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1.1 Coffee provenance: “a novel business model” 
for coffee producing countries 

Coffee is an important crop that provides a livelihood to millions of people 
living in developing countries. It is the second most traded commodity in the 
world after petroleum (Tran, Lee, Furtado, Smyth, & Henry, 2016). Wine and 
coffee are two important and iconic examples of markets where origin plays a 
significant role. Both products are derived from perennial crops that engage 
producers in long-term relations with place and local resources that have a 
great impact on land use and landscape (Belletti, Marescotti, & Touzard, 
2015).  

Coffee value chains present some relevant features regarding the 
development of valorisation strategies based on geographical origin, which 
differentiate them from wine value chains. Compared to wine, coffee is an 
example of a buyer-driven (Ponte, 2002) global chain with globalization 
affecting every tie, while wine represents producer-driven value chains 
rooted in territories which produce a recognized and specifically labelled wine 
that can be marketed globally. In the wine value chain all the key activities 
are usually managed and executed in the territory of origin. Grapes are 
produced, harvested, processed and bottled in the same region. The coffee 
value chain is divided into two separate parts. The bulk of world coffee 
production is grown and harvested in the global south from where it is 
exported as green coffee to developed countries (mainly Europe and US). In 
the developed countries the most value adding steps are made such as 
blending, roasting, grinding and marketing. As a consequence, the reputation 
of coffee is mainly a competition between brands (processing and marketing 
part) and the origin of the coffee (often only labelled at country level) plays a 
secondary role.  

With time, the coffee market has gradually shifted from a producer-driven to 
a more buyer-driven commodity supply chain, and today the coffee trade in 
global markets is concentrated in the hands of a few big multinational 
companies (Gereffi, Humphrey, & Sturgeon, 2005). Only recently, with the 
wave of differentiation strategies in agrifood consumption markets, the “turn 
to quality” is gradually taking place in the coffee industry (Belletti, 
Marescotti, & Touzard, 2015). The concept of differentiation by territorial 
origin is a recent concept in the coffee value chain and location of production 
is emerging as a new tool in the hands of producers. Geographical origin of 
coffee is of great interest for both consumers and producers since it provides 
decisive criteria of acceptability in terms of guaranteed quality (Gonzalez-
Centeno et al., 2015). It also allows better checks for more honest trade 
supported by fair trade certification efforts.  

In Rwanda Coffee Arabica (var. Bourbon) grown by smallholder farmers, 
produces different sensory qualities among the different regions where they 
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are produced. It is not easy to verify if this distinction is actually linked to 
their geographical origin or, conversely if it is caused by coffee roasting 
practices. According to Folmer (2014), high quality coffees are linked to the 
origin of beans and not to the post harvesting process and roasting. Hence, 
there is a need for methods that separate the effects of the geographical 
location from the effects of coffee processing (Gonzalez-Centeno et al., 
2015). Such a method could potentially be guided by the concept of ‘terroir’. 
Terroir is an area, usually rather small, whose soil and micro-climate impart 
distinctive qualities on food products (Gangjee, 2017). Terroirs are strongly 
related to quality since at purchasing points (cooperatives) higher quality is 
rewarded with higher prices (Quiñones-Ruiz et al., 2016) and higher quality 
has therefore direct links with the specific places where it is produced. Such a 
relationship between quality of a product and location makes a geographic 
area, a terroir (Foroni et al., 2017) a profitable concept. Such commodity 
localization via niche i.e. terroir and specialty agro-food markets holds 
particular promise for rural development (Barham, 2003; Hinrichs, 2003). 

The aim of this study is to explore and develop different methodologies in 
order to derive the relevant coffee terroir characterization for Rwanda using 
existing data and information as much as possible. This could potentially 
provide the government of Rwanda with a scientifically based information 
system to earmark locations for small holder coffee production with high 
revenues. By deriving and mapping coffee terroirs for the whole country, 
multiple actors and coffee partners of Rwanda can become more directly 
engaged in more actively managing specific locations and/or regions for a 
more sustainable coffee market. This would certainly contribute to rural 
development for small holder coffee growers. In general, the development of 
a coffee terroir mapping methodology could advance other similar agricultural 
commodities with similar value chains such as tea and cacao. 

1.2 Overview of the coffee sector in Rwanda 
 
1.2.1 Geographic location and landscapes 
Rwanda is located in the Central and Eastern Albertine Rift of Sub-Saharan 
Africa (1◦–3◦S, 29◦–31◦E) and covers 26,338 km2. The country consists of 
mountains, rounded hills and valleys that have been formed by rifting and 
uplifting of Pre-Cambrian rocks followed by erosion since the Miocene and by 
volcanic activity that initiated during the Plio–Pleistocene (Huhndorf, Kerbis 
Peterhans, & Loew, 2007). The main topographic features (Figure 1-1) are a 
mountain chain from volcanoes in the north (VHP) to mountains in the south 
west, which makes up the Congo-Nile watershed divide (CND) at the altitude 
between 2000 and 4500 m a.s.l. Lake Kivu shore (KS), Impala (IMP) in the 
south west; central plateaus and ridges (CP, ERP) at altitudes of 1500–2000 
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m. Mayaga, Bugesera and Umutara lowlands (MBP, EL) in East at altitudes of 
1000–1500 m, and Imbo plain (IMB) in the South West at altitude below 
1000 m a.s.l. The abbreviations mentioned above refer to the ten agro-
ecological zones of Rwanda and are also shown in (Figure 1-1). 

The agriculture sector in Rwanda is dominated by small-scale farming 
systems consisting of mixed seasonal, annual and perennial crops. The total 
agricultural land (coffee included) is estimated at 55% of the country 
territory followed by forest ecosystems natural and planted forest currently 
close to 28%, urban areas (6%), wetlands (6%) and water bodies (5%).  

The Rwanda coffee export industry plays a particularly important role in the 
country’s development. For many years, coffee remains Rwanda’s top export 
and main source of foreign exchange income (Boudreaux & Ahluwalia, 2009). 
It provides a livelihood for more than 355,000 Rwandan families (NAEB, 
2016), over 2 million people, close to 25% of the total population (OCIR-
CAFE, 2005), many of whom work in cooperatives and grow coffee on small 
plots (Boudreaux & Ahluwalia, 2009). A total of 35,891 hectares (NAEB, 
2016) are located on the country’s rural areas. Coffea Arabica is the 
dominant coffee species cultivated in Rwanda, with a share of more than 
99% of the national coffee area. Coffea Robusta occupies less than 1% of the 
total production area and is only cultivated along Nyabarongo wetlands in 
Muhanga and Gakenke Districts. The most cultivated Arabica variety is 
Bourbon Mayaguez (BM 71, BM 139) and Jackson 2/1257. Coffee plantations 
in Rwanda are generally found in hilly terrain and largely consist of small 
monoculture fields. Very few plantations are shaded with selected leguminous 
trees, and sometimes in association with other perennial crops like banana. 
Coffee is grown on a range of different soil types, some more fertile than 
others. The age of coffee trees ranges from months to more than 30 years. 
Coffee field sizes depend on the available land of individual households. 
Loveridge, Nyarwaya, and Shingiro (2003) demonstrated that individual 
coffee fields in Rwanda are typically small consisting of about 155 to 200 
coffee trees. The recent national coffee census (2016) also reported relatively 
small coffee field sizes consisting of 252 trees on average (NAEB, 2016). 
These individual fields are generally located on steep slopes, and near forests 
and bushes. Farm management practices (mulching, fertiliser application, 
pruning, etc.) also differ depending on socio-economic status of coffee 
farmers. The plant spacing varies from 1.5 to 2.5 m depending on 
agricultural zones. 
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Figure 1-1: Main topographic features of Rwanda with Agro-Ecological Zones: KS = 
Kivu lake Shore, IMP = Impala, IMB = Imbo, CND = Congo Nile watershed Divide, MPB 
= Mayaga plateau & Central Bugesera; CP = Central Plateau, ERP = Eastern Ridge and 
Plateau, EL = Eastern Lowland, BH = Buberuka Highlands, VHP = Virunga Summit and 
High plains. The black dashed outline delineates national parks i.e. Birunga (NW), 
Nyungwe (SW) and Akagera (E). The elevation map is derived from a 10-m resolution 
digital terrain model. 

1.2.2 Coffee sector governance 
Coffee was introduced in Rwanda by missionaries in the early years of the 
twentieth century (Murekezi, 2009). Official government involvement began 
in the 1930s with the Belgium colonial government’s coffee campaigns 
(Boudreaux & Ahluwalia, 2009; Murekezi, 2009). Under these policies, 
government authorities built nurseries and supplied seeds, but they also 
required Rwandan farmers to plant coffee trees.  

After independence (1962), the government of Rwanda (GOR) continued the 
policy of requiring farmers to grow coffee. In 1964, a state-run agency, 
known as OCIR-café was created to be in charge of buying all coffee 
produced by farmers and exporting it. In the same year, RWANDEX, another 
company partially owned by the Government was created to be in charge of 
exporting coffee (Murekezi, 2009). In 2010, OCIR-Café was merged with 
OCIR-Thé (a parallel national authority in charge of tea production and 
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marketing), and formed the current National Agricultural Export Board 
(NAEB). 

With the involvement of coffee cooperatives and private sector 
entrepreneurs, the Government of Rwanda has to date liberalized the coffee 
industry, along with other sectors of national economy (Boudreaux & 
Ahluwalia, 2009). The reforms in the sector included the privatisation of the 
State-owned coffee export company (RWANDEX) in 2006. Following its 
privatisation, a large number of new private domestic and international coffee 
exporters are active in Rwanda.  

To date, NAEB continues providing valuable technical assistance to coffee 
growers and processors (MINAGRI, 2008). NAEB works closely with producer 
cooperatives, where the cooperatives are responsible for post-harvest 
activities up to green coffee beans. NAEB sets the farm gate prices, licenses 
producers, controls the quality, and regulates export and inputs along coffee 
production chain (seeds, fertilizer, pesticides, materials for harvests storages, 
and transport up to auctions). NAEB has the role of official “brander” of 
Rwandan coffee.  

1.2.3 Current coffee production and quality trends  
The average coffee productivity in Rwanda is about 0.7±0.4 ton per hectare. 
This yield is low as compared the expected yield with regard to land 
capability analysis (Verdoodt & Van Ranst, 2003b). Generally, coffee yield of 
Rwanda is lower than the average (1.2 t ha-1) obtained in small scale farming 
systems optimized for coffee growing (Wintgens, 2009). Compared with 
world-wide coffee growing countries, Rwandan coffee farmers obtain yield 
levels well below the levels (1.7 t ha-1) obtained by small scale farmers in 
India (Jayakumar, Rajavel, & Surendran, 2016), and 1.8 t ha-1 in Brazil (de 
Muner, Masera, Fornazier, de Souza, & de Loreto, 2015). Very high yields (3t 
ha-1) are reported in Brazil on commercial Arabica coffee farms (Teixeira, 
Souza, Pereira, de Oliveira, & Rocha, 2015). In East Africa, Rwanda has 
similar yield ranges as observed in Uganda (0.7 to 0.9 t ha-1) (N. Wang et 
al., 2015). 

Concerning the quality, Rwanda is the first country, followed by Burundi in 
2012, in Africa to adopt quality as the main strategy of coffee market through 
participation in World Cup of Excellence competitions since from 2008. As 
compared to other country in the world market, in 2015 CoE auction, the 
best coffee of Rwanda was sold at US$ 30.60 per lb (1lb=0.454kgs) (the 2nd 
price after Costa Rica coffees sold at US$42.10/lb, Burundi (US$28.70 per 
lb), Guatemala (US$25.80 per lb), El Salvador (US$23.50 per lb), Honduras 
(US$23.30 per lb), Nicaragua ($21.60 per lb), Brazil (US$18.90 per lb), and 
Colombia (North) coffees sold at US$14.50 per lb (Refer to: 
https://www.allianceforcoffeeexcellence.org). 

https://www.allianceforcoffeeexcellence.org/
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1.2.4 Link between coffee product and territory 
As reported by Descroix and Soneck (2009), there are six basic 
environmental factors that need to be taken into account while selecting the 
best suitable places to plant coffee. i.e. temperature, water availability, 
sunshine, intensity, wind, type of soil and topography of the land (Wintgens, 
2009). In case of Rwanda, optimal environmental conditions for coffee 
arabica have been registered on the shore of Kivu Lake (KS), in Impala (IMP) 
and in the central plateau (CP) agricultural regions. The Mayaga and 
peripheral Bugesera (MPB) are characterised by a very suitable soil 
conditions, however the climate especially low rainfall is a limiting factor to 
the growth of coffee in this region. A further decrease in rainfall towards the 
east, gives a further reduction in suitability, with the eastern plateau being 
moderately to marginally suitable, whereas the climate is marginal or too dry 
for coffee in the eastern lowland and Bugesera. Unsuitable climate conditions 
are recorded in the cool high altitude (Buberuka) of the North western part of 
Rwanda (Verdoodt & Van Ranst, 2003a). 

1.2.4.1 Climate 
Temperature values and their fluctuations have significant impact on the 
behaviour of the coffee tree. The optimum mean temperature for coffee 
arabica is given as 18oC during the night and 22oC during the day whereas 
optimal average annual temperatures are given between 22 and 28oC. 
Tolerated extremes extend to 15oC during the night and 25-30oC during the 
day. Temperatures higher than 25oC cause reduced photosynthesis and 
prolonged exposure to the temperatures above 30oC incur leaf chlorosis and 
generate “star flowers”, or blossom wilting, as well as defective fruit set. High 
temperatures also favour the development of Coffee Leaf Rust (Hemileia 
vastatrix) and fruit blight (Cercospora Cafeicola) in coffee plants and 
accelerate fruit maturation whilst low temperatures lead to coffee berry 
diseases (Colletotricum coffeanum)(Wintgens, 2009) 

The rainfall pattern also matters. It must include a few months with little or 
no rain because such a dry period is necessary to induce flowering. A total 
annual rainfall between 1400 and 2000 mm is favourable for arabica growing. 
Even well-distributed precipitation amounts below 800-1000 mm for Arabica 
can be hazardous to the productivity of a coffee plantation. This is 
particularly valid for Rwanda where no artificial irrigation is applied by coffee 
farmers. The average annual water requirement over 12 years for coffee was 
found to be 951 mm when the dry season is normal and the coffee is grown 
on soils with a high water retention capacity (Wintgens, 2009). Therefore, 
overall rainfall distribution throughout the year is a decisive factor for 
scheduling the cultivation practices and harvesting. For example, where the 
rainfall is bimodal, there will be two periods of blossoming and, consequently, 
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two harvest periods, known as the “early crop” and the “late crop”. Coffee 
from the “late crop” is of better quality.  

Atmospheric humidity (or relative Humidity, RH) of the air also has a marked 
influence on the behaviour of the coffee plant. The best RH of Arabica is 
around 60%. A high level of atmospheric humidity will reduce the water loss 
by the plant, whereas a low level will increase evapotranspiration. In case of 
Arabica, persistent levels above 85% may affect the quality of the coffee. 

Coffee flowering is significantly stimulated by direct sunlight and shading and 
by adequate fertilisation, in particular nitrogen, sunshine can boost 
productivity. For best results, coffee requires an average of 2200-2400 hours 
of sunlight per year (Wintgens, 2009). In Rwanda, most coffee plantations 
are established in direct sun. In Rubona, for example, the average annual 
exposure to sunlight between 7 a.m. and 5 p.m. is about 58% during the 
rainy season and 75% in dry season. 

1.2.4.2 Soils 
According to Wintgens (2009), coffee plants prosper on well drained alluvial 
and colluvial soils with a favourable texture as well as on deep soils 
developed in volcanic parent materials. Soil depth should be at least 2 m to 
allow tap root development to ensure the necessary water supply to the plant 
during the dry seasons of the year. However, soils where the water table is 
permanently high should never be used for coffee growing. The water table 
should be at least 1.5 m below the soil surface. Moreover, soils which are 
subject to occasional flooding should also be avoided as coffee tree roots are 
easily asphyxiated. Poorly drained soils or heavy clay soils are not 
recommended.  

The radicular system of the coffee tree develops in 30 cm of the upper soil 
layer, which means that the physical properties of the topsoil are more 
important to the coffee tree than those of the deeper subsoil. Favourable 
soils for coffee production are considered to have a porosity of 50-60% and 
an organic matter content ranging from 2-5%. These relatively high 
percentages of organic matter are recommended as they make the soil more 
fertile, less prone to erosion, and offer an improved water and nutrient 
retention capacity (Cyamweshi et al., 2014). Generally, suitable coffee soils 
should not contain more than 20 – 30% of coarse sand and 70% of clay in 
the upper 30-50cm. In Rwanda, the best soil production environments have 
been recorded in Mayaga, and around Muhazi and Mugesera Lakes of Eastern 
plateau (I. Nzeyimana, Hartemink, & Geissen, 2014; Verdoodt & Van Ranst, 
2003a).  
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1.2.4.3 Topography 
Altitude is also an important factor because it is directly related to 
temperature. This is why the highest quality Arabica beans are produced at 
an altitude above 1000 m. Flat lands or slightly rolling hills are considered 
best suited for coffee production because in this landscape run-off is limited 
and erosion can be well controlled. This type of topography is generally 
associated with deep soils with a good water retention capacity.  

1.2.4.4 Management of coffee farms 
Coffee farming is composed of a set of management practices ranging from 
the nursery to the harvest via preparation of the parcel, fertilisation, 
weeding, pruning, as well as regular pest and diseases management. In 
Rwanda, the sowing in nursery takes place in October-November; one kg of 
seed produces about 2500 to 3000 seedlings. About 2500 seedlings per ha 
with 2m between lines and 1m between holes are planted. Organic 
fertilisation is also applied prior to the planting as well as at the beginning of 
each rainy season. About 5 kg of organic manure per coffee tree and 100 
grams of NPK 22.6.12 (in Eastern ridges and lowland, and Impala region) or 
NPK 17.17.17 (in Kivu lake shore, Congo-Nile divide, and Central Plateau) is 
applied in two applications per year (October-November, and March-April). 
Managing N:K ratio in coffee soils is of significant importance to avoid the 
effect of excess potassium on the efficiency of nitrogen fertilizers. Nitrogen is 
essential for the vegetative growth of the trees. It boosts the development of 
branches and leaves while excess of potassium shortens leaf life and 
accelerates leaf fall. During fruit filing, coffee plants have higher nitrogen 
requirements. Potassium is of significant importance as well, particularly for 
the development and the maturation of the fruit. However, the excess of 
potassium inhibits positive effects of nitrogen (Wintgens, 2009). 

Farm management practices (mulching, fertilizer application, pruning, etc.) 
differ depending on socio-economic status of coffee farmers. Coffee 
plantations in Rwanda are generally found in hilly terrain and largely consist 
of small monoculture systems sometimes in association with other perennial 
crops like banana due to land scarcity to enable farmers to achieve a better 
combination of food and cash crops (I. Nzeyimana, Hartemink, & de Graaff, 
2013). Most of coffee trees are sunny-exposed fields; very few plantations 
are shaded with selected leguminous trees. The mulching material used by 
most coffee farmers is mostly dominated by Eragrostis blepharoglumis K. 
Schum, vegetation available on acid soils (Cyamweshi et al., 2014; 
Loveridge, Mpyisi, & Weber, 2002). In Rwanda, mulch is applied in coffee 
fields to control soil erosion (Innocent Nzeyimana et al., 2017). 

