGB, carbon fluxes,
and their uncertainties, in point of fact, are propagated when combined
for interannual forest AGB dynamics.

As compared to the other sources analyzed, errors in forest AGB
were determined to be responsible for overall uncertainty in the model.
The pixel-level accuracy of large-scale forest AGB from the incorporated
models (RF and k-NN) and free remote sensing data (TM) were suffi-
cient for the purpose of operational monitoring. A comparison of mean
values for AGB estimates (110.72 t ha−1) with the mean of measure-
ments (112.02 t ha−1) from the 159 plots led to a very small relative
error (1.16%). The result suggests that remote-sensing estimated forest
AGB values for 2009 were statistically close to the national inventory
result over the study area.

In this study, we did not consider forest changes such as afforesta-
tion and deforestation. Afforestation and deforestation for the locations
studied have not been recorded or quantitatively reported. With the

Fig. 6. Comparisons and validations of GPPs from the default and cali-
brated Biome-BGC.

X. Tian et al. Agricultural and Forest Meteorology 246 (2017) 1–14

10



exception of a few occasions of small natural disturbance (tree mor-
tality caused by wind, land collapse, and water scarcity), deforestation
has had less of an influence.

6. Conclusion

In this study, we proposed a strategy for modeling regional inter-
annual forest AGB dynamics by combining estimates of both AGB and
cumulative carbon fluxes consistent with AGB increments. Feature type
selection using RF was used to effectively construct an optimal con-
figuration for k-NN for estimating regional forest AGB. As validated by
dendrochronological measurements (in space) and by EC measurements
(in time), the calibrated Biome-BGC generated reliable forest carbon
fluxes for the space-time-continuum. By combining interannual forest
AGB increments indirectly from the Biome-BGC model using the basic
status of forest AGB for 2009, we obtained interannual forest AGB dy-
namic information. Sensitivity analyses for major sources of uncertainty
indicated that forest AGB basis error due to remote sensing accounted
for the overall majority of model uncertainty as compared to other
factors.

Although the proposed synergistic integration of the models and
data from multiple sources made the modeling of regional interannual
forest AGB dynamics very complicated (considering data requirements
and the necessity of a series of optimization procedures), the proposed

Fig. 7. Comparisons and validations of NEEs from the default and cali-
brated Biome-BGC.

Fig. 8. Comparisons and validation of 13-years of annual forest AGB increments con-
verted from ANPPs obtained from the calibrated Biome-BGC and the default Biome-BGC
using calculations from tree ring data.
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Fig. 9. The upscaled forest AGB reference map ((a) 1 km) and the annual forest AGB increments map ((b) 1 km) for 2009.
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methodology was capable of capturing detailed characteristics for ad-
ditional forest processes (transpiration, photosynthesis, respiration, al-
location, etc.) at finer space and time scales within limited uncertainties
and for providing vital knowledge for sustainable forest and water re-
source management.
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Table 2
Statistics of interannual averaged forest NPP, ANPP fluxes, and AGB dynamics over the
Qilian Mountains from 2000 to 2012.

Year Forest Fluxes (gC m−2 year−1) Forest AGB (103 t year−1)

NPP ANPP Increments Total Amounts

2000 208.63 196.01 82.94 6433.75
2001 266.69 250.56 156.55 6590.31
2002 290.48 272.82 183.04 6773.35
2003 298.47 280.41 188.02 6961.37
2004 260.73 244.96 132.91 7094.28
2005 258.22 242.60 125.64 7219.92
2006 179.72 168.85 18.97 7238.89
2007 230.96 216.99 85.57 7324.46
2008 208.23 195.63 53.21 7377.66
2009 138.97 130.56 −39.17 7338.49
2010 176.39 165.72 18.99 7357.48
2011 190.84 179.30 38.01 7395.49
2012 244.45 229.66 109.55 7505.04

Table 3
Uncertainties in interannual AGB dynamics calculated using the Monte Carlo analysis.

Year Forest AGB (103 t year−1) Uncertainty (%)

Total Amounts 95% CI

2000 6433.75 1802.09 28.01
2001 6590.31 1853.20 28.12
2002 6773.35 1905.34 28.13
2003 6961.37 1936.65 27.82
2004 7094.28 1972.21 27.80
2005 7219.92 1969.59 27.28
2006 7238.89 1997.93 27.60
2007 7324.46 2010.56 27.45
2008 7377.66 1782.44 24.16
2009 7338.49 – –
2010 7357.48 1673.83 22.75
2011 7395.49 1879.19 25.41
2012 7505.04 1891.27 25.20
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