Another management measure to maintain coffee production on the longer 
term is pruning. Coffee tree pruning is done three times along with the tree 
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growth. The first pruning which consists of bowing the coffee-tree at 10 
months is required in order to get shoots leading to 3 stems. The second 
named production pruning aims at removing primary lower branches, 
branches which are dried out and secondary branches. The third named 
regeneration pruning takes place every 5 or 7 years of production. Diseases 
and pests control are part of the daily management of the coffee plantations. 

1.2.4.5 Coffee harvesting and post-harvesting processing chain 
Coffee cherries, once well ripe, are harvested usually manually by farmers. 
They transport the cherries by themselves to the nearest coffee washing 
station for washing, drying and hulling to produce green coffee beans. These 
stations are owned either by farmer’s cooperatives or by local investors. The 
cherries are first pre-sorted, by floating them in water to separate the 
heavier cherries from the lighter ones. Heavier cherries are run through 
pulping machines that remove much of the fruit from the bean. Beans are 
fermented in holding tanks, as fermentation makes it easier to remove the 
remaining mucilage. After the fermentation process is complete, the beans 
are washed four to five times. The beans are sorted for the second time and 
left to float for 24 hours. After this 24-hour of floating, the beans are laid out 
on sorting tables, and workers pick out damaged or irregular beans. The 
good beans are dried in the sun until they reach a desired moisture level 
(about 12%), which may take between ten days to two weeks, depending 
upon the weather. Parchment coffee is then packed in burlap bags and 
transported to hulling centres. Hulling parchment coffee to green coffee 
beans is done by the local millers. No parchment coffee is allowed for export 
according to Rwanda regulations, only green or roasted coffees are exported. 

1.3 Challenges in zoning coffee terroirs 
Reliable spatial information on coffee production areas (coverage) is needed 
for terroir zoning. Though, coffee census inventories are regularly carried out 
(2009, 2015) specific information on the geographical location of coffee fields 
is lacking. The census only publishes the number of trees reported by 
farmers and the area (hectares) is estimated assuming an average line 
spacing (2m x 2m). To date, serious efforts are made by the Government of 
Rwanda to avail very high resolution aerial orthophotos (of 25cm pixel size) 
for land use planning and management. Hence with suitable tools and new 
methodologies the high resolution orthophotos could be used to produce a 
coffee base map. Ideally such a map could be regularly updated along with 
the planting of new coffee and/or removal of coffee for other land uses. 

There are very few studies of predicting spatial coffee distribution 
(e.g.Cordero-Sancho & Sader, 2007; Gomez et al., 2010; Moreira, Adam, & 
Rudorff, 2004; Tardin, Deassuncao, & Soares, 1992). All of them dealt either 
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with large plots of coffee, or a small study area, or used very high resolution 
remote sensing data (such as Quick bird or Ikonos imagery). However, coffee 
plantations, in Rwanda, are spread over the countries’ landscape and mainly 
cultivated in smallholder farming systems. An additional challenge is the 
varying age of the coffee plantations: some are more than 30 years old, 
while others are younger than 3 years. Some are very small plots of about 
200 trees and very sparse (2mx2m) or close by 1.5mx1.5m, with or without 
mulch. Farm management practices are also not the same throughout the 
country, depending on socio-economic welfare of farm owners, expressed in 
health differences of coffee trees. All these lead to a complex spectral 
signature for coffee field canopy cover on multispectral imagery, which we 
generally use to detect crop cover with Remote Sensing techniques. Two 
recent attempts for directly mapping coffee systems therefore relied on visual 
image interpretation (Trabaquini, Miglioranza, de Franca, & Neto, 2011) or 
classification improved by visual interpretation (Moreira, Rudorff, Barros, De 
Faria, & Adami, 2010). However, visual image interpretation requires 
manpower and is time demanding, especially when dealing with small-scale 
coffee farming systems in mountainous areas. Hence an automated method 
is needed that is based on aerial orthophotos to produce a coffee base map 
of Rwanda. Once such novel method succeeds, it could be extended to the 
Eastern and central Africa region and elsewhere.  

It is not only the lack of information on coffee field distribution that hampers 
coffee sector plans, but also the lack of information on the distribution of 
suitable environments for growing coffee in the region. We do have very 
generalised information on physical and natural environmental factors 
requirements for coffee production; i.e. the altitude, slope aspect, soil 
structure, nutrient level needed for high production and high quality coffee 
(Wintgens, 2009). However, these factors are site-specific and dynamic. Only 
topographic factors remain stable over several decades. In fact, the climate 
of Rwanda is expected to change towards a warmer and wetter climate by 
2050 (McSweeney & Semafara, 2011). Future temperature projections for 
Rwanda were analysed by McSweeney and Semafara (2011) using daily 
temperature data between 1970 and 2010. Their analysis indicates that the 
mean temperatures have significantly increased in Rwanda over the past 40 
years (an average of 0.35oC per decade, P<0.001) taking average annual 
temperature towards 22oC in 2010. A similar increase was observed in 
minimum and maximum temperatures. Rainfall records, by comparison, 
showed no significant trend between 1931 and 1990 (there was not sufficient 
data to assess the most recent past). Increases in mean temperature are 
projected under all models and all emissions scenarios, while the majority of 
models also indicate increases in annual rainfall totals, though a few show 
small reductions. This has been confirmed for Rwanda by Muhire and Ahmed 
(2015) who used the same rainfall data for a period from 1935 to 1992 and 
indicated a significant incline over the northern region, and a decreased of 
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number of rainy days over the eastern and central plateau. The mean rainfall 
was found to increase sharply in most parts of the country. A significant 
increase of rainfall by 1.5 and 6.8 mm per year (4 mm per year on average) 
from October to December corresponding to short rains were observed. 
Rainfall gradually decreases in January and February in many parts of the 
country, then increases sharply from March to May which corresponds to the 
long rains in 90% of the country territory. Climate and soil are both factors 
that affect coffee yield and quality, but we do not know exactly how. 

We also bear in mind that coffee productivity depends not only on good 
environment but, more importantly, on the management of the coffee farm. 
In a liberalised coffee industry, the land use and farming strategy is 
determined by decisions of the farmer household. Farmers choose what crops 
to plant, what investments to make, what share each crop should be given in 
the household farm and how to manage plots for the household livelihood 
and profitability. This tends to change the potential of a variety such as 
arabica coffee to yield as optimal possible as it could.  

Once the geographic location where specific coffee is grown is known, it is 
possible to relate coffee characteristics to local production conditions. With 
detailed location information we can potentially identify where the best 
locations are found for high yields and high quality coffee. Such locations 
produce high value coffee sometimes referred to as “appellation” (Barham, 
2003). ‘Appellation’ needs also precise knowledge on the entire production 
process of that product, particularly its geographical and environmental 
conditions. The geographic locations are sometimes also known for their 
unique pedo-climate conditions also referred to as “terroir” analogous to wine 
regions (Rotaru, Filipov, Mustea, & Stoleru, 2010). The product-based 
farming system should also be known in the defined geographical terroir 
(Berard & Marchenay, 2006). Such holistic conceptualisation of terroir has 
never been attempted so far in the coffee-based farming system and 
therefore we need to develop it. An additional challenge for Rwandese coffee 
is that it is grown by many small holder farmers.  

1.4 Research objectives 
The overall objective of research is to identify and delineate possible coffee 
‘terroirs’ in Rwanda in a reproducible way. The main underlying research 
hypothesis is that there are existing process based empirical relationships 
between coffee production characteristics and location factors. This implies 
that when we know the different bio-physical and human location drivers we 
can derive/predict specific coffee system properties. 

To derive quantitative coffee system information we need a spatially explicit 
analysis of current coffee farming systems in Rwanda. Because in Rwanda all 
coffee is produced in small fields by smallholder farmers a very detailed 
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inventory of current smallholder coffee fields is required. Step one of this 
research is the development of a methodology to allow a systematic 
automated detailed inventory of coffee fields in Rwanda. 

Once we know at which locations coffee is grown, we can explore to what 
extent coffee production is related to location factors. There are three 
possible ways to make spatially explicit analyses of coffee system 
characteristics: 1) location suitability for coffee based on current coffee field 
distribution; 2) location factors that are associated with observed yield 
variability; 3) location factors that are related to observed coffee sensory 
quality variability.  

A remaining challenge is that the three identified coffee system properties 
(location suitability, coffee yield and coffee quality) are not directly measured 
at field level. Coffee yield and quality are measured at different management 
units, coffee washing stations and lots based on a combination of different 
coffee fields respectively.  

When we know the three empirical relationships of Rwandese coffee system 
properties and their environment we might combine them in an overall 
spatially explicit terroir characterization. Such a terroir map could have 
significant value for identifying, monitoring and developing smallholder coffee 
production in Rwanda. Once we have an empirical description of the system 
we can also explore which management measures might improve current 
coffee system performance or where suitable locations are found for new 
coffee farms. It will also allow evaluating foreseen changes in climate for 
example. 

1.5 Thesis outline 
This thesis consists of six main chapters, each addressing one of the 
challenges presented in section 1.3. 

Chapter 1: In this chapter, we introduce the need for developing a coffee 
terroir model that can bring together the coffee producer and consumer for 
sharing economic benefits as well as for identifying and monitoring the 
proper locations of distinctive coffee of Rwanda.  

Chapter 2: In this chapter, we will develop an automated methodology to 
extract small-scale coffee fields, including at least 200 coffee trees, for the 
whole of Rwanda using aerial orthophotos covering more than 99% of 
Rwanda and on one QuickBird image for the remaining part.  

Chapter 3: In this chapter, we will investigate which of all available potential 
coffee related factors (bio-physical and socio-economic) are associated with 
observed coffee field distribution variability in Rwanda. This analysis could 
lead to location factor related coffee field suitability.  
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Chapter 4: In this chapter, coffee yield variability in relation with known 
location factors will be analysed. Coffee yield data is derived at coffee 
washing stations. Apart from a spatially explicit analysis we will also explore 
effects of known and expected climate changes.  

Chapter 5: In this chapter, coffee sensory quality is also spatially explicitly 
investigated for the whole country based on spatially explicitly sampled 
coffee lots. Also, future trends in coffee quality are projected based on 
climate change scenarios for Rwanda.  

Chapter 6: In this synthesis chapter, we integrate coffee location suitability 
(Chap.3), coffee yield level variability (Chap.4) and coffee sensory quality 
(Chap.5) into a coffee terroir model for the whole of Rwanda. 
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2 Automated high resolution mapping of 
coffee in Rwanda using an expert 
Bayesian network1 

 

                                           
1 This chapter is published as: Mukashema, A., Veldkamp, A., & Vrieling, A. (2014). 
Automated high resolution mapping of coffee in Rwanda using an expert Bayesian 
network International Journal of Applied Earth Observation and Geoinformation, 33, 
331-340. 
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2.1 Introduction 

Introduction Coffee farming delivers strong economic, social and ecological 
benefits to many tropical countries. Despite the relevance of coffee 
cultivation, reliable spatially explicit coffee system inventories are lacking. 
Such data are needed to gain better understanding of the spatial differences 
in coffee quality and quantity and to allow further monitoring of the long-
term coffee sector performance (Loveridge et al., 2003). In most countries, 
the only spatial information available is collected during national agricultural 
censuses, and is reported by administrative unit. Systematic attempts to map 
coffee from remote sensing data are very limited and to our knowledge non-
existing for the African highlands. Existing mapping studies concentrate on 
large-scale coffee plantations in Latin America (e.g. Cordero-Sancho & Sader, 
2007; Gomez et al., 2010; Moreira et al., 2004; Moreira et al., 2010; Ortega-
Huerta, Komar, Price, & Ventura, 2012; Trabaquini et al., 2011). Despite 
their importance for rural livelihoods as well as for the national economy of 
African highland countries, maps that depict the spatial distribution of coffee 
are lacking. This is because only high resolution images (0.25 m) can reveal 
enough detail for identification of individual mature coffee trees. Another 
complication is that hedgerow and scattered trees are common features in 
the coffee farming systems of the East African highlands, often impeding 
direct observation of coffee trees by direct coverage or through the shadows 
that the larger trees cast on the coffee.  

Remotely sensed high-resolution imagery including high quality orthorectified 
aerial photos (orthophotos) have increasingly become available for Africa. 
However, automated extraction of small-scale coffee fields from such data is 
a challenge. In Costa Rica shade-grown coffee was mapped using supervised 
classification on a single Landsat Enhanced Thematic Mapper (ETM +) image 
with red, near-infrared, and mid-infrared bands (Cordero-Sancho & Sader, 
2007). This study yielded a lower accuracy (56%) as compared to other 
studies that included more spectral bands and ancillary data (Langford & Bell, 
1997). Better classification results (83%) were obtained for a case study in 
New Caledonia when high spatial resolution satellite sensors (QuickBird) were 
used and coffee tree crown sizes were considered in the classification (Gomez 
et al., 2010). (Moreira et al. (2004)) demonstrated that coffee fields have a 
high spectral variability due to differences in age, plant spacing and cultivars. 
In addition, topographical effects and spectral confusion between coffee and 
other tree crops may lead to poor classification accuracies (Cordero-Sancho & 
Sader, 2007; Gomez et al., 2010; Ortega-Huerta et al., 2012). 

Therefore, two recent attempts for mapping coffee systems rely on visual 
image interpretation (Trabaquini et al., 2011) or classification improved by 
visual interpretation (Moreira et al., 2010). However, visual image 
interpretation requires manpower and is time demanding, especially when 
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dealing with small-scale coffee farming systems in mountainous areas. Hence 
an automated method is needed. 

Object-based classification provides an alternative approach to per-pixel 
image analysis. It allows developing site-specific models that cater the main 
(local) features of coffee cultivation, such as field size (Chubey, Franklin, & 
Wulder, 2006; Kasper Johansen, Coops, Gergel, & Stange, 2007). Most 
object-based classification methods use segmentation to generate meaningful 
image objects (Brandtberg, 2007; Doxani, Karantzalos, & Strati, 2012; 
Gougeon & Leckie, 2006). Several algorithms, membership functions and 
thresholds are used for image segmentation (e.g. Brandtberg & Walter, 
1998; Q. Chen, Baldocchi, Gong, & Kelly, 2006; Gong, Sheng, & Biging, 
2002; K. Johansen, Phinn, Witte, Philip, & Newton, 2009; Kim et al., 2010; 
Pouliot, King, Bell, & Pitt, 2002; L. Wang, Gong, & Biging, 2004; Wulder, 
Niemann, & Goodenough, 2000). However, all of them reported the problem 
of overestimation or underestimation of surface areas due to the gap area in 
between trees. This has an effect on the delineation of field boundaries. A 
potential solution was suggested by Forster, Buehler, and Kellenberger 
(2009) by the use of “growth factors” such as number of trees per hectare, 
or distance between trees in order to accurately delineate tree crown areas. 
Recently, Bayesian networks have been proposed as an alternative to image 
segmentation. Instead of segmentation, Bayesian network techniques use 
probability functions to discretize image pixels into image objects (Mello et 
al., 2010). 

This paper presents and implements an expert Bayesian net-work as a novel 
object-based classification technique to extract coffee fields from very high 
resolution (VHR) imagery. The method is developed and tested for ten 
agricultural zones of Rwanda using aerial orthophotos. By subsequently 
applying the automated method on 198 orthophotos and one QuickBird 
image, we produced a high resolution coffee map of Rwanda. We first 
assessed the spectral separability between coffee and other major land cover 
classes. Then, the expert Bayesian network model is developed for one site 
and tested in other nine sites. Finally, the model parameters are 
implemented to all aerial orthophotos at national level and assessed using 
field and census validation data sets. 
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2.2 Materials and methods 
 
2.2.1 Data and variables 
 
2.2.1.1 Remote sensing data 
We used very high spatial resolution imagery covering the entire extent of 
Rwanda. Aerial orthophotos covered 99% of the country and a QuickBird 
image of June 2004 covered the remaining part in the south-west of Rwanda. 
Orthophotos were obtained from an aerial photography mission over Rwanda 
during the summertime (July–August) in 2008 and 2009. The images were 
acquired using a Vexcel Ultra Cam-X aerial digital photography camera at 
3000 m altitude above ground level, with a mean ground resolution of 0.22 
m (Swedesurvey, 2010). The orthophotos were processed by the image 
provider to a nominal 0.25 m pixel size and contain three visible bands (blue, 
green, and red). The QuickBird image has four multispectral bands recording 
radiation in the visible and near infrared domain that have a 2.44 m spatial 
resolution and a panchromatic band with a spatial resolution of 0.61 m at 
nadir. Using the panchromatic band, pan-sharpening was performed on the 
multispectral QuickBird bands. A total of 198 orthophotos and one QuickBird 
image were processed to map coffee at the national level. 

Two additional spatial data sources were used in our study as an input to the 
classification. The first is a high-resolution digital terrain model (DTM) that 
was produced from the aerial photographs using stereoscopy (Swedesurvey, 
2010). The second is an existing national forest cover map of 2007 (of over 
90% overall accuracy), which was made based on image classification using 
ASTER, SPOT, and Landsat TM images (Schilling et al., 2007). 

2.2.1.2 Evidence variables for coffee 
We characterized the spatial pattern of coffee across the country based on 
spectral and spatial variables derived from the orthophotos and QuickBird 
image? Spectral variables considered in this study are homogeneity and 
dissimilarity within and between coffee fields. As these are relative spectral 
variables, further radiometric calibration was not justified as it would have 
minor effects on these variables. Therefore we derived these variables 
directly from the digital number (DN) values provided. Homogeneity is 
measured by the minimum and maximum DN within a window around a 
pixel, and dissimilarity is assessed from the standard deviation (DN) within 
that window. Spatial variables used for mapping coffee fields are the average 
diameter of the tree crown and the minimum size of the field. The diameter 
of the coffee tree crown is set to 2 m based on our knowledge of the coffee 
trees and their spacing across Rwanda whereas the size of the field is set to a 
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minimum of 200 coffee trees following Nsengiyumva (2009) giving it the 
same minimum criterion as used in the national coffee census. Land use and 
topography variables were also considered to optimize the location of coffee 
within the landscape. The existing national forest map and DTM-derived flow 
accumulation data were added in the process to exclude forest and 
channel/gully locations, therefore reducing possible errors related to location, 
the shape and the size of coffee fields. 

2.2.1.3 Training and validation dataset 
Two datasets were used for model development at small test site, and 
evaluation of the model performance in the rest of the country as follow: (1) 
80 GPS sample points were randomly collected in coffee fields to train the 
model in the 0.4 km2 test site in the South plateau (Huye district). (2) 137 
GPS points were collected in the test site based on random sampling of which 
79 were taken in coffee fields and 58 in no-coffee fields. These points were 
for validation of the model at the test site. (3) 469 GPS coffee locations were 
collected following random sampling during our field work to validate the 
model transferability in the ten agro-ecological zones that exist in Rwanda. 
(4) 640 GPS locations of coffee plantations where soil samples were taken by 
the National coffee authority (OCIR-CAFÉ) for lime and fertiliser 
recommendation (Cordingley, 2009). (5) 253 GPS locations of soil profiles for 
which only two profiles were located in coffee plantations and 251 in no-
coffee fields (Verdoodt & Van Ranst, 2006). A total of 1362 sample locations 
were used for validation. (6) Reported coffee areas by the national coffee 
census of 2009. The census was conducted in all 30 districts of Rwanda by 
OCIR-CAFÉ together with Statistics Officers at the district and sector level 
(Nsengiyumva, 2009). 

2.2.2 Preliminary spectral analysis 
Before setting up our classification model, we first examined to what extent 
coffee can spectrally be distinguished from other crops on high resolution 
images. Pixel samples of coffee and no-coffee fields were randomly selected 
through visual interpretation of the aerial photographs from ten training 
subsets representing different agro-ecological zones of Rwanda. Transformed 
Divergence (TD) values were calculated to evaluate the separability between 
coffee, forest, banana, and mixed seasonal crops. TD values range between 0 
and 2000, with higher values (≥1900) indicating good separability of class 
pairs. TD values below 1700 imply that classes are poorly separable, and 
therefore spectral classification techniques are not expected to produce 
accurate classification results (Kumar & Silva, 1974). This initial analysis 
(Figure 2-1) showed that coffee can hardly be separated from banana, mixed 
crops and forest based on their spectral signatures only. Particularly low TD 
values were obtained for the plateau area where coffee fields are small and 
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surrounded by mixed crops, banana and forest. This indicates that we cannot 
obtain a good accuracy if we try to map these coffee fields using merely 
spectral classification techniques on orthophotos. 

 

 
Figure 2-1: Transformed Divergence (TD) index values (-) show the spectral 
separability between coffee and other crops of Rwandan agro-ecosystems (mixed 
seasonal crops, banana and forest). The Agro-Ecological Zones are ordered in west–
east direction. KS = Kivu lake Shore, IMP = Impala, IMB = Imbo, CND = Congo Nile 
watershed Divide, SP = South Plateau, MP = Mayaga plateau; CP = Central Plateau, CB 
= Central Bugesera, ERP = Eastern Ridge and Plateau, EL = Eastern Lowland. 

2.2.3 Coffee classification with a Bayesian network 
 
2.2.3.1 Principles and definitions 
A Bayesian network can be considered as a graphical model of interactions 
among a set of data variables (Gambelli & Bruschi, 2010). It is used for 
knowledge representation and reasoning about a data domain (Bressan, 
Oliveira, Hruschka Jr, & Nicoletti, 2009; Cheng & Wang, 2010). Bayesian 
networks are based on the Bayes theorem on conditional probability between 
two events A and B. The probability of A given that B occurs )/( BAp is given 

by: 

)(
)()/()/(

Bp
ApABpBAp ×

=  (2.1)
 

A Bayesian network structures a set of data (usually a finite set of random 
samples containing various variables) and analyses their relationships 
(Aguilera, Fernández, Fernández, Rumí, & Salmerón, 2011). Building a 
Bayesian network model requires two important steps. The first step is the 
analysis of causal relations between different variables for random samples 
(Gambelli & Bruschi, 2010) in the form of a network structure known as 
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“Directed Acyclic Graph (DAG)”. In a DAG, each variable is represented by a 
node N, and connected to other nodes by an arc A (Park & Stenstrom, 2006). 
The arcs represent the relationship between nodes. Once the DAG is formed, 
the second step consists of quantifying the relations between the connected 
nodes using conditional probability (Gambelli & Bruschi, 2010). A Bayesian 
network is consequently a function of N, A, andθ , where the components N 
and AN ,  denotes the DAG graph with children nodes{ } NniXi ∈= ...1,  . 

N consists of n variables referred as nodes in the DAG, and Na∈
representing probabilistic dependency between n nodes. The component θ

represents the conditional probability distribution of the sample value ix of 

homogenous samples 
iX in the attribute table. The conditional probability

ii XX Pa/θ at each pixel is given by )/(
iXi PaXp following the equation (2.2). 

)/()/(),...,(
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21 iii X

n

i
X

n

i
Xin PaPaXpXXXp ∏∏

==

== θ  (2.2) 

Where || Nn = are parents; thus a Bayesian network can infer the spatial 

distribution of the parent Pa given X representative and homogenous 
samples. A Bayesian network can also be used as a classifier because it 
produces the posterior probability distribution of a class node, given their 
corresponding values (Aguilera, Fernández, Reche, & Rumí, 2010; Bressan et 
al., 2009; Cheng & Wang, 2010; Qu, Wang, Wan, Li, & Zhou, 2008). 

2.2.3.2 Building an expert Bayesian network classifier 
When building an expert Bayesian network classifier, a number of information 
about a target features and their corresponding values are needed to 
estimate probabilities of membership. Such information is structured in the 
DAG and learning algorithms are used calculate the conditional probability 
distribution from data (Bressan et al., 2009) according to predefined rules 
and thresholds by the subject specialist. Figure 2-2 shows the DAG structure 
that is developed to automate the delineation of coffee fields in orthophotos 
by the Bayesian network classifier. 
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Figure 2-2: A Directed Acyclic Graph (DAG) used to train the expert Bayesian network 
model for coffee mapping. DAG 1 represents the naive Bayesian network classifier that 
distributes the probability of coffee based on the spectral properties of pixel candidates 
and the pattern of coffee fields used as training samples. DAG 2 and 3 represents the 
expert knowledge in the Bayesian network model. DAG 2 introduces tree and field rules 
whereas DAG 3 introduces flow accumulation and forest data to model the location of 
the coffee field in the toposequence and land use systems. 
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Step 1. Pixel-based classification: a naive Bayesian classifier  

Let 
iXC be a set of coffee field and 

jXN a set of no-coffee field parents i.e. 

fields in which coffee and no-coffee samples are randomly selected. Pixel 
candidates for coffee and no-coffee samples are given by iX  and jX  ji xx ,

are the DN values of the pixel candidates of the three bands for coffee and 
no-coffee pixels. The distribution of coffee field pixels is determined by the 
distribution of coffee pixels candidates{ })/(/

iii XiXX CXpC =θ , given the 

distribution of no-coffee pixels candidates { })/(/
jjj XjXX NXpN =θ  used 

to train the Bayesian model. 
jXN is also called the background class. This no-

coffee class may contain banana, forest, mixed crops, bare soils, or buildings. 

The dependence relation between pixel samples values (xi and xj) allows the 

calculation of conditional probability θ distribution. This conditional 

probability is deduced from the spectral characteristics (i.e. DN variability in 
the three bands) learned from coffee pixel samples. In this first level 
classification, a classifier assigns the probability of coffee pixel candidates 

)...,( 21 ni XXXX = to belong to coffee class C as shown in Equation (2.2). 

Higher probability values are assigned to pixels spectrally similar to coffee 
pixel samples. Lower probability values are assigned to no-coffee pixels or 
otherwise significantly different from coffee. The joint probability distribution 
is a product of the probability distribution of DN values )2550( ≤≤ ix of the 

coffee pixel candidates given the probability distribution of DN values of the 
no-coffee )2550( −=c , as given by Equation (2.3): 

∏==
n

i
ini cxpcxxxpCXp )/(/),...,()/( 21  (2.3) 

 Where ix denotes DN values of the pixel candidates iX , c representing DN 

values of coffee field samples
iXC . The resulting Bayesian classifier is then: 
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Where )( inb Cf is the naive Bayesian network classifier (n-BN). This classifier 

is referred throughout in this study as a single Pixel Probability Classifier 

(PPC). The output of )( inb Cf is a pixel probability with values{ }10/ −=ii cx . 

The value of 1=nbf corresponds to the probability threshold above which the 

spectral dependence supports the classification of coffee. The second stage of 
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the naive Bayesian classifier consists of Object Probability Classification 
(OPC). In this stage, we used the probability threshold to convert the 
probability map to a binary coffee/no-coffee map. In order to classify a pixel 
as coffee or no-coffee, we assume that its direct neighborhood provides 
significant additional information. Following Bressan et al. (2009) we applied 
the four neighbor rule to eliminate single pixels of no-coffee within a cluster 
of coffee pixels. Single coffee pixels of coffee within a cluster of no-coffee are 
also eliminated accordingly. The four neighbor operation only retains class if 
its four neighbors have that class. The resulting image objects remain with 
pixels with only probability greater than the probability threshold (P > 0.49). 

Step 2. Object-based classification: an expert Bayesian classifier 

The second step introduces the spatial characteristics of coffee tree crown 
and the coffee field in the Bayesian network model as spatial evidence. 
Knowledge about the Rwandan coffee systems is used to build rules into the 
network structure. These rules are a set of conditions defined by the subject 
specialist in the DAG to optimize the conditional likelihood for coffee fields 
given surrounding no-coffee fields. The local dependence i.e. “direct 
neighbor” probability is derived from the conditional probability pixel outputs

{ }ii cx / of step 1. Equation (2.3) is consequently extended to Equation (2.5). 

( )∏
=

==
n

ii
iiiiinii cxpapcxpaaapXap )/(/)/(/),...,()/( 21  (2.5)

 

Where ia denotes the derivative probability value from the output image 

pixels probability of the DN value c, and ia represent the spatial nodes 

predefined by the subject specialist. The joint probability distribution
iaθ is 

determined by the derivative probability )/( ii cxdp translating the local 

dependence (i.e. local structure) of coffee 
iXC given the structure of no-

coffee 
iXN in the Rwandan agro-ecosystems.  

In the Bayesian network structure, 1a introduces the Tree Crown rule-set 

Classifier (TCC). The coffee average crown diameter is used to set a 
threshold in the Bayesian network model in order to calculate the joint 

probability distribution
1aθ as derivative of probability of OPC output. The 

average coffee tree crown size used in this study is thus 16 pixels 
corresponding to the average coffee tree crown diameter (2 m in our case) or 
in other words, the average of coffee plant spacing (2 m × 2 m). The mean 
derivative probability for each cluster is calculated using 4 × 4 kernel 



Chapter 3 

25 

functions. This procedure will discard young coffee trees and pruned coffee 
trees with smaller tree crowns from the analysis.  

After the tree crown classifier, a node 2a representing the Field Size rule-set 

Classifier (FSC) is introduced in the Bayesian network structure. Coffee tree 
probability output is aggregated into a coffee field probability. We set the 
threshold to 3200 pixels corresponding to the average minimum field size of 
200 trees as reported by (Nsengiyumva, 2009). The field size rule therefore 
filters out coffee fields that are below the threshold and recomputed the new 
probability of coffee field object in the conditional probability attribute table. 
In some cases, pruned coffee trees may be recuperated by the field size 
classification as long as these pruned trees are located near the coffee trees 
with larger crowns. The boundary of the coffee field is delineated at this 
stage. Only if edge-rows contain pruned trees these will remain excluded. 
Unlike the rule-set classifiers, the location values ),( 43 aa are added in the 

Bayesian network as data-set classifier. In this way the DAG2 is extended to 
DAG 3. We used flow accumulation data from the digital terrain model to 
remove the classified coffee fields in gullies and flood plains. The national 
forest map of 2007 (Westinga, Mukashema, & van Gils, 2013) was finally 
used to remove classified coffee fields in known large forest areas to reduce 
errors due to the poor separability between coffee and forest. These data do 
not only filter but also the final probability of the coffee polygon is 
accordingly adjusted to the total number of coffee pixels. The expert-based 
Bayesian network classifier for coffee becomes, after a series of ai nodes and 
on basis of coffee and no-coffee pixel candidates, as follows: 
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Where ix represents spectral dependence variables, ia represents the spatial 

dependence variables used to build the Bayesian model. The dependence 
factor (DF) is determined by the product of the derivative probability of 

object nodes ai given the spectral nodes )( ix used to build the model. The DF 

also reflects how each of the local dependences (local structure) distributes 
pixels to coffee class C and how all of them worked together to produce a 
better classification result for coffee. The dependence factor can be used as a 
measure of the model sensitivity since it quantifies percentage of the pixels 
changing probability/uncertainty at each stage of the Bayesian network 
classifier. 
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2.2.4 Country-wide implementation of the expert Bayesian 
network 

The Bayesian network was applied to 198 orthophotos covering almost 99% 
of the entire country (26,338 km2) and one QuickBird image covering the 
remaining part in Impala region. For the QuickBird, the same steps were 
followed, but tree crown and coffee field threshold values were different due 
to the different pixel size. The tree crown threshold was set to 9 pixels 
corresponding to a circle with a diameter of 2m; the mean probability of the 
tree object was calculated using 3 × 3 kernel function. For the field 
classification a field size threshold of 1300 pixels was used, which 
corresponds to 200 trees. Unlike on orthophotos, we also used the near 
infrared (NIR) band for classifying the QuickBird image. The accuracy of our 
resulting national coffee map was assessed against the 1362 coffee and no-
coffee locations using Kappa statistics, Root Mean Square error (RMSE) and 
the coefficient of determination (R2). Moreover, the mapped coffee area was 
aggregated to district (Cm) and compared to the district coffee areas reported 
by the detailed national coffee census of 2009 (Cc) as shown by Equation 
(2.7). 

2
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N
RMSE −= ∑
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 (2.7)
 

Besides a large R2 and a low RMSE, the slope of the regression should ideally 

be close to 1, and the offset close to 0. 

2.3 Results 
 
2.3.1 Bayesian network results for a test area 
Bayesian network results for a test area Figure 2-3 presents the coffee 
probability distribution results in the test areas (0.4 km2in Huye district, 
Southern province). In these test areas, coffee is relatively more prevalent as 
compared to the country average. This is why random sampling of the test 
areas resulted in a higher proportion of coffee samples as compared to the 
proportion that would be obtained when randomly sampling for the whole 
country. The location of the potential coffee (P ≥ 0.49) is shown by the 
probability maps (left) and the number of pixels and their likelihood to coffee 
(C) or no-coffee (N) is shown by the box plot(right). With the pixel probability 
classifier (PPC) (Figure 2-3a), the mean probability threshold is first 
determined (PT = 0.49). The probability threshold constitutes a cut-off below 
which the pixel probability classifier considers pixels as no-coffee pixels. The 
results showed that only 25% of the total image pixels were likely to be 
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coffee (P ≥ 0.49) with only 0.5% of the pixels having probabilities between 
0.49 and 0.75, and 24.6% of the pixels over 0.75.  

In Figure 2-3b, the object probability is assigned the mean probability to the 
coffee object produced after the four-neighbor analysis. This operation 
slightly increased the percentage coffee pixels from 25% to 27% of the total 
image pixels.  

Figure 2-3c shows that the likelihood for coffee decreased when tree crown 
size rule was applied. About 27% of total image pixels previously classified as 
coffee by the object probability classifier decreased to 22% due to the tree 
crown size criterion. The probability for coffee also decreased from 0.75 to 
0.50 showing that the use of tree crown size as an explanatory variable was 
an important step to distinguish coffee from other tree crops.  

A clear distinction between coffee and no coffee was observed when a 
minimum field size rule was applied to the tree crown probability output. The 
resulting coffee probability map demonstrated an increase of coffee fields 
from 22% to 28% of the total image pixels with only 8% highly confirmed as 
coffee fields (P ≥ 0.75). The level of detail however reduced and outliers 
were removed (Figure 2-3d). Forest and flow accumulation data are added in 
the final step to filter out coffee within known forest areas and in channels 
and flood plains. Coffee probability is also adjusted to remained coffee pixels. 
Only 15.5% of total image pixels remained as coffee fields as shown in Figure 
2-3e. The size of the test sites used to build the model is about 0.4 km2 
located in Huye. 
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Figure 2-3: Intermediate and final coffee classification results after each step of the 
expert Bayesian network model. The location of the potential coffee (P ≥ 0.49), is 
shown by the probability maps (left) and the number of pixels and their likelihood to 
coffee (C) or no-coffee (N) is shown by the boxplot (right). Top-down: a. Pixel 
probability result of spectral analysis; b. Object probability result of four-neighbor 
classification. c. Coffee objects are clustered by the Tree Crown Classifier. d. The Field 
size classifier aggregates the tree objects into coffee field objects and adjusts 
probability of coffee field. e. Final coffee probability map after the forest and flow 
accumulation data are added in the model to filter out coffee within the forest and in 
the channels. O* represent the number of pixels that are deemed to be outliers. 

Step-wise addition of factors to the Bayesian network resulted in a 
gradual decrease in the percentage of image pixels identified as 
coffee for the test area (Figure 2-4). With the pixel-based classifier, 
an overall accuracy of only 48% was obtained. After application of the 
subsequent steps of the expert Bayesian network model, the overall 
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accuracy was 87.6% with a Kappa value of 0.82 for the test area 
(Table 2-1). This shows that for the test site the Bayesian network 
could accurately extract coffee fields from the ortho-images.  

 
Figure 2-4: The percentage of pixels that falls within each probability class for five 
classification steps of the expert Bayesian network model. These steps are (1) Pixel 
Probability Classification (PPC); (2) Object Probability classification (OPC, (3) Tree 
Crown Classification (TCC), (4) Field size classification (FSC), and (5) filtering by the 
forest and flow accumulation map that filter out coffee within the forest area and in the 
water channels. The test site is about 0.4 km2 and located in Huye district. 

 
Table 2-1: Error matrix of observed coffee fields vs. classified coffee fields by the 
expert Bayesian network (e-BN) for the test site (0.4 km2) in Huye, South plateau of 
Rwanda. The matrix values were calculated on the final coffee polygons. Overall 
accuracy of the test model were obtained by considering all pixels with P > 0.49 as 
coffee and P < 0.49 as no-coffee. Overall accuracy is 87.6% with Kappa value of 0.82. 
 Reference fields 

Prob. Coffee No-coffee Total  
≥ 0.75 24 0 24 

0.50 - 0.75 38 0 38 
0.25 - 0.49 14 0 14 

< 0.25 0 58 58 
0 3 0 3 

Total 
 

79 58 137 

2.3.2 Accuracy of the Rwanda coffee map 

Application of the trained expert Bayesian network to all images resulted in a 
total coffee area for the whole country of 25,148 ha, corresponding to 1.4% 
of the total arable land. The maximum coffee area (2979 ha) was found in 
Nyamasheke district, and the minimum area (5 ha) in Burera district. Figure 
2-5 shows the coffee coverage map aggregated by 5 km × 5 km grid (Figure 
2-5a) and by district boundary (Figure 2-5b). The maximum coffee coverage 
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within a single 5 km × 5 km pixel is about 13.5% and was found in Rusizi 
and Nyamasheke (west), Nyaruguru (south), Ruhango (central) and Gatsibo 
(east).  

The district accuracy of the produced coffee map ranges from 56% to 100%; 
with an average accuracy of 83.4% for the whole country (Figure 2-5b). We 
observed agro-ecological dependent differences in the accuracy results which 
may be related to the level of separability between coffee and other land use 
classes. The accuracy was higher in Congo-Nile water-shed (97.1% in 
Rutsiro), Mayaga Plateau (94% in Ruhango) and in the Eastern Ridges and 
Plateaus (over 97% in Gatsibo and Gicumbi). This is likely because in these 
areas mostly older trees are present with a better developed tree crown. In 
fact, the Rusizi, Nyamasheke, Karongi and Rutsiro districts in west Rwanda 
are the first established (in the 1930s) coffee areas and have high production 
levels (Nsengiyumva, 2009). However, for Rusizi the model performed worse 
than for other western districts. In Rusizi QuickBird covered more than 50% 
of the district area. The time of the QuickBird acquisition (April 2004, older 
than orthophotos) and the lower resolution of QuickBird may explain the 
lower accuracy for Rusizi. The Bayesian model yielded an accuracy of 76.9% 
on QuickBird. Other low accuracies (68% and 70%) were observed in newly 
established (in 2000s) coffee fields of districts of the Eastern province 
(Nyagatare) and of Kigali (Nyarugenge). According to the national coffee 
census (Nsengiyumva, 2009), the highest rate of young coffee trees is 
observed in the Eastern Province (36%), followed by Kigali City(35.5%). 
Young coffee trees do not satisfy the tree crown rule in our expert Bayesian 
network. Moreover, in young coffee plantations line spacing i.e. large gaps 
between trees is common. When these gaps, classified as no-coffee by the 
tree crown classifier, are relatively small, they are included in coffee field by 
the field classifier, but for large gaps this is not the case.  

The environment in which coffee fields are located also matters. For example, 
in high mountainous areas, accuracies were higher as compared to lowland 
areas. Except for coffee fields established in Mayaga, Bugesera and Imbo 
lowlands due to the coffee intensification policy during the period from 1960s 
to 1980s (Verwimp, 2003), more coffee fields are located at high altitudes 
(above 1500 m a.s.l.). These coffee areas experience relatively low 
temperatures (15–20oC), high rainfall (>1000 mm per year) during ¾ of the 
year and consequently develop very well their branches and leaves (i.e. a 
good crown development).  

Another factor that may explain differences in accuracy is the farming system 
in place. Larger coffee fields are found in the western mountains and eastern 
lowlands as compared to the central plateaus and ridges. Very highly 
fragmented and over-exploited lands of the central plateaus inhibited 
classification of very small coffee fields as these were ruled out by the field 
size criterion. The health of coffee trees in such fields is also poor leading to 



Chapter 3 

31 

reduced accuracies in the plateau districts as opposed to other agro-
ecological zones.  

We compared the mapped coffee fields from the orthophotos of 2008/2009 
with the national coffee census of 2009 (Figure 2-5c). The 2004 QuickBird 
based inventory was omitted in this comparison because of the large time 
difference between image acquisition and census. Our spatially aggregated 
coffee map shows a strong agreement with the census data (R2= 0.92). This 
shows that both methods agree in most districts despite the underestimated 
coffee areas of Rusizi due to the earlier described problems of QuickBird data. 
The root mean square error (RMSE) revealed a total of 256 ha reported by 
the census that could not be explained by the mapping results. This 
difference may be attributed partly by the fact that pruned trees and young 
trees were not accounted for with our mapping approach to loss of coffee 
tree by the tree crown classifier due to the pruning of mature trees and stage 
of development for the younger trees. It can also be a result of average plant 
spacing used to estimate the area in the census. In fact coffee spacing varies 
from 1.5 m × 1.5 m to 2.5 m × 2.5 m with an average of 2 m × 2 m but for 
the estimation of the area, OCIR-CAFE used the average (2 m × 2 m) for the 
whole country. 

 
Figure 2-5: Aggregated national coffee cover results following nation-wide application 
of the e-BN model to aerial orthophotos: (a) percentage of coffee cover within a 5 km 
× 5 km grid cell. (b) Coffee areas aggregated per district and overall accuracy for each 
district calculated based on 1362 GPS locations of coffee and no-coffee in the 30 
districts of Rwanda. The graph (c) plots mapped coffee (Cm) vs. to reported coffee 
area (Cc) by the national coffee census of 2009. The coffee map explains 92% of the 
spatial variation of the census data. 
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2.4 Discussion 
Discussion Coffee trees and fields show a large spectral variability on 
orthophotos and QuickBird imagery. The Bayesian network structure 
proposed in this paper provided a possibility to handle such complexity 
through a stepwise object-based classification by modeling the probability of 
coffee trees and fields based on their surroundings. The conversion of expert 
knowledge on key spatial characteristics of coffee cultivation in Rwanda into 
evidence variables is the key to the model. In our case, spectral and spatial 
evidence of coffee occurrence were combined to gain a better representation 
of coffee farming systems design in Rwanda. 

2.4.1 Effect of individual Bayesian steps on the scale and the 
quality of the final coffee map 

The sequence of classifiers as a result of the number of evidences for coffee 
occurrence is an important process in the modeling of coffee distribution. 
From a single unit (pixel) to an object unit (field) through a subunit (tree), a 
number of aggregation steps are involved. The hierarchy of the classifiers is 
carefully defined to reach a desired accuracy. Dropping a step or reversing 
the order of classifiers will affect the accuracy. For example, when the four-
neighbor coffee pixels is ignored, the tree crown classifier will include about 
34% of the total image pixels of no-coffee in coffee pixels.  

Aggregation is an important component in building the e-BN structure. 
During the subsequent steps of a Directed Acyclic Graph, the unit size of the 
resulting probability map increased. For example, scattered coffee pixels in 
the pixel probability classification output when the minimum Coffee Mapping 
Unit (CMU) is set to 1 pixel tend to decrease their abundance in the OPC 
output (i.e. CMU = 4 pixels). When the tree crown rule is set to the average 
tree crown size (i.e. CMU = 16 pixels), the abundance of coffee is reduced. 
Yet, when the field size rule is included to allow only the coffee field with 200 
coffee trees and above (i.e. CMU ≥ 3200 pixels) the number of coffee pixels 
decreased and the uncertainty also reduced. The CMU is therefore 
aggregated to a coarser scale (1:3200). The level of detail in field size output 
is significantly reduced but the outlier pixels are also reduced accordingly. 
The effect of aggregations depends on the original resolution of the image 
used and the steps as predefined by the expert in the BN model. It is known 
that aggregation of spatial data usually obscures internal variability and 
uncertainty (Kok & Veldkamp, 2001; Veldkamp, Kok, et al., 2001).  

In this work we did not consider the possibility of polyculture systems in 
model training. Coffee grown in polyculture fields (if any) may have been 
mapped with low probability (i.e. high uncertainty) because of generalization. 
To better account for differences in field types and field sizes within the 
country, thresholds could be adapted across the country. Due to the choice of 
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the minimum field size, very small plots of less than 8 acres were lost. Field 
observation indicated that such small plots are rare and associated with 
abandoned fields. Depending on the purpose and scale, for highly fragmented 
zones, one could consider changing thresholds for adapting the method for 
local context. However, for nation-wide coffee mapping, we considered the 
average thresholds sufficient to capture more than 90% of the coffee 
plantations, and this has been proven by a strong agreement (92%) between 
our mapping and the National census results of the same year. In fact the 
census counted the number of trees regardless the size of the 
field(Nsengiyumva, 2009). 

2.4.2 Performance of the expert Bayesian network 

Firstly, our results confirmed that spectral variables alone are not sufficient to 
accurately identify coffee fields from high resolution images. With pixel 
probability classification, each coffee pixel is considered to be independent. 
However, this assumption is unrealistic given that we deal with coffee farms 
that are spread over a large area (more than 17,000 km2 of arable land) 
across different environments. Information on the key characteristics of 
farming systems in place is an important step to the design an automated 
approach to classification of coffee. For a small area of 1200 km2, Gomez et 
al. (2010) obtained a good accuracy when predictive variables were used 
together with object oriented image analysis using Artificial Neural Network 
(ANN). In general, the accuracy of the results of Bayesian network models 
(and of other object-oriented models) likely increases when more relevant 
variables can be provided. Another observation in our study is that the spatial 
resolution (i.e. pixel size) seems more important than the spectral resolution 
(i.e. the number of bands) in separating coffee from other land covers. 
Although QuickBird contained the additional NIR band, we obtained a 
relatively low accuracy (76%). An additional cause of this might however be 
that the QuickBird imagery are acquired five years before the 2009 census. 
Given the poor spectral separability between low-density woodlands and 
coffee fields (Cordero-Sancho & Sader, 2007), we improved coffee field 
identification in mountain forest areas (in west) and in the plateaus and 
ridges of the east (in Gatsibo) by the use of an existing forest map. The use 
topographic data in the Bayesian network model was also relevant to exclude 
coffee from clear flow accumulation areas (streams and gullies).  

Although we obtained overall high classification accuracy with our approach, 
several factors may cause sub-optimal performance. (1) Topographical 
effects may have contributed to the spectral confusion between east-facing 
and west-facing coffee trees that are differently illuminated due the sun’s 
position during the time of image acquisition. This effect also caused a 
reduction of accuracy in other studies; (2) The Bayesian network model 
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classification was not corrected for shadow of coffee trees; (3)Differences in 
coffee age and health also account for a loss in accuracy.  

In the last decade remotely sensed data is often combined or compared with 
census data to study environmental dynamics. The main challenge of this 
integration is the different temporal and spatial scales involved. This is often 
solved by aggregating the two data sources to the coarsest resolution of the 
two sources. This has as main disadvantage that some of the detail and 
variability is lost but it allows to convert typical land cover information into 
more in land use characterization. So the integration and/or combination of 
census and remotely sensed data always come with a quality trade-off. The 
strength of rigorously collected census data is that they are based on on-site 
inventories and farmer interviews. Nonetheless, spatial detail and verification 
of all farmer-reported coffee trees is lacking in the census outcomes. Remote 
sensing, i.e. our high-resolution national coffee map, can therefore offer an 
important complement to the census data. However, as discussed above, it 
has its own limitations in terms of accuracy. Despite existing limitations for 
both sources, in our view they offer important complementary information.  

The contribution of our method to existing object oriented classification 
techniques is the stepwise analysis that allows the creation of intermediate 
classification outputs. This means the flexibility of the method in shortening 
or extending rules and data towards improving quality of the map. Potentially 
more use could be made of the probability value that was derived for each 
coffee field, for example as an indicator of the health and productivity of the 
coffee field. 

2.5 Conclusions and outlook 
In this study we developed a stepwise probabilistic approach for coffee 
systems classification using an expert Bayesian network. Using the case of 
Rwandan coffee, the methodology proved to be effective in extracting small-
scale coffee fields from very high resolution images. We are convinced that 
the presented method can be extended (1) to other perennial small scale 
cropping systems (e.g. banana, cassava systems) that are difficult to map 
with spectral-based pixel classification techniques. As such the method has 
great potential to be applied for coffee and other perennial crops (like 
banana, cacao) across the East African highlands, but also for mapping of 
perennial crops in small-scale farming systems elsewhere for which the 
detailed spatial distribution is currently largely unknown.  

The method provided an accurate representation of the spatial distribution of 
coffee cultivation areas of Rwanda despite the spectral diversity of coffee 
trees and the field sizes. We produced the first nation-wide coffee map for 
Rwanda. This automated high resolution coffee map contains the producing 
coffee fields at an overall accuracy of 87%. However, some districts have a 
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lower accuracy, which could potentially be improved with local adaptation of 
decision rules in the Bayesian network and interactive phase especially for 
the young or regenerated plantations after cuttings. The produced high 
spatial resolution coffee map is an important input for further environmental 
and socio-economic studies regarding the productivity and quality of 
Rwandan coffee. 
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3 Sixty percent of small coffee farms have 
suitable socio-economic and 
environmental locations in Rwanda2 

 

 

                                           
2 This chapter is publiched as:Mukashema, A., Veldkamp, T., & Amer, S. (2016). Sixty 
percent of small coffee farms have suitable socio-economic and environmental 
locations in Rwanda. Agronomy for Sustainable Development, 36(2). 
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3.1 Introduction 

Sustainable production of perennial crops such as coffee, tea and cacao in 
small holder systems, is often a function of human decisions based on 
location factors, local habits and traditions. These decisions are also 
influenced by economic demographic and infrastructural factors that can be 
very dynamic in space and time (Lambin et al., 2001). Quite often perennial 
crop distribution has a historical component, reflecting past conditions 
including competition with other crops and land use functions (Veldkamp, 
Verburg, et al., 2001). Therefore, simplistic relationships explaining spatial 
crop distribution are rarely found. Interestingly, land evaluation approaches 
using only agro-ecological zones and soil information are still often used to 
identify locations for crop expansion (Verdoodt & Van Ranst, 2006). In order 
to allow more adaptive land use planning it is essential to understand all 
underlying location factors that explain perennial crop distribution patterns, 
including the socio-economic factors (Verburg & Veldkamp, 2001). Perennial 
cash crops in particular are important because they are often the least 
dynamic cropping system for small holders, generating revenues for farmers 
and countries. 

One of the primary cash crops in Rwanda is coffee, but the question which 
factors govern its precise geographic pattern remains unanswered. There are 
of course general relationships with climate, soil and local management (I. 
Nzeyimana et al., 2013). But these simple relationships do not explain the 
current coffee yields nor field density distribution across the country. There 
are two important coffee area inventories for Rwanda, one is the national 
census (Nsengiyumva, 2009), and the other is an image-based inventory 
(Mukashema, Veldkamp, & Vrieling, 2014) for all fields with more than 200 
coffee trees. At the district level, these inventories have a satisfactory 92% 
fit. Rwanda is the most densely populated country in Africa with 415 
pers./km2 and a total population of 10.5 million in 2012 (NISR, 2012). Coffee 
competes with food crops for the limited land available. Agricultural land 
(including coffee) take up 54.2% of the total country territory, the remaining 
45.8% comprise of forest (28.8%), wetlands and water bodies (11 %) and 
urban areas (6%). As with other cropping systems, the spatial distribution of 
coffee is a function of environmental drivers (soil, climate and topography) 
and human drivers (demography, infrastructure, technology and 
institutions)(Hernández-Martínez, Manson, & Hernández, 2009; Veldkamp & 
Fresco, 1997; Verbist, Dinata Putra, & Budidarsono, 2005). Up to now, 
suitability for coffee cultivation in Rwanda was only assessed at the level of 
agro-ecological zone which is a highly aggregate spatial scale (Verdoodt & 
Van Ranst, 2006). Recently, a more detailed soil-based approach using 
kriging and multi-criteria analysis was developed (I. Nzeyimana et al., 2014). 
Both approaches did include neither socio-economic factors nor the potential 
dynamic climate factors making both approaches not sensitive for the rapid 
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changing Rwandan socio-economic conditions and the expected climate 
change. The later can be significant in the nearby future as illustrated by 
Nyandwi, Veldkamp, and Amer (2016) who demonstrated that an increase of 
1% in annual temperature can cause a net wetland area decline by 12 %, 
making these areas suitable for other land use. It is our objective to analyse 
the spatial coffee field distribution using the new high resolution coffee map 
(Mukashema et al., 2014) and using available biophysical and socioeconomic 
factors that co-determine coffee cultivation locations in Rwanda. When these 
relationships are known, we will explore how sustainable the current coffee 
location distribution is and identify potential new suitable locations for coffee 
production. 

3.1.1 Historical background of coffee distribution in Rwanda 
According to local reports, the first coffee fields were established by 
missionaries in Nyundo (northwest) in 1903 and in Mibilizi (southwest) in 
1904. Official government involvement began in the 1930s with the Belgian 
colonial government’s coffee campaigns (Boudreaux & Ahluwalia, 2009; 
Murekezi, 2009). Under these policies, government authorities built nurseries 
and supplied seeds, but they also forced farmers to plant coffee trees. Coffee 
cultivation slowly became accepted by the population and gradually spread 
over the country. Farmers established small coffee fields often surrounded by 
larger banana fields. By 1930, the expansion slowed down due to famine. 
After World War II, the coffee area expanded again due to the higher coffee 
price on the global market. In 1946, an estimated total of eight million coffee 
trees (about 3200 ha) was reached. After independence (1962), the 
government of Rwanda continued the policy of requiring farmers to grow 
coffee and with the implementation of a 10-year coffee plan in the period 
1950–1960, together with a resettlement plan, coffee areas expanded from 
12,710 ha in 1964 to 23,930 ha by 1970. Farmers were also forbidden to 
interplant other crops with coffee (Boudreaux & Ahluwalia, 2009). In 1974, 
the World Bank supported the expansion of coffee growing a alongside Lake 
Kivu, causing an increase of coffee acreage increased to 31,900 ha by 1981. 
The Government built coffee nurseries and supplied seeds all over the 
country to facilitate farmers’ access to the selected variety of Bourbon coffee 
Arabica (Verwimp, 2003). During the worldwide coffee crisis of the late 
1980s, however, prices tumbled and caused a slowdown of coffee expansion 
in Rwanda. With their drop in income, farmers were tempted to shift towards 
production of other cash crops such as bananas, but this was forbidden by 
Rwandan law, and with an extensive local control system in place, only a few 
thousand coffee trees were uprooted. The expansion of coffee cultivation 
areas resumed from 2000 onwards and continues to date mainly at the 
expense of forest land (UNEP, 2011).  
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Based on recent coffee mapping (Mukashema et al., 2014) and the 
agricultural census (Figure 3-1), we know that the western region is the main 
coffee-growing zone covering 4.4% of the arable land at the Kivu lake shore 
and Imbo zones followed by Impala zone (2.9%), then the central and 
eastern plateaus (1.5%) and Mayaga and Bugesera in southeast (1.2%). The 
Buberuka highlands and high plains of the volcano zones are currently not 
used for growing coffee. In fact, there are very few coffee fields located at 
the edge of Buberuka highlands near the north-eastern plateau and ridges. 

3.1.2 Characteristics of coffee locations in Rwanda 
Coffee in Rwanda is currently grown under temperature conditions ranging 
from 14.2 to 23.8°C in areas with annual rainfall varying between 700 mm in 
the East and 2120 mm in the Congo-Nile watershed divide and the Buberuka 
highlands. Coffee areas are characterised by a relative humidity varying 
between 67 and 82 % at altitudes varying between 970 and 2575 m. Ideally, 
coffee trees have to be planted at altitudes below 2000 m (Wintgens, 2009). 
Coffee fields are typically located in areas with slopes varying between 8 and 
89%. With regard to lithology, 63% of the coffee fields are established on 
soils developed on shale, and mica schist, 23.5% on granite and 9.7% on 
basic rocks. Very few fields (1.4%) are established on volcanic soils with high 
base saturation and high pH. Such soils provide considerable challenges for 
coffee production. The relationships between coffee growing and soil 
properties have been described by I. Nzeyimana et al. (2014). There are two 
main problems with soil fertility, (1) aluminium toxicity which is very often 
associated with low pH and low organic carbon content, (2) low levels of 
available phosphorous.  

Coffee farmers require access to public and/or private transport facilities for 
the transport of both inputs (fertilisers, pesticides, mulch etc.) as well as 
outputs (coffee berries). About 94% of coffee fields are located within 1 km 
from the primary and secondary roads. A different situation, however, 
unfolds if farmers have to travel to bring their coffee cherries to the nearest 
coffee washing station for processing. Only 9.3% of the coffee fields are 
located within 1 km distance from a coffee washing station. Even within the 
same region, cultural and social differences, and family size have been 
identified as important factors which influence farmers to grow coffee 
(Wintgens, 2009). In Rwanda, due to land scarcity, the food security of a 
household generally takes priority over cash cropping. 
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Figure 3-1: Coffee density (%) within 5×5 km grid. Ten main agroecological zones of 
Rwanda: (1) KS Kivu lake shore, (2) IMP Impala, (3) IMB Imbo, (4) CND Congo-Nile 
watershed divide, (5) MPB Mayaga plateau and Central Bugesera; (6) CP Central 
Plateau, (7) ERP Eastern Ridge and Plateau, (8) EL Eastern Lowland, (9) BH Buberuka 
Highlands, (10) VHP volcanoes and high plains. The country size is 26,338 km2.  

3.2 Materials and methods 
 
3.2.1 Biophysical and socio-economic data 
The biophysical and socio-economic data sources used in this study are 
briefly described: 

1. Coffee fields’ data (i.e. location and size of fields with more than 200 
coffee trees) was produced by (Mukashema et al., 2014). The total of 
119,513 coffee fields observed were randomly split into a training set 
(59,757 coffee plots) and a validation set (59,756 coffee plots). The 
randomising was done to avoid spatial autocorrelation and duplications of 
variables as advised by Overmars, de Koning, and Veldkamp (2003). 

2. Soil data were acquired from the soil geo-database of Rwanda located at 
the Ministry of Agriculture and Animal Resources. This soil database is a 
result of a semi-detailed soil survey of Rwanda which started in 1981 and 
was finalised in 1994. A physical and chemical soil analysis was 
conducted for 1833 soil profiles spread over the country. Cation exchange 
capacity (CEC) was measured in the B horizon or at 0.50 m depth, the 
sum of the basic cations Ca2+, Mg2+ and K+, pH in water and organic 
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carbon and nitrogen content of the upper 0.25 m of mineral soil. This soil 
survey resulted in the elaboration of 43 soil maps at the scale of 
1:50,000 covering the Rwanda territory. More details on the process of 
producing soil maps and database can be found in Verdoodt and Van 
Ranst (2006). 

3. Climate data i.e. temperature, rainfall, relative humidity and potential 
evapotranspiration were obtained from the National Meteorological 
Service at the Ministry of Infrastructure. Average annual data were 
calculated for 183 weather stations using, for most stations, 60 years 
records from 1950 to 2010. We interpolated these data using the thin-
plate smoothing spline algorithm as proposed by Hijmans, Cameron, 
Parra, Jones, and Jarvis (2005). 

4. Topographic data i.e. altitude, hill shade, slope and aspect were 
generated by processing 10 m-resolution digital terrain data produced 
using stereoscopy (See Mukashema et al., 2014). 

5. Distances from each coffee field to infrastructural facilities were obtained 
by processing the data of coffee fields, GPS locations of coffee washing 
stations and the road network. The road network was earlier digitised 
using the topographic map of 1988 at a scale of 1:50,000 and updated 
by CGIS. 

6. Population data of 2012 i.e. the total, density and age group originally 
recorded at the level of a “cell” which is the smallest administrative unit 
in Rwanda (the size of a cell varies considerably (mean 11±18 km2). 

 
3.2.2 Statistical analysis 
Having information on the distribution of coffee plots (Mukashema et al., 
2014), the identification of the environmental and human factors at coffee-
growing locations becomes possible. 

3.2.2.1 Extracting biophysical and socio-economic data at 
coffee locations 

The biophysical data and demographical data layers, available at national 
scale, were rasterised into 10 m cells to allow comparison with the high 
resolution coffee field data. In total, 29 independent variables of which 22 are 
biophysical and nine socio-economic variables were extracted at each coffee 
field location and compiled in a GIS database for further spatial analysis. 

3.2.2.2 Determining location drivers of coffee fields 
We first describe the 29 variables available at coffee field level. In order to 
reduce the number of variables, we applied principal component analysis 
(PCA) using the orthogonal Varimax rotation. Only variables with a PCA score 
of 0.5 and above are considered for further steps. Kaiser’s criterion and 
communality measures are used to retain only factors with eigenvalues 
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greater than 1 and variable communalities greater than 0.5. Variables scoring 
higher than 0.7 of the total correlation are considered to indicate a fairly 
good consistency with the factor into which they are loaded. Only 17 
variables remained in five independent factors for further analysis. 

3.2.2.3 Explaining location variability of coffee fields 
We then evaluated with multiple linear regression as described by Austin et 
al. (1998) the extent to which the 17 remaining variables that explain the 
variability of current location (x, y) of area (ha) occupied by coffee. This 
procedure was done for the country as a whole and separately for each agro-
ecological zone. The area (C ha) used for coffee cultivation is therefore 
determined by (Vi(x,y)) a number of biophysical and socioeconomic variables 
and their respective contribution (bi) as follows: 

ε++= ∑
=

n

i
yxiiVbbhaC

1
),(0)(

       
(3.1) 

Where, bi, i=0…n are coefficients obtained by stepwise (forward) regression 
model and ε is the error associated with the model. Variables Vi with b values 
which do not differ significantly from zero were dropped. Although the ‘best’ 
model is usually selected on the basis of goodness-of-fit (R2), we limited the 
maximum number of independent variables to ten in order to minimise noise 
in the models thus facilitating interpretation. Although the b values and their 
significance are important estimates, standardised b values (β, beta) are 
more explicit because they allow inter-comparison of the of factors within the 
regression model. Before the analysis, all used variables were first checked 
for normal distribution and during the multiple regressions modelling, models 
were checked for collinearity. By using randomly selected subsets, the effect 
of spatial autocorrelation was addressed(Overmars et al., 2003). 

3.2.2.4 Predicting suitable areas for growing coffee 
We used the weighted coefficient variables from the specific regression 
models for the individual agro-ecological zones (AEZ) to determine potential 
areas for expanding or intensification of coffee cultivation. The model can 
also be used to identify areas where coffee is currently grown but which may 
not very suitable for the cultivation of coffee. Actual and predicted areas were 
standardised (in %) using the maximum predicted area estimated by the AEZ 
specific models. The actual and predicted areas were compared using the 
validation dataset (i.e. 50% of the total coffee fields earlier separated from 
the training set). 

3.2.3 Model validation 
The performance of the models (national and regional) was assessed by 
comparing the predicted suitable coffee locations with actual coffee-growing 
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locations. First, spatial coffee data were randomly split into a training set 
(59,757 coffee fields) and a validation set (59,756 coffee fields). Second, the 
predicted outcomes were compared with the observed input and the 
difference map was produced, with mean error and R2 calculated. The 
difference map shows where and in how far the model over- or 
underestimates suitable coffee-growing locations. 

3.3 Results and Discussion 

 
3.3.1 Location factors of coffee patterns 
Principal component analysis (PCA) revealed that 17 variables out of 29 load 
into five factors which explain 86% of the total variance in the total dataset. 
The factor loadings after rotation are shown in Table 3-1 including the not 
included variables. Population distribution and age constitute the first factor 
explaining 22.1% of the total variance in the dataset. The second factor 
which relates to climate and topography explains 20.6%. The third factor 
represents the topsoil characteristics and fertility explains 17.8% of total 
variance. The fourth factor stands for the subsoil characteristics (i.e. soil 
lithology) and accounts for 14.8% of the total variance. The fifth factor is a 
mixture of physical soil properties and infrastructure and accounts for 10.7% 
of the total variance in the coffee dataset.  

The reliability test revealed that 14 of the above 17 contributing variables are 
highly reliable (r>0.7) in their respective factor loadings. Temperature and 
relative humidity are fairly reliable in the climate factor (rt,RH< 0.2), while the 
distance from the field to the nearest coffee washing station is only 
marginally reliable in the factor combining soil texture and infrastructure 
(rCWS = 0.04) indicating that soil texture and coffee washing station facilities 
should be treated separately in the analysis. 
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Table 3-1: Summary of principal component analysis results for the 29 variables at 
coffee locations  

Variable items* 
Rotated factor loadings 

1 2 3 4 5 
1. Total population (PT) 0.97 0.18 0.05 0.04 0.07 
2. Population under 16 

years old (P16) 
0.94 0.20 0.06 0.07 0.04 

3. Population between16 
and 18 years (P16-18) 

0.93 0.15 0.02 0.05 -0.03 

4. Population with more 
than 18 years old (P18) 

0.95 0.15 0.03 0.02 0.10 

5. Potential evapotranspi-
ration (PET mm.yr-1) 

0.18 0.92 0.04 0.10 -0.02 

6. Annual average 
temperature (ToC) 

0.17 0.91 0.09 0.14 -0.10 

7. Relative humidity (%) -0.17 -0.88 -0.15 -0.08 -0.02 

8. Altitude (Alt m) -0.17 -0.83 -0.14 -0.23 -0.02 

9. Soil total nitrogen (N %) 0.08 0.14 0.94 0.00 0.18 
10. Nitrogen-potassium ratio 

(N/K)  
0.03 0.03 0.90 -0.33 0.12 

11. Soil organic Carbon (SOC 
%) 

-0.03 -0.17 -0.86 -0.31 -0.08 

12. Soil pH (water) 0.06 0.27 0.61 0.71 -0.07 
13. Potassium content (K) 0.09 0.19 -0.12 0.86 -0.04 
14. Calcium content (Ca) 

(cmol+.kg-1) 
0.04 0.23 0.08 0.84 -0.26 

15. Clay content (Cy. %) -0.04 0.04 -0.23 0.26 -0.84 
16. Sand content (Sd. %) 0.07 0.08 0.27 -0.25 0.81 
17. Distance farm-coffee 

washing station (CWS) 
0.07 -0.13 -0.15 0.38 0.56 

Eigen values 3.8 3.5 3.0 2.5 1.8 
% of Variance explained 22.1 20.6 17.8 14.8 10.7 

Cumulative percentages 22.1 42.6 60.5 75.3 86.0 
*Significant variables are rotated by Varimax method. Five factors and 17 variables (1) 
population, (2) climate and topography, (3) topsoil soil fertility, (4) subsoil, (5) soil 
physical property and infrastructure are loaded with eigenvalues greater than 1 and 
variable communality greater than 0.7 except for the distance of farm to coffee 
washing station (CWS) variable which has a communality of 0.5. The percentage of 
variance explained by each factor is also presented. Valid N list wise = 53,255 coffee 
field Not included variables: population density people/km2), rainfall (mm.year−1), Hill 
shade (-), slope aspect (degree), slope (%), pH (KCl), C/N ratio, CEC clay 
(cmol+.kg−1), Al (cmol+.kg−1), Mg (cmol+.kg−1), P (ppm) road distance to coffee field 
(m) 
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3.3.2 Explaining the current spatial distribution of coffee 
areas 

 
3.3.2.1 Generalised national model 
The generalised linear model generated from the composite national coffee 
dataset explained only 9% of the total coffee area variability. This clearly 
indicates that a single model cannot properly explain the spatial distribution 
of coffee fields for Rwanda as a whole. Table 3-2 shows in detail the 
relationship between the current coffee areas and the biophysical and socio-
economic factors. The coefficients (b values) of the generalized linear (GLM) 
model, standardised (β values, Figure 3-2) variables and coefficients of 
determination (R2) are presented in Table 2. As shown by the graphs of the 
standardised β values (see Figure 3-2), the national model is a composite of 
all five factors. The standardised β values indicate the relative amount of 
change in coffee area size compared to an independent variable change. The 
graphs can be viewed as AEZ factor fingerprints of coffee-growing zones. 
They indicate which factors are important in which region. The generalised 
model has highest contributions from population youth (βP16 = −0.4), and soil 
acidity (βpH = 0.3). Lesser contributions are made by atmospheric humidity 
and evapotranspiration (βRH,PET= −0.2), soil organic carbon (βSOC= 0.2), and 
soil texture (βCy,Sd=−0.2). For the national model, the figures indicate that all 
the factors are of equal importance. This confirms that the coffee field 
pattern is a function of complex interacting biophysical and socio-economic 
factors.  

3.3.2.2 Regionalized agroecological zone (AEZ) specific models 
The country was subsequently stratified into ten agroecological zones for 
which separate multiple linear regression models were made (see Table 3-2 
and Figure 3-2). Better model fits were achieved. For the Imbo (IMB) and 
Kivu islands (KI) the derived model explains up to 54 % of the total coffee 
area variability. The model of the central plateau explained 34%. In other 
zones, 28% of coffee areas found in the Buberuka Highlands (BH), 25% in 
the Congo-Nile watershed divide and 17 % in Impala (IMP) were explained. 
Coffee cultivation along the lake Kivu shore (KLS), and the Eastern plateau 
and lowlands are poorly explained by biophysical and population factors 
(R2<10%).  

Figure 3-2 summarises the standardised beta (β) values of the significantly 
contributing variables at country level as well as at AEZ level. From west to 
east, the total population and the household size and age are an important 
factor in Kivu lake Shore (KS), and Impala (IMP) (β= 0.4–0.9). For the Kivu 
Islands (KI) with their highly fertile soils, the N/K ratio is the only location 
factor explaining the pattern of coffee distribution. Similarly, in Imbo (IMB) 
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and the Congo-Nile watershed Divide (CND), soil fertility is highly important 
(β=0.4–1.3). In the Central Plateau (CP), topsoil fertility and subsoil 
properties are equally important. In CP the N/K ratio has a higher degree of 
importance than other soil parameters (β= −0.8). Climate has more influence 
on coffee location in the Buberuka Highlands (BH). In BH, the negative effect 
of the atmospheric humidity (βRH= −0.7) slows down the expansion of coffee 
growing. In the Mayaga, Bugesera (MPB), in the southeast, and the Eastern 
Lowlands (EL), the population factor is more important than climate and soil 
factors (βP=0.4–0.8). 

 

Legend and explanations for the Table 3-2 and Figure 3-2:  

Each agro-ecological zone specific linear models for each (AEZ) has all b 
values significant at P < 0.001. The adjusted goodness of fits (Adj. R2) is also 
presented. The standardised betas are listed in Figure 3-2. The beta 
standardised (β) allow inter-comparison of relative contribution of various 
factors such climate, soil, fertility, demographic and infrastructure 
development in respective agricultural zones. It gives factor ‘fingerprint’ of 
the location factors. KS Kivu lake shore, IMP Impala, IMB Imbo, CND Congo-
Nile watershed divide, MPB Mayaga plateau and Central Bugesera, CP Central 
Plateau, ERP Eastern Ridge and Plateau, EL Eastern Lowland, BH Buberuka 
Highlands, VHP volcanoes and high plains, PT total population, P16 
population under 16 years old, P16-18 population between 16 and 18 years 
old, P18 population with more than 18 years old, PET potential 
evapotranspiration, T annual average temperature, RH annual relative 
humidity, Alt altitude, N soil total nitrogen, N/K nitrogen-potassium ratio, 
SOC soil organic carbon, pHw soil pH water, K potassium content, Ca calcium 
content, Cy clay content, Sd sand content, CWS distance farm-coffee washing 
station 
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Table 3-2: Coefficients (b) quantifying the contribution each variable to the current 
coffee areas (ha) distribution 

Factors & Variables Nation 

Agro-ecological zones 

KI KS IMP IMB CND CP BH MPB ERP EL 

Constant 32,6 -0,7 -8,4 21,4 10,9 32,9 18,3 101,6 60,5 -2,9 -39,1 

P16 4.10-3 
   

-5. 10-3 
 

0,01 -13 4.10-4 
  

P16-18 -0,02 
 

-0,01 
 

0,02 0,02 -0,04 
  

-0,02 -0,01 

P18 
  

3.10 -5,1 
 

-5,1 
   

1.10-3 2.10-3 

PT 
   

10-3 
    

-10-3 
 
-10-3 

Alt 
   

-5. 10-3 0,01 
   

-0,02 
3. 10-

3 0,01 

T 
  

0,43 -0,63 3,57 -1,01 1,14 
   

0,42 

RH -0,52 
     

-1,3 -1,01 
  

0,16 

PET -0,01 
   

-0,04 -0,01 -0,01 -0,01 -0,01 
 
-0,01 

OC 0,58 
  

-0,4 -4,47 
  

-1,26 
   

N 
     

-1,11 1,07 
 

-0,24 
  

N/K  
 

0,13 
  

-2,58 0,25 -0,55 -0,15 
 

0,05 
 

pH 4,78 
     

21,06 
 

-1,77 
  

Ca -0,44 
 

-0,07 -0,06 -0,37 
 

-5,55 -1,15 
  

-0,08 

K 
    

-28,43 
 

22,8 
    

Sd  -0,13 
 

0,03 
  

-0,14 -0,29 
  

-0,04 
 

Cy -0,19 
   

0,45 
 
-0,31 

 
-0,21 

 
  

Infrastructure CWS    -2. 10-4 2. 10-4 10-3 -10-4   4. 10-4    

 Adj.R2 0,09 0,52 0,1 0,17 0,54 0,25 0,34 0,28 0,11 0,08 0,19 
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Explanatory power (β) 

 
Significant variables 

Figure 3-2: Explanatory power (β= standardised ‘b’ values) of biophysical and human 
variables loading in the five main components (factors) at country level and at agro-
ecological zone level (factor label see legend table 3-2 and figure 3-2). National R2 = 
0.09, Agro-ecological based models: KI R2 = 0.52; KS R2 = 0.10; IMP R2 = 0.17; IMB 
R2 = 0.54; CND R2=0.25; CP R2=0.34; BH R2=0.28; MPB R2 = 0.11; ERP R2=0.08; EL 
R2=0.19.  
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3.3.3 Analysing potential locations for coffee expansion 
Potential areas for coffee cultivation for the whole country were identified 
using the regional multiple regression models. This was done under the 
assumption that when the model based on local biophysical and socio-
economic conditions, indicates higher coffee field densities than currently 
observed, there is potential for more coffee fields within the current land use 
systems. In Figure 3-3, the calculated potential coffee location areas are 
presented as percentage of the total arable land. There are five classes of 
occurrence: 0% no coffee, 0–25%, 25–50%, 50–75% and 75–100% coffee 
occurrence. Assuming that a lower calculated coffee area percentage 
indicates a lower suitability with respect to the analysed location factors we 
can also indicate where coffee is grown under suboptimal conditions. Figure 
3-3 presents the actual coffee fields (a), potential coffee-growing areas 
according to the national model (b) and according to the regional models (c) 
and the areas where according to the regional models, coffee area increase is 
possible (d). These changes include expanding (+) or reducing (−) of coffee 
field density as a consequence of good or poor environment and socio-
economic conditions.  

For comparison purposes and to link to the still commonly used land 
evaluation classes, we propose to label the following: 0 % calculated coffee 
predicted area as unsuitable and not remediable (N2), 0–25% as unsuitable 
but remediable (N1), 25–50% as marginally suitable (S3), 50–75% as 
moderately suitable (S2) and 75–100% as suitable (S1). Strictly speaking 
this is not correct but it allows some grounds for comparison. The map 
(Figure 3-3) shows few areas where coffee suitability appears to be very 
high. Those areas are Kivu lake Shore, central and south Plateau and 
Mayaga. Smaller suitable areas are visible in the eastern ridge and plateau as 
well as the Buberuka highlands (in Burera-Ruhondo region). The least 
suitable areas are the Congo-Nile watershed divide. The actual coffee field 
occurrence (Figure 3-3a) is compared with the predicted coffee area 
suitability (Figure 3-3c). Of the actual coffee fields 6.6% is located in 
‘unsuitable’ areas (N2 and N1), 33.4% in marginally suitable (S3) areas, 
57.3% in moderately suitable (S2) areas and 2.7% in suitable areas (S1). So 
altogether, 60% of the existing coffee fields are located in moderately 
suitable to suitable areas.  
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Figure 3-3: Actual coffee field density (a), predicted coffee density maps by the 
generalised (b) and regionalized (c) models compared with the actual density of coffee 
(a) mapped using high resolution imagery (Mukashema et al. 2014). The difference of 
actual and predicted are (d) explicitly visualises potential areas change. The scale from 
negative (−) to positive (+) change indicates where actual coffee area densities are 
larger (+) to lower (−) than expected by location factors. The coffee suitability (from 
S1 to N2) map generalised over AEZs (Verdoodt & Van Ranst, 2003a)  is overlaid to 
calculated map. The country size is 26,338 km2. For presentation, the resolution has 
been reduced to the grid cell size of 7 by 7 acres which correspond to the mean 
variance of coffee plots. 

3.3.4 Exploring spatial coffee distribution 
 
3.3.4.1 Role of environmental and socio-economic factors in 

coffee field density 
Rwandan coffee systems are clearly driven by both regional socio-economic 
and environmental factors. These factors play out differently in the ten agro-
ecological zones. Climatic (temperature) and topographic (altitude) factors 
play a prominent role in Imbo and Kivu lake shore in the western part of 
Rwanda. In this area, an increase of 3 ha of coffee area is observed as the 
elevation decreases by 200 m and the temperature increases by 1.2°C 
(towards the border of lake Kivu). Potential evapotranspiration plays a 
modest role in the Congo-Nile divide, the central plateau and Buberuka 
highland, the Mayaga plateau and eastern lowlands. It indicates that in these 
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regions the coffee system appears to be more climate sensitive than in other 
regions. 

Soils play also a prominent role in determining coffee location within the 
whole country. Although we expected aluminium toxicity and phosphorous 
levels to play an important role, it was not included in any of the regressions, 
but the related pH was. The most important soil factor is the nitrogen-
potassium ratio of the soil. This ratio reflects the interface between nutrient 
availability in the topsoil and the inherent chemical properties of the subsoil. 
The more significant contribution is found in central western part of the 
country. In many regions (Kivu lake shore, Impala, Imbo, central plateau, 
Buberuka highlands and eastern low lands), the soil acidity pH and calcium 
depletion of the subsoil has a negative effect on the occurrence of coffee. A 
combination of lime, agroforestry, organic and mineral fertiliser could 
improve soil fertility for such highly depleted acidic soils (Bucagu, Vanlauwe, 
& Giller, 2013).  

Soil texture (sand and clay content) plays only a minor role in the spatial 
distribution of coffee. Except in the Kivu lake shore area where sand and clay 
content has a positive effect on coffee occurrence; a negative effect is 
observed in the eastern Nile divide zones.  

The importance of soil derived properties gives some merit to the soil-based 
approach used by I. Nzeyimana et al. (2014). Their methodology, however, 
clearly leaves out relevant socioeconomic coffee factors that are most 
dynamic or prone to change. 

The coffee production infrastructure plays a modest contribution in most 
regions with the exception of the eastern ridge and plateaus and Buberuka 
highlands. In the area where there are more coffee washing stations (see 
Figure 3-2), a positive contribution to coffee area can be observed while in 
the more remote areas with less coffee washing stations, a negative 
contribution is observed. This suggests that coffee washing stations can 
stimulate coffee production in their neighbourhood. This is related to a 
governmental project for initiating coffee washing stations that started in 
2002 with pilots with cooperatives in South province (example of Maraba 
coffee). Government of Rwanda provided cooperatives with advisory work on 
the development of business plans, strengthened organisation and building 
linkages with coffee buyers and financial institutions. By 2010 this had 
become a programme with 183 washing stations. Population density and 
associated labour availability have a strong association with the occurrence of 
coffee in Kivu lake shore area, Impala, Imbo, Mayaga, eastern ridge and 
plateau. The other central regions have more modest contribution of 
demography. When in the future other types of socio-economic data, such a 
transport distances/costs for fertilisers and coffee prizes become available, 
we expect an improved system understanding. 
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Our systematic analysis clearly demonstrates that coffee field distribution is 
part of a complex land use system where not only many different factors play 
a significant role, but where locally different trade-off decisions are made. 
From an example of the effect of demography on the spatial distribution of 
coffee fields, we demonstrated that coffee in Rwanda is often not planted on 
the biophysical optimal location due to the equal importance of socio-
economic factors and the competition with other land use functions. This 
difference explains why current coffee density (Figure 3-1) and the modelled 
coffee density maps (Figure 3-3) do not resemble the predicted potential 
coffee map (Fig.3, Nzeyimana et al. 2014). 

3.3.4.2 Modelling coffee distribution 
The regional models all have different variable contributions from the 
environmental and human-related factors. This reflects the regional diversity 
as discussed earlier. The coefficients of determination (R2) range between 10 
and 54%. The fit of the regression models improves when using a more 
detailed spatial stratification of the country. This confirms that coffee system 
analysis is a very scale and context sensitive exercise (Veldkamp, Verburg, et 
al., 2001).  

Regional models were used to calculate coffee occurrence for the whole 
country. This resulted in a probability map displaying areas ranging from 0 to 
100% coffee occurrence (Figure 3-3). The existing coffee suitability map 
(Verdoodt & Van Ranst, 2003a) is a highly simplified to agro-ecological zones 
of Rwanda, therefore cannot be used to conclude on the details produced by 
our probability map. It is also important to realise that the probability map is 
based upon factors which in reality can change quickly over time. Dynamic 
processes such as population mobility (within 5–10 years), soil management 
(5–10 years), climate change (decadal), infrastructure and coffee washing 
station construction (5–10 years) can be easily accommodated by the 
methodology presented here by recalculating a new probability map using 
updated factor data. It is also important to mention that it is possible to 
include additional factors in the analysis if such data becomes available. 

3.3.4.3 Potential areas for future coffee expansion 
Potential areas for coffee expansion according to the regression models are 
shown in (Figure 3-3d). South of the Congo-Nile watershed divide, east of 
Nyungwe forest, a potentially suitable area is visible. However, this area is 
used for tea production since many decades. This represents a good example 
of how the land use history and land use causes suboptimal utilisation of land 
from one commodity perspective. An additional suitable coffee area is 
observed in the northern part of the Congo-Nile watershed divide. In this 
area, protected forest is the predominant land use (Westinga et al., 2013). 
Another suitable area for coffee growing is located in the east and north east. 
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This area used to be within the Akagera National park. After 1995, this area 
was rezoned to allow human resettlement, pasture and large-scale maize 
cultivation. In the western part of Buberuka highlands, another suitable area 
is identified. However, this is a traditional wheat growing area. Also in some 
central parts of the country, highly suitable lands are visible. In these areas, 
the absence of coffee is explained by the vicinity of the rapidly growing city of 
Kigali and its satellite cities. In a similar fashion highly suitable locations are 
found near to urbanising areas such as Rwamagana and Bugesera (located in 
the southeast) and Muhanga and Huye (located in the central and southern 
parts of the country). This matches the global trend that cities eat up very 
suitable agricultural land (Haller, 2014).  

In summary, all potentially suitable coffee areas outside current coffee 
regions have other rational reasons than poor suitability to grow coffee. 
Causes are either related to competition with other land uses or a specific 
land use history. Despite of the above, the regionalized model fit (Figure 3-3) 
is satisfactory (60%). The model outputs also demonstrate that a significant 
proportion of coffee cultivation (40 %) is actually grown in less suitable 
locations (40 %). Translocating this coffee to more suitable locations might 
increase coffee production. Given the previously discussed limitations on 
coffee expansion to new areas, it might be a more realistic option to intensify 
coffee production. We propose to reanalyse the coffee system on a regular 
basis to allow more sustainable recommendations about planned changes in 
coffee growing areas. 

3.4 Conclusion 

Biophysical and socio-economic factors together determine the spatial 
pattern of coffee growing in Rwanda. The main potential explanatory factors 
of coffee can be statistically grouped into five main components: (1) socio-
economic demographic factors, (2) local climate and topography, (3) topsoil 
fertility, (4) subsoil properties and (5) physical soil properties and coffee 
production infrastructure. Multiple regression analysis using these variables 
for the whole country explains only 9% of the total variability of coffee field 
occurrence. Spatially disaggregate models using different regional dependent 
combinations of explanatory variables resulted in a much improved 
explanatory power of spatial coffee field variability (adj. R2 arising to 54%). 
In general, the smaller the region the better the model fit. This suggests a 
high diversity in local factors determining coffee field distribution.  

The regionalized models were subsequently used to model coffee occurrence 
for the whole country. This demonstrated that 60% of current coffee fields 
are located at suitable locations. The remaining fields are situated in less 
suitable locations. The modelling exercise suggests, given all model 
limitations, that there are still potentially suitable coffee areas available in 
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the country. But many highly suitable areas are already occupied by other 
competing uses. Given the very limited land resources in Rwanda, it appears 
to be more realistic to increase future coffee production not so much by 
expansion of the coffee growing area as a whole but rather via a process of 
substitution whereby coffee cultivation is intensified at suitable locations. In 
less suitable locations, coffee growing could be reduced or converted into 
more suitable land uses. 
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4 Arabica coffee yields in Rwandan 
smallholder systems: future perspectives 
of climate change effect and improved 
soil organic carbon management3 

 

                                           
3 This chapter is resubmitted after revision as: Mukashema, A., Veldkamp, A., and 
Gatarayiha C.M. Arabica coffee yields in Rwandan smallholder systems: future 
perspectives of climate change effect and improved soil organic carbon management. 
In Agriculture, Ecosystems and Environment  
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4.1 Introduction 
Coffee (Coffea Arabica, bourbon variety) farming in Rwanda is mainly a small 
holder activity. Coffee farms have an average field size of 0.24 hectare 
(Mukashema et al., 2014) and are part of diverse Rwandan small-scale 
cropping systems which are on average 0.59 hectare in size. Arabica coffee 
(Bourbon variety) was introduced in Rwanda at the beginning of the 
twentieth century. Most Rwandan smallholder farmers grow bourbon 
Mayaguez and Jackson varieties which seem to be well adapted to the 
conditions in Rwanda (Wintgens, 2009). The Bourbon varieties are planted at 
medium density (2,000-2,500 plants per hectare) compared to other 
varieties such as Caturra planted at 5,000-10,000 plants per hectare in 
Colombia and Costa Rica.  

Coffee yield levels in Rwanda (average 0.7±0.4 t ha-1) are generally lower 
than averages (1.2 t ha-1) obtained in small scale farming systems optimized 
for coffee growing (Wintgens, 2009). Compared with other coffee growing 
countries, Rwandan coffee farmers obtain yield levels well below the levels 
(1.7 t ha-1) obtained by small scale farmers in India (Jayakumar et al., 
2016), and 1.8 t ha-1 in Brazil (de Muner et al., 2015). Very high yields (3t 
ha-1) are reported in Brazil on commercial Arabica coffee farms (Teixeira et 
al., 2015). In East Africa, Rwanda has similar yield ranges as observed in 
Uganda (0.7 to 0.9 t ha-1) (N. Wang et al., 2015).  

Coffee yield is context and location dependent and usually controlled by the 
local interaction of environmental and socio-economic factors (Castro-Tanzi, 
Dietsch, Urena, Vindas, & Chandler, 2012; Veldkamp, Kok, et al., 2001). 
Location factors which determine suitable coffee areas in Rwanda have 
already been analysed in detail by Mukashema, Veldkamp, and Amer (2016) 
and found that 60% of coffee farms are located in suitable environmental and 
socio-economic locations. However, this analysis did not include the yield 
levels obtained. Nzeyimana et al., (2014) used a 2.3% sub-sample field 
measured yield approach for 2005 to assess potential productivity zones and 
yields for the ten agroecological zones using ordinary kriging. A strong 
limitation of their multi-criteria evaluation study was the use of highly 
aggregated spatial units of ten AEZ only. This makes it difficult to make 
concrete recommendations for small holder systems.  

The population in Rwanda is expected to grow from 11 million in 2012 to 15 
million in 2022 (NISR, 2012) and arable land is getting increasingly 
fragmented and is less available. In this context, productivity improvement is 
the obvious way for coffee farmers to increase their income from current 
coffee areas. Reallocating coffee to more suitable areas while releasing less 
suitable areas to other land uses as identified by (Mukashema et al., 2016) 
might also increase net yield but this will take many years to become 
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effective and is a very sensitive process. Therefore, the by far simplest 
solution is to increase coffee yields of current coffee fields.  

Not all coffee areas have a similar potential to support higher yields in a 
sustainable manner, due to local climatic, topographic, soil quality 
constraints, and in some cases due to limited access to coffee infrastructures 
and input markets. An often used approach to understand yield increase 
potential is yield gap analysis using crop growth models (van Ittersum et al., 
2013). Biophysically constrained maximum yields (usually water limited yield 
potentials) are simulated assuming optimal fertilizing and crop management 
with no pests and diseases (Tittonell & Giller, 2013). Such a yield gap 
analysis cannot be done for coffee because there are no reliable crop growth 
models available for this perennial crop, because existing models are mainly 
developed for annual crops (e.g. Affholder, Poeydebat, Corbeels, Scopel, & 
Tittonell, 2013; Tittonell & Giller, 2013; Xiao et al., 2016). The only 
comparable crop for which a type of crop growth model exists is Cacao (Diaz-
Jose, Diaz-Jose, Mora-Flores, Rendon-Medel, & Tellez-Delgado, 2014; Ofori-
Boateng & Insah, 2014). However, these studies focused on identifying 
regional yield differences only. For coffee, limited attempts have been 
undertaken to predict yields, usually only by focussing on climate parameters 
(e.g. Craparo, Van Asten, Laderach, Jassogne, & Grab, 2015; Jayakumar et 
al., 2016; Ovalle-Rivera, Laderach, Bunn, Obersteiner, & Schroth, 2015; 
Picini, Camargo, Ortolani, Fazuoli, & Gallo, 1999; Santos & Camargo, 2006). 
In Uganda, N. Wang et al. (2015) monitored coffee yields and production 
factors for both Arabica and Robusta coffee and found that lower yield levels 
were associated with unfavourable climate and poor soil nutrient status. 
These constraints varied strongly and were location specific, calling for site-
specific management approaches. In Rwanda, Bucagu et al. (2013) 
investigated the potential of agroforestry by Tephrosia vogelii intercropped in 
coffee plantations and Pinard, Boffa, and Rwakagara (2014) investigated the 
role of shade trees on coffee productivity. Both studies registered location 
specific increase of yield levels but they included only effects of factors that 
can be directly influenced by farm management. There are no studies found 
for Africa that combine climate, topography and soil properties to determine 
the environmental and management factors controlling coffee yields. This is 
probably because the spatial data needed to perform such analysis are 
difficulty to collect in Africa. Due to relative scarcity of field data, many 
studies recommend simulation models in estimating potential yield and 
related gap with actual yields (e.g. Affholder et al., 2013) but such results 
would have mainly theoretical value in coffee farming because day to day 
crop management in small holder farms is known to be sub-optimal due to 
the competition of different crops for the limited available farm resources 
such as inputs and labour (Murekezi, Jin, & Loveridge, 2014). Thus probably 
more than anywhere else, actual yields under African smallholder conditions 
are the result of a tight interaction between the crop genotype, the local 
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environment and existing farming management practices (G×E×M) model 
(Tittonell & Giller, 2013).  

An alternative approach to understand what is affecting current coffee yield 
levels, is by analysing how location characteristics relate to actual yield (Yact) 
variability within the current system using a holistic approach with known 
potential yield constraints (Veldkamp et al., 2001). Using a multiple annual 
yield average will reduce the temporal variability (Kok and Veldkamp, 2011) 
resulting in more general (multi-annual) valid relationships. Regression 
analysis can then be used to understand which location factors are associated 
with higher and lower yield levels. The developed empirical multiple 
regression yield model can calculate an ‘achievable’ yield level for all 
locations given the uncertainties and limitations involved. This allows the 
identification of locations where current yields are below the ‘achievable’ 
yield. Because the significant physical constraints are already taken into the 
developed yield model it can be assumed that this lower yield level is mainly 
related to sub-optimal local land management within the current system due 
to time and means competition with other land use practices within the small 
holder farm (Verburg et al., 2000).  

The advantage of this approach is that it can indicate locations with potential 
yield gains without the need for major system restructuring or reforms. This 
is for the short term a much more feasible approach than calculating 
theoretical yield gaps which require, in order to be bridged, irrigation, optimal 
fertilizer applications and pest control measures which in most cases requires 
major investments that can be only afforded by large scale farmers (e.g.Liu, 
Li, Zhang, & Yang, 2016; Teixeira et al., 2015).  

For policy making it is highly relevant to know the current yield controlling 
factors instead of the theoretical ones, to improve the current sub-optimal 
agronomic practices to increase yield towards the levels defined as the 2020 
targets for Rwanda.  

The objective of this paper is hence to explore the spatially explicit coffee 
yield variability and its association with local topographic, climatic and soil 
conditions within current smallholder farming systems in Rwanda. Identified 
yield constraints can then be used to locate areas where a higher yield can be 
achieved and to recommend future development options to improve coffee 
yields. 

4.2 Material and Methods 

 
4.2.1 Coffee production and yield data 
National production data from the National Agriculture export board of 
Rwanda (NAEB) was used in the analysis. Coffee yield data was collected at 
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166 coffee washing stations (CWS) for the period of 2011-2014 while the 
production of 2015 was collected at 245 CWS (see Figure 4-2 for their 
locations). These CWS are mainly owned by coffee farmers organized in 
cooperatives. Only a few CWS are owned by private investors. Ripe coffee 
cherries are manually harvested, screened and transported to coffee washing 
stations for washing and drying. Coffee growers bring their cherries to the 
nearest CWS. Each coffee washing station has a well-defined supply area 
(Figure 4-1). The diameter of the supply area ranges between 0.5km and 
10km with an average diameter of 3km. 

 
Figure 4-1: Map showing examples of coffee fields supplying coffee cherries to 
(selected) nearest coffee washing station (CWS). Different supply area touch each 
other following the density of coffee fields, the size and productivity of coffee farms as 
well as the processing capacity of coffee washing stations. By 2016, there were 
245CWS. The diameter of the supply area ranges between 0.5km and 10km with an 
average diameter of 3km. Agroecological zones: KS Kivu lake shore, IMP Impala, IMB 
Imbo, CND Congo-Nile watershed divide, CP Central Plateau, MPB Mayaga plateau and 
Bugesera, ERP Eastern Ridge and Plateau. 

At the end of the season (March-July), the CWS owners report the total 
production to the National coffee board (NAEB). This procedure implies that 
the production data report coffee cherries quantities that passed farm gate 
screening and taken to a coffee washing station (Figure 4-2) which is 
estimated to 95% of total cherry production on the coffee trees. The 5% are 
process by farmers at home and sold to ordinary market (NAEB unpublished 
technical reports 2011-2015).  
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The total national production varied from 12, 928 tons in 2011 to 17,829 tons 
in 2015 of green coffee beans. A coffee field map containing 119,513 
individual coffee fields with a total area of 25,148 ha, (Mukashema et al. 
(2014), was used to convert CWS yields into coffee yield per hectare. Coffee 
yield varies highly across the country, 62.8% of coffee farms have low yields 
(0.5t ha-1), 14.3% have yields between 0.5 -1 t ha-1, 6.3% have yields 
ranging from 1t ha-1 to 1.5 t ha-1, only 16,6% reach yields above 1.5 t ha-1.  

Figure 4-3a shows that the coffee yield (t ha-1) decreases as we move from 
western highlands to Eastern lowlands. This already indicates that there is a 
relationship between agro-ecological conditions and coffee yield. Figure 4-3b 
demonstrates the national annual production from 2007 to 2015. From 2007 
up to 2012 total production levels remained relatively constant. There has 
been a stepped increase since 2013 due to increased NPK fertiliser 
applications. Nationally, NPK fertilizer use in coffee increased from 1000t in 
2011 to 5000t in 2015. About 5 kg of organic manure per coffee tree and 100 
grams of NPK 22.6.12 (in Eastern ridges and lowland, and Impala region) or 
NPK 17.17.17 (in Kivu lake shore, Congo-Nile divide, and Central Plateau) is 
applied in two applications per year (October/November, and March/April). 
Another overall production gain factor is related to the production of newly 
developed coffee areas that were planted from 2010 onwards. In the analysis 
we used the 2011-2014 average a combination of two low and two high 
production years. The production level of 2015 was used as validation year. 

  
Figure 4-2: Map showing the average total production supplied to 166 coffee washing 
stations (CWS) by individual farmers for the period from 2011 to 2014. Agroecological 
zones: KLS Kivu lake shore, IMP Impala, IMB Imbo, CND Congo-Nile watershed divide, 
MPB Mayaga plateau and Bugesera, CP Central Plateau, ERP Eastern Ridge and 
Plateau, EL Eastern Lowland, BH Buberuka Highlands, VHP Volcanoes and high plains. 
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Figure 4-3: a) Histogram showing the coffee yield gradient from Western mountains 
to Eastern lowlands. Yield data are presented at District level using the total production 
reported at the National coffee export board (NAEB) for the season 2015 divided by the 
number of hectares per district. b) The trends in annual total coffee production for 
Rwanda 2007-2015. 

4.2.2 Biophysical properties of coffee farms 
The source of biophysical data used in this study are described in Mukashema 
et al. (2016).  
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4.2.2.1 Climate 
In Rwanda, coffee is currently grown under temperature conditions ranging 
from 14.2 to 23.8oC. The named areas and regions are indicated in the map 
of Fig. 1 by their abbreviations. The vast majority of coffee fields (97.9%) is 
situated in the central (CP) and eastern plateau (ERP) areas where optimal 
temperature (16-22oC) are found for growing coffee according to Wintgens 
(2009). A minority of 1.7% of the coffee areas is found in Congo-Nile water 
divide (CND) and Buberuka highlands (BH) with relatively low temperatures 
(<16oC). Only 0.4% of all coffee fields, mainly located in the eastern 
lowlands (EL), have a higher than optimal temperature (>22oC). 

Coffee fields are mainly located in areas with annual rainfall varying between 
700 mm in the east and 2,120 mm in west and north. The eastern lowlands 
(EL) and central Bugesera (MPB) are significantly drier, receiving rainfall less 
than 900 mm annually which is slightly lower than the minimum of 951 mm 
required for coffee growing (Wintgens, 2009). Coffee fields of the Impala 
zone (IMP) and south-west Congo-Nile water divide (CND) receive rainfall 
exceeding 1,600mm annually. The potential evapotranspiration in coffee 
fields vary greatly from 440 and 1,550 mm following the NW-SE gradient as 
the temperature increases. Coffee is grown in areas with a relative humidity 
varying between 67 and 82% with an average of 73±3% which is quite 
suitable compared to the optimum required ranging from 60 to 85% 
(Wintgens, 2009). 

In the south and west Rwanda, coffee is exposed to 1,480 hours of sunlight 
during the rainy season and around 1,900 hours during the dry season which 
between 58% and 75% of the required sunlight exposure. The optimum 
amount of sunlight exposure for coffee cultivation is considered to range 
between 2,200 to 2,400 hours of sunlight per year (Wintgens, 2009). 

4.2.2.2 Topography 
Arabica coffee (coffea arabica) is generally adapted to the tropical highlands, 
however, considerable topographic diversity can be observed. Flat land or 
gently rolling hills are generally considered best suited for coffee cultivation 
(Wintgens, 2009). In Rwanda, coffee is cultivated at altitudes varying 
between 970 and 2,575m. About 28% of the coffee cultivation area is located 
at altitudes below 1,500m, 67% at altitudes between 1,500 and 2,000 m, 
and only 4% is at altitudes above 2,000m. Areas below 1,750 m found in the 
Lake Kivu shore (KS) area, are more favourable and the growth season is 
shorter than in the areas with high altitude in the upper catchment of Kivu 
Lake where flowering and fruits ripening require more time.  

Concerning field slope, Rwanda coffee fields are located in areas with slopes 
varying between 8% and 89%. In the western steep areas of the Congo Nile 
water divide (CND) as much as 23.2% of the coffee fields are found on slopes 
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steeper than 40%. About 24.2% of all coffee fields are located on slopes 
between 25 and 40% and those are mostly situated in the southern central 
plateau (CP). In the Mayaga and eastern ridges (MBP) area about 28.3% of 
all fields is found on slopes between 12 and 25%. Only 24.4% of the coffee 
fields are found on the gentle slopes (<12%) in the Bugesera (MPB) and 
Eastern lowlands (EL). 

4.2.2.3 Soils 
With regard to lithologies and related soils, 63% of the coffee fields are 
established on soils developed on shale, and mica schist, 23.5% on granitic 
soils and 9.7% on soils developed on basic rocks such as basalt and 
amphibolites. Very few fields (1.4%) are established on volcanic soils which 
have a high base saturation and a high pH. More than 75% of coffee fields 
are found on loamy sand soils which are depleted of essential plant nutrients. 
Total soil nitrogen, which mainly depends on field management, greatly 
varies from very low (0.07%) to very high (0.83%). Such soils provide 
considerable challenges for coffee production in Rwanda (Rutunga, Janssen, 
Mantel, & Janssens, 2007). 

The top soil pH in coffee fields varies from 4.2 to 6.8. Only 8% of coffee fields 
are established on soils, which have what is considered an optimum coffee 
soil pH (between 5.8 and 6.8) along Kivu lake shore (KS) and Impala (IMP). 
About 59% of the total coffee fields are established on strongly weathered 
acidic soils (pH 5.0-5.8) of the central plateau; and 35% of the total coffee 
fields are on very acid soils (pH<5.0) mainly located in upper Congo-Nile 
water divide (CND) which suffer from Aluminium (Al) toxicity and highly 
deficiencies in Phosphorus (P) (I. Nzeyimana et al., 2013). In Rwanda 
Aluminium toxicity is very often associated with low soil pH and low organic 
carbon content (<1.5%).  

Soil organic carbon (SOC) content in the upper layer (0-30cm) of the coffee 
fields is not considered a limiting factor because most coffee fields are 
mulched. Only 0.1% of coffee fields have a low SOC content (<0.8%), 9.2% 
are classified moderately humic (0.8-1.2%), 49.4% are humic (1.2-2.8%) 
and 41.3% very humic soils (SOC> 2.4%). The cation exchange capacity 
(CEC) is generally low (14.3 ±6.8cmol+Kg-1) in coffee fields due to highly 
depleted 1:1 clay soil type (kaolinite), characteristic of soils developed on 
granites. About 73.5% of coffee fields have a very low CEC (<16 cmol+Kg-1), 
19.3% moderate CEC (16-24 cmol+Kg-1) and only 7.2% with very high CEC 
(>24 cmol+Kg-1). Coffee fields with poor CEC conditions are mainly found in 
granitic soils of the central plateau.  

The available phosphorous for coffee plants is very low (less than 3ppm) in 
49%, and low (from 3 to 20 ppm) in 39.9% of total coffee fields. Only 9.3% 
of coffee field has a satisfactory level of available phosphorous content 
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between 20 and 50 ppm. A maximum of 257ppm of available phosphorous 
are observed in few coffee fields which is still very low compared to the 
recommended optimum of 440ppm (Wintgens, 2009). Potassium (K) and 
calcium (Ca) are generally deficient in coffee fields with 92.4% of fields 
deficient in potassium (K+ less than 0.2 cmol+Kg-1) and 93.6% of coffee fields 
deficient in calcium (with Ca2+less than 4 cmol+Kg-1). Similarly, Magnesium 
(Mg2+) content although highly variable across coffee cultivated soils ranges 
from 0.4 to 10.7cmol+Kg-1 which are still below the recommended norm for 
coffee fields.  

4.2.3 Data processing and statistical analysis 

Spatial data of environmental variables related to climate, soil and 
topography were processed at 10m resolution. Coffee data (fields and areas, 
geographic locations of coffee washing stations (CWS) and total coffee 
production supplied to CWS for the period from 2011 to 2015) were divided 
in a 2011-2014 average yield value and 2015 was separated to be used as 
validation set. For each CWS the supplying area was delineated using the 
near-distance analysis tool of ArcGIS 10.4 version. According to the National 
Agricultural Export development board (NAEB) of Rwanda, each coffee 
washing station (CWS) is given a supply area (Fig. 1) corresponding to its 
processing capacity depending on the productivity of nearest coffee farms 
and the reasonable travel distance by coffee growers to the nearest CWS. 
The average travel distance to the nearest coffee washing stations by the 
farmer is about 3 km. With the current number of CWS (2015-2016), the 
maximum distance between the individual farms and the nearest CWS is 10 
km, the nearest being at 0.5 on average. A cooperative may possess more 
than one CWS depending on the terrain and availability of transport 
infrastructure.  

In order to identify biophysical factors underlying the variability of coffee 
yields, the total production for each CWS was redistributed to the coffee 
fields in its supply area (Fig.1), proportionally to the supplying field size in 
order to estimate the yields for every coffee field. The national dataset of 
coffee fields (N=119,513) was then randomly split into two equal subsets: 
one for production of coffee yield model (n=59,520) and model validation 
set. Biophysical data values were then extracted at coffee field location.  

We first explored the difference in yield levels at country level in relation to 
average biophysical conditions in coffee fields by categorizing yield levels and 
biophysical requirement as recommended by Wintgens (2009) and by 
Verdoodt and Van Ranst (2006) for Rwanda. To determine if the difference in 
proportion of coffee farms allocated to biophysical categories are significantly 
different between pair category of yields we examined the results of column 
proportion tests (Z tests) using Bonferron method. This test assigns a 
subscript letter to the categories of column variable. If a pair of values is 
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significantly different, the values have different subscript letters assigned to 
them. 

We also analysed the spatial variation coffee yield across the country agro-
ecological zones using spatial autocorrelation and global Moran’s index for the 
average coffee yield measured from 2011 to 2014. Moran’s Index indicates 
the behaviour of autocorrelation, in which smaller value than the expected 
index demonstrates a trend for dispersion, whereas positive value indicates a 
clustering trend for contiguous areas (Silva, de Queiroz, Pinto, & Santos, 
2014). The z-score and p-value are measures of statistical significance which 
tell you whether or not to reject the null hypothesis. In this study, the null 
hypothesis is that coffee yields are randomly distributed among coffee 
washing stations and between coffee field supply areas.  

In order to identify biophysical factors with significant effect on coffee yields, 
all available topographic, climate and soil variables were analysed using 
stepwise multiple regression method (equation 1). All statistical analyses 
were performed using the software IBM SPSS statistics (22nd edition).  
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Where, Yach (kg ha-1) is the achievable yield under site-specific 
environmental and management conditions (EM), bi, i=0…n are coefficients 
obtained by forward stepwise regression (criterion is p<0.05), and ε  is the 
error associated with the model. EM represents environmental variables 
related to climate, soil and topography selected for their direct influence on 
the coffee growing. The ‘best’ yield model is selected on the basis of 
goodness-of-fit (adjusted R2). For each EM variable, a coefficients b-value, 
and its associated standardized beta β-value is calculated to allow a 
comparison among EM factors. The model was first developed for the whole 
country. In a sub sequential step it was explored if stratification by 
agroecological zones and lithological based soil units improved observed 
model explanatory.  

The parameters (b-values) of the selected yield model and parameters were 
later used to calculate the ‘achievable’ yield map of Rwanda using the non-
used data subset. The goodness of fit between achievable coffee yield map 
and actual farm yield was confirmed by adjusted coefficient of determination 
(R2). Standardized beta β -values were also used to compare model 
parameters in order to identify yield constraints. Before the analysis all used 
variables were first checked for normal distribution, no transformation was 
applied to original data, and during the multiple-regression modelling models 
were checked for collinearity. By using randomly selected subsets the effect 
of spatial autocorrelations was addressed (Overmars et al., 2003). 
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The best achievable yield models and related predicted achievable yield map 
were validated using random coffee fields from the validation set, randomly 
selected within 229 coffee washing station service areas. Using the validation 

set, the mean yield difference diffY
 was also calculated by comparing 

predicted achievable yield values at field location )( achYZ ∧

 with actual coffee 

yield as reported by the coffee washing stations )(*
actYZ . Similarly, the change 

in coffee yields as a result of change in one of the co-interacting factors for a 
given period of time is calculated as follow:  
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Beside adjusted R2, we also assessed the spatial autocorrelation (Global 
Moran's I) on the model residuals (Yact-Yach) to see if the under/over-
predictions are clustered or not. When a model fairly predicts the dependant 
variable (achievable coffee in this case), the residuals are spatially random. 
That means large residuals are intermixed with small residuals; large 
residuals do not cluster together spatially. 

The climate of Rwanda is expected to change towards a warmer and wetter 
climate by 2050. An increase of temperature by 0.35oC per decade and 
increase of rainfall by 4mm/yr (i.e. 40mm per decade) were projected 
(McSweeney & Semafara, 2011; Muhire & Ahmed, 2015). Using this 
projected decadal increase of temperature and rainfall, we recalculated the 
achievable coffee yield map for future conditions by 2020 and 2050 using the 
coffee yield models with increased temperature and rainfall, holding constant 
other significant biophysical parameters of the model. Under this climate 
change scenario prediction, we assume that coffee will continue to be grown 
in smallholder systems in Rwanda without adaptation measures.  

4.3 Results 
 
4.3.1 Biophysical characteristics of coffee farms and yield 

levels 
Table 4-1 indicates the number of coffee farms under biophysical factors and 
actual mean yield. The highest mean yield (2.1-2.3 t ha-1) was obtained at 
elevation between 1,000 and 1,400m and with annual rainfall above 1,200 
mm. Other optima (1.7-1.8 t ha-1) were found at slopes between 16 and 30% 
at temperatures ranging between 16 and 24oC, on soils with pH above 5.3, 
and with soil organic carbon above 2.4%.  
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Table 4-1 also shows the proportion (in percentage) of coffee farms in each 
yield category for each category of biophysical factors. At altitudes between 
1,000 and 1,400m, the proportion of coffee farms with higher yields 
increases significantly. However, above 1,400m, the proportion of coffee 
farms with higher yield decreases. The slope categories demonstrate a similar 
behaviour. On slopes below 16%, the proportion of coffee farms with higher 
yield decreases, while above 16%, the proportion of coffee farms increase as 
the yield increase from 1t ha-1. The upward trend of yields with slopes above 
16% is significant up to 30% slope gradient, and then declines significantly 
as the slopes steepen up above 30%. 

For areas with an annual rainfall below 1,000 mm, there is not a consistent 
trend of precipitation with proportion of coffee farms. Instead, areas with 
annual rainfall ranging between 1,000mm and 1,200mm the proportion of 
coffee farms is significantly reduced with higher yields while a positive trend 
is observed for areas with annual rainfall above 2,000mm. This demonstrates 
that a positive relationship between rainfall and yield exists although this 
factor interacts with the topographic factors that tend to reduce the rainfall 
impact on yield at slopes above 30%, probably due to run-off effects. For 
temperature, there is a clear increase in proportion of coffee farms in all 
temperature categories with higher yield levels, but this relationship is also 
not entirely consistent indicating that other factors may have interacted. 
Concerning coffee field soil quality, a significant variability in proportion of 
coffee farms is observed with higher yields associated with higher pH and soil 
organic carbon (SOC), but less consistent for the cations exchange capacity 
(CEC) of the soils. Under the category of pH below 4.5, the proportion of 
coffee farms significantly increases with increasing yields; while in the 
category of soil pH above 5.3 the proportion of coffee farms reduces with 
increase of yields. This area is used for staple crops. For the other soil pH 
categories an upward trend in proportion of coffee farms are observed with 
higher yields. This suggests that in current Rwandese coffee farming 
systems, coffee has relatively good yields even at lower pH range. The cation 
exchange capacity (CEC) values below 16 cmol+kg-1 shows a downward trend 
in proportion of coffee farms with increased yields, while other categories (16 
to 24 cmol+kg-1 category and above) did not show a consistent trend with 
increasing coffee yield. Soils with CEC values in the low and high yield 
categories have the same subscript (a), which means they cannot be 
distinguished from each other. For soil organic carbon, with the exception of 
the first category (<0.8%) which did not significantly differ with the yield 
increase, a strong and positive relationship between soil organic carbon and 
coffee yields can be observed. 
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Table 4-1: Percentage of coffee farms under biophysical factors and actual yields (t 
ha-1) categories. The variables used in this analysis have earlier revealed to be 
significant factors controlling coffee field location (Mukashema et al.2016). 
Biophysical factors 

unsuitable (N) to highly 
suitable (S1) 

Mean 
yield 

Coffee yield (t ha-1) 
[low high] 

n= 

tha-1 < 0.5 0.5-1 1-1.5 >1.5 59,520 
<1000(S3) 3.0 0.0a  0.1a, b 0.1b 11 

1000–1400(S2) 2.3 5.5a 1.6b 18.9c 13.4d 4,216 

1400–2700(S1) 1.7 94.5a 98.4b 81.0c 86.5d 55,273 

<8(N) 1.7 33.0a 26.2b 24.9b 31.1c 18,580 

8–16(S3) 1.7 31.8a 34.0b 28.1c 28.4c 18,623 

16–30(S2) 1.8 30.6a 34.5b 40.1c 35.9b 19,400 

>30(S1) 1.8 4.6a 5.3a 6.9b 4.7a 2,896 

<800(N) 1.3 0.0a, b 0.1b   
23 

800–1000(S3) 1.2 11.8a 2.9b 0.2c 3.1b 4,974 

1000–1200(S2) 1.5 50.9a 32.5b 10.2c 29.0d 25,044 

>2000(S1) 2.1 37.2a 64.6b 89.6c 68.0d 29,459 

14–15(S3) 1 0.1a       41 

15–16(S2) 1.2 0.5a 0.2b, c 0.3a, c 0.0b 198 

16–24(S1) 1.7 99.4a 99.8b, c 99.7a,c 100b 59,261 

<4.5(N) 2.2 1.8a 3.7b 7.3c 4.5d 1,707 

4.5-5.0(S3) 1.8 35.6a 28.7b 36.1a, c 37.5c 20,794 

5.0-5.3(S2) 1.6 23.0a 20.0b 11.7c 16.9d 12,373 

5.3-6.8(S1) 1.8 39.6a 47.7b 45.0c 41.1d 24,586 

<16(S3) 1.6 79.4a 62.2b 44.3c 59.8d 42,533 

16–24(S2) 1.8 17.7a 35.4b 16.8a 18.6a 12,089 

24–75(S1) 2.9 2.9a 2.5a 38.8b 21.7c 4,878 

<0.8(N) 2.3 0.5a 0.8b 0.3a 1.5c 408 

0.8-1.2(S3) 1.4 9.0a 13.3b 3.2c 1.8d 4,807 

1.2-2.4(S2) 1.8 22.3a 28.1b 15.7c 30.6d 14,338 

>2.4(S1) 1.8 68.2a 57.7b 80.8c 66.1d 39,847 

4.3.2 Factors determining of coffee yield trends in current 
farming systems 

Table 4-2, and 3 show the significant (with criterion <0.05) multiple 
regression models using biophysical variables to explain coffee yield 
variability for the whole country. The stratified regression models developed 
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for the nine major agro-ecological zones of Rwanda are given in (Table 4-2) 
and stratification for the seven main lithological soil units are displayed in 
(Table 4-3).  

The country scale multiple regression coffee yield model explains 21% of the 
total variability in coffee yields across the country. The independent 
explanatory location factors were annual rainfall (βrain=0.31), average 
temperature (βT=0.18), slope gradient (βslope=-0.18), and soil cation 
exchange capacity CEC (βCEC=0.152). Altitude, Soil pH and organic carbon did 
not have an independent significant contribution in the national model. 

When the national data was stratified by agroecological zones, the model 
performance only improved in Impala (IMP) zone (R2=0.55) in south west of 
Rwanda (See Figure 4-1 for coffee fields location). An alternative 
stratification by lithology related soil types resulted in sub-models explaining 
up to 93% of the yield variability (Table 4-3). More in-depth analysis 
therefore focussed on the by soil type stratified models only. The effect of 
size of specific soil units was noted. In general the smaller more homogenous 
units have multiple regression models with more predictive power than the 
larger more complex soil units. For example, for volcanic soils (P) unit the 
coffee yield model has the highest prediction (R2= 0.93) but in this unit only 
1,537 hectares of coffee (about 6% of the country coffee areas) is grown. 
The same applies for the yield models obtained for coffee planted on alluvium 
and down slopes (R2 = 0.79) and valley colluviums (R2 = 0.73), containing 
3,689 hectares of coffee (14.6% of the country coffee areas). Coefficients 
closer to the national model (17-25%) were found for larger more 
heterogeneous soil units also containing more coffee area. Table 4-3 
summarizes the obtained significant yield models with biophysical parameters 
and model coefficients (b) values and associated standardized coefficient 
beta β-values (in bracket). 

Taking into account soil types (Table 4-3) and agro-ecological zones (Table 
4-2), some factors tend to be more important in one region and less in other 
regions. The locations of the discussed areas are indicated on Figures 4-1&2. 
On basaltic soils mainly found in low elevation of Impala (IMP) zone in south 
west of Rwanda, Climate and soil factors are equally important in determining 
high yields. In these zones, gentle slopes (βslope=-0.31), high rainfall 
(βrain=0.21), low soil acidity (βpH=-0.46), high CEC (βCEC=0.24) and high soil 
organic carbon (βSOC=0.27) were factors of high achievable yields obtained in 
these agricultural regions.  

On Kivu shoreline (KS) in west climate factors appear more important than 
soil factors in explaining coffee yield variability. In this zone, high altitude 
(βAlt=0.40), together with high rainfall (βrain=0.28) and low temperature 
(βT=1.4) produce high yields (R2=0.93).  
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Coffee planted on more acid soils (low pH) developed on granite, shales, and 
amphibolites are located in Congo-Nile watershed divide (CND) in west, in 
South, central plateau (CP) and in eastern ridges (ERP). These zones contain 
more than 50% of the country’s coffee areas and have a broad range of 
different soil types from low (Inceptisols/Cambisols) to high weathered acidic 
soils (Oxisols/Ferralsols). In these zones, soil factors are the most important 
determinant of yield outputs. Soil acidity (βpH=-0.25), low capacity of cation 
exchange (βCEC=0.19), together with low soil organic carbon content (βSOC=-
0.16) at high slopes (βslope=-0.22) are the major co-interacting factors 
determining the current yield variability. Temperature (βT=0.29) also has a 
somewhat stronger effect on yield levels than altitude (βAlt=0.06) in the 
eastern lowlands. 
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Table 4-2: Coffee yield models stratified based on agroecological zones with 
parameters: b-values of biophysical factors (EM) are presented with importance of 
each factor in the model (standardized coefficients Beta: β-values) in the brackets. All 
factors are significant at 0.1% level (P≤0.001) 
Biophysical 
factors 

Country CND 
 

MPB BH CP EL ERP IMB IMP KLS 

Constant -6.69 -8.265 0.986 -0.992 7.806 -1.499 -6.873 3.471 27.403 -16.489 

Altitude (m)   0.001 
(0.12) 

0.002 
(0.16) 

0.000 
(0.07) 

 0.001 
(0.14) 

-0.001 
(-0.13) 

0.001 
(0.43) 

 0.002 
(0.24) 

Slope (%) -0.024 
(-0.18) 

         

Annual 
Rainfall 
(mm) 

0.002
(0.31) 

 -0.005 
(-0.26) 

0.001 
(0.23) 

0.001 
(0.09) 

0.002 
(0.09) 

0.007 
(0.47) 

 

Temperature 
(oC) 

0.246
(0.18) 

0.429 
(0.30) 

 -0.302 
(-0.18) 

0.065
(0.39) 

0.381
(0.27) 

0.656 
(0.33) 

pHH20    -0.438 
(-0.14) 

-1.031
(-0.42) 

-5.210 
(-0.96) 

-0.091 
(-0.08) 

CEC 
(cmol+/kg) 

0.029 
(0.15) 

-0.032 
(-0.16) 

0.164 
(0.39) 

0.010 
(0.13) 

 0.007 
(0.18) 

   0.077 
(0.24) 

Soil Organic 
Carbon (%) 

    -0.138  
(-0.23) 

  -0.723 
(-0.64) 

-2.152 
(-0.73) 

 

Adjusted R2 0.21 0.11 0.31 0.10 0.07 0.18 0.18 0.20 0.55 0.14 

Std. Error 1.18 1.31 0.99 0.26 1.13 0.12 0.93 1.5 1.5 1.07 

Nb. coffee 
fields (n) 

59,520 4,598 4,398 1,319 21,259 2,922 14,633 1,492 2,633 6,156 

Agroecological zones: KLS Kivu lake shore, IMP Impala, IMB Imbo, CND Congo-Nile 
watershed divide, MPB Mayaga plateau and Central Bugesera, CP Central Plateau, ERP 
Eastern Ridge and Plateau, EL Eastern Lowland, BH Buberuka Highlands. 
 
Legend for Table 4-3: Lithology: A: Alluvium; B: Basic rocks: gabbro, basalt, 
dolerite, and amphibolites; Bv: Basaltic rocks; G: Acids rocks: granite, tonalite and 
gneiss; I: shales, slates, phyllites, sandstone schist, phyllite; O: Down slopes and 
Valley colluviums; P: Trachytes: volcanic ash deposit granite 
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Table 4-3: Coffee yield models stratified based on lithology (soil types) with 
parameters: b-values of biophysical factors (EM) are presented with importance of 
each factor in the model (standardized coefficients Beta: β-values) in the brackets. All 
factors are significant at 0.1% level (P≤0.001) 
Biophysical 
factors 

Lithology disaggregated models of coffee yields  

 (A)  (B)  (Bv)  (G)  (I)  (O)  (P) 

Constant 0.16 0.757 0.635 6.248 -9.555 7.397 -38.295 
Altitude (m)  -0.001  

(-0.269) 
 0.001 

(0.117) 
0.001 
(0.061) 

 -0.007  
(-0.389) 

0.002 
(0.402) 

Slope (%) -0.020 
(-0.440) 

-0.027  
(-0.309) 

 -.021  
(-0.155) 

-0.025  
(-0.200) 

-0.037  
(-0.249) 

 

Annual Rainfall 
(mm) 

0.001 
(0.268) 

 0.003 
(0.214) 

 0.003 
(0.405) 

0.003 
(0.184) 

0.004 
(0.278) 

Temperature 
(oC) 

 0.084 
(0.085) 

  0.355 
(0.291) 

 1.711 
(1.407) 

pHH20  -0.264  
(-0.456) 

 -1.126  
(-0.251) 

   
CEC  
(cmol+kg-1) 

0.021 
(0.171) 

-0.024 
(-0.126) 

0.043 
(0.244) 

0.016 
(0.048) 

0.040 
(0.188) 

  

Soil Organic 
Carbon (%) 

  0.421 
(0.274) 

-1.952  
(-0.224) 

-0.021  
(-0.162) 

  0.442 
(0.662) 

  

Adjusted R2 0.79 0.25 0.72 0.17 0.20 0.73 0.93 

Std. Error 0.25 0.76 0.71 1.2 1.16 0.83 0.37 

Nb. coffee 
fields (n) 

609 3,333 2,836 13,876 38,299 454 113 

4.3.3 Modeling achievable coffee yields  
Figure 4-4a shows ‘achievable’ yields as estimated using soil stratified 
multiple regression coffee yields models. These yield levels are valid for local 
biophysical conditions and the current average small holder management. Of 
course one would expect higher yields in commercial-scale fields, where it is 
feasible to ensure adequate farm management by controlling erosion, weeds 
and pests. Paired observations between ‘achievable’ yield (Yach) and ‘actual’ 
yields 2015 (Yact) (Figure 4-3b) gives with systematic yield difference (Yach 
- Yact) of 473 kg ha-1, which represent 40.2% of the actual national average 
yield (703 kg ha-1). This suggests that the coffee yield could be higher on 
average. The yield model map (Figure 4-4a) also depicts where lower yields 
occur as result of local climate and soil management constrains (Yach<0.5 t 
ha-1). The yield model performed relatively well in predicting achievable yield 
(R2=0.6 or 0.5 assuming that the intercept is zero). Furthermore, the yield 
model demonstrates that not all regions have equal potential for producing 
high yields within the current smallholder coffee system. The map (Figure 4-
4a) highlights areas of high coffee yield across the country. In West, Impala 
(IMP) and Kivu Lake shoreline (KS) remain the areas with highest achievable 
yields (2 t ha-1). The Congo-Nile watershed divide (CND) presents very few 
local areas with high achievable yields. In central plateau (CP) area the high 
achievable yields are on the lower edges.  
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In the eastern ridges and plateau (ERP) and lowland areas (EL), high yields 
are only envisaged in two hotspots, one in the upper Muvumba catchment in 
north east Rwanda and in central eastern ridges and plateau area. 

Figure 4-4: Achievable coffee yield map (a) calculated using the aggregated soil-
based sub models. The predicted achievable yield is assessed against the actual yield 
for the season 2015 (b). The model performed relatively well (adjusted R2=0.6). The 
overall mean difference between achievable yield and actual yield is estimated to 473 
kg ha-1. 
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The results of spatial autocorrelation confirmed the trend in both 
actual and achievable yields (Table 4-4). The distribution of coffee 
yields follows the environmental factors described in section 4.3.2 
with specified weights. The yield models performed relatively well in 
predicting achievable yield (Adjusted R2=0.6). The results of spatial 
autocorrelation of the model residuals (table 4) also show that the 
residuals are spatially random. Moran’s Index was 0.126 while 
Expected Index is -0.006 (Z-score=1.272, P-value=0.203) meaning 
residuals are not significant, and that larger values of residuals are 
intermixed with small values confirming the fairly prediction of 
achievable yields. 
Table 4-4: Spatial autocorrelation results showing the spatial trend of coffee yields 
across the country: Positive value of Moran’s index, higher than the expected index 
indicates that coffee yields are not randomly distributed, instead present a clustering 
trend.  

Moran’S 
Index 

Expected 
Index 

Variance Z-score P-value 

Actual yield 0.815 -0.000277 0.000948 26.50 0.000 
Yield trend 0.234 -0.000017 0.000016 58.91 0.000 
Residuals 0.126 -0.006 0.011 1.272 0.203 

4.4 Discussion 

4.4.1 Coffee yield trends and biophysical relationships 
We have observed that coffee yields in Rwanda vary widely across the 
country’s agro-ecosystems and landscapes. We used the average yield of 
Coffee Arabica for 4 years from 2011 to 2014 and environmental related 
variables at coffee field locations to determine which biophysical factors are 
associated with coffee yield variability in Rwanda. Multiple linear regressions 
models for coffee yield and local biophysical conditions of coffee fields clearly 
indicate that no single variable explains the yield variability across the 
country. Rather, soils, climate and topography interact in regionalized models 
to explain up to 70% of the observed coffee yield variability.  

These models indicate that topography and specifically altitude has a 
positively relationship with coffee yield in most areas with the exception of 
the areas with soils developed in basic and shale or slate rocks in the central 
plateau. On the other hand, slope demonstrates a negative relation with 
coffee yield in most regions. Slope reduces achievable yields but as it is an 
inherent property of the undulating highlands of Rwanda it cannot be easily 
modified except by terracing existing coffee farms, which will take them out 
of production for many years.  

The relationship between coffee yield and the climatic factors annual rainfall 
and temperature is more subtle as already demonstrated by the categorical 
comparisons made in Table 1. Low temperatures make the Congo-Nile 



Chapter 4 

77 

watershed divide (CND) and Buberuka highlands (BH) less suitable for coffee 
growing (Mukashema et al., 2016; I. Nzeyimana et al., 2014). This 
relationship reinforces the notion that increasing temperature can have a 
significant influence (Jayakumar et al., 2016) on coffee production (Craparo 
et al., 2015). Current average coffee yields in the south and central plateau 
(CP) are mainly limited by suboptimal soil conditions (pH, CEC and SOC). 
Soils developed in schistose and granitic parent materials on moderately 
sloping hillsides (I. Nzeyimana et al., 2014) are characterized by high acidity 
which seems an important limitation for better performance of individual 
coffee plants (Castro-Tanzi et al., 2012). This case is in south and central 
plateau with soil pH between 5.0-5.8. Although our findings (table 4-2, 4-3) 
seem to contradict the general principle, this is not the case because the pH 
of central plateau is within the tolerable limits (pH between 4.5 and 5.5). And 
yield in this agricultural region (figure 4-3a) is not high (0.5-1 t ha-1). In 
western highlands (Impala (IMP), Imbo (IMB) and Kivu lake shore (KL)), high 
achievable yields are obtained in upper Kivu lake catchment where soil pH is 
optimal to coffee growing. This region has high favourable soils with clayey 
soils developed on basalt, together with abundant rainfall brought by wet 
winds from the South Atlantic that pass over Congo basin and Lake Kivu 
(Muhire & Ahmed, 2015) and moderate temperatures, produces high coffee 
yields (I. Nzeyimana et al., 2014; Verdoodt & Van Ranst, 2003a). In eastern 
ridges (ERP) and lowlands (EL), coffee is grown under relatively low annual 
precipitation (<900mm). More importantly, is however the rainfall 
distribution in this region and specifically the length of the dry season of four 
to five consecutive dry months (May-September) caused by dry anticyclones 
of saint Helena and Azores (Muhire & Ahmed, 2015). As a result of overall 
increasing temperatures, evapotranspiration potential (ETP) during the dry 
season also increases and this counteracts the benefit of possible shorter dry 
seasons that could be induced by the positive impact of Indian Ocean winds 
on water availability in eastern savannah.  

4.4.2 Impact of climate change 
Figure 4-5a,b shows that future increase in temperature by 0.35oC per 
decade will potentially cause an increase in coffee yield by 559 kg ha-1 (i.e. 
44.3% of the current average yield), while an expected increase of 1.4oC by 
2050 would cause an increase of coffee yield by 818 kg ha-1 (about 53.8% of 
the current yield) . These increases are all relative to the benchmark of the 
annual average temperature of 22oC in 2010. Similar trends are related to 
projected increase of rainfall by 4mm/yr (i.e. 40mm per decade). Rainfall 
increase is predicted to increase yield by 553 kg ha-1 (44%) in 2020 and 793 
kg ha-1(53% of the current average yield) by 2050 (Figure 4-5 c,d). Both 
rainfall and temperature increase on average about 639 kg ha-1 (47.6%) by 
2020 and 1.1 t ha-1 by 2050, about 61.8% increase from the current average 
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yield (Figure 4-5e,f). These increases seem to be confirmed by van 
Soesbergen et al. (2016) who envisage on average a yield increase of 
approximately 100% by 2050 due to projected climate change in Albertine 
rift region including Rwanda. It seems that this is in line with results of 
Ovalle-Rivera et al. (2015) who found that by 2050 Arabica coffee regions in 
Ethiopia and Kenya are projected to become more suitable with higher 
expected yields. These climate scenarios assume no further land conversion 
for coffee and no shift of coffee cultivation is envisaged; instead highlight the 
necessity to intensify and adapt the current farming systems to climate 
change while avoiding further land degradation (Pretty, Toulmin, & Williams, 
2011). However, It should be noted that with temperature increase and 
changing precipitation patterns, pest and disease pressure will increase 
potentially causing yield level reduction (Ovalle-Rivera et al., 2015) a factor 
not directly accounted for in our projection.  
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Figure 4-5: Projected coffee yields by 2020 and 2050 using mean annual total rainfall 
and average temperature trends estimated by McSweeney and Semafara (2011) and 
Muhire and Ahmed (2015) using available climate data of Rwanda from 1931-2010.  

(e) (f) 

(c) (d) 

(a) (b) 
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4.4.3 Impact of improved land management 
Identification of key factors that determine coffee yield variability could 
support the government of Rwanda to provide applicable site-specific 
adaptation strategies to boost yields to calculated ‘achievable’ levels within in 
current smallholder agricultural systems. Both topographic factors (altitude 
and slope) of a coffee field cannot be easily changed. Lack of precipitation 
can potentially be compensated by irrigation, while temperature can be 
influenced by using shade trees. The use of agroforestry systems may be an 
economically feasible way to protect coffee plants from extremes 
microclimate conditions (Lin, 2007) and sustain coffee production (Souza et 
al., 2012) of Eastern province of Rwanda.  

Increasing soil pH or CEC is also difficult to achieve because it would require 
lots of lime which has proven to be cost inefficient (Cyamweshi et al., 2014). 
These measures are either too expensive or long term and therefore are not 
considered to be a feasible option for the current small-scale coffee farming 
systems the coming decades.  

The only factor affecting yield levels that can be feasibly managed at decadal 
time scales by smallholder farmers is soil organic matter content. 
Agroforestry could be a solution to produce enough biomass to mulch the 
coffee field (Roose & Ndayizigiye, 1997) and increase soil organic matter. 
Such mulch would not only control soil erosion but also prevent fertility 
depletion (Cyamweshi et al., 2014) by adding nutrients in soil and 
consequently improving coffee yields (Bucagu et al., 2013). A drawback of 
agroforestry is that it takes many years for shade trees to grow and the 
resulting competition between coffee and shade trees for light, water and 
nutrients. More standard organic agriculture methods could also achieve 
higher soil organic matter levels (Rutunga et al., 2007).  

We have therefore explored potential gains in achievable coffee yields by 
increasing soil organic matter content levels in coffee field soils (Figure 4-6) 
without identifying which management strategy is required to achieve this 
increase. The projected coffee yield increase by increasing soil organic carbon 
by 0.6% by using improved land management could potentially boost yield 
levels by approximately 50%.  
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Figure 4-6: Projected coffee yields through increasing soil organic carbon by 0.6% 
from the minimum SOC of 1.2% required for coffee production  

4.5 Conclusions 
Arabica coffee yield of smallholder farms in Rwanda is currently suboptimal 
compared what can be achieved under improved management conditions 
given current biophysical constraints. The mean national difference between 
achievable and actual yield is estimated to 473 kg ha-1 which represents a 
gap of 40.2% nationally. This study aims to better understand which location 
factors are associated with current yield level variability. Topography, climate 
and soil data at coffee field location were analysed with average coffee yields 
for the period from 2011 to 2014 to examine the relationship between 
environmental factors and coffee yield in Rwanda. These factors were used to 
determine potential areas of high and low yields. The results show that in the 
western regions altitude, temperature and rainfall, and high nutrient 
retention capacity are the major determinants of high achievable coffee yield, 
while in eastern lowlands coffee yield is constrained by shortage of rain or 
water availability in depleted soils. Extreme low temperatures make the 
Buberuka highlands marginal for coffee production. In South and central part 
of Rwanda, soil acidity, nutrient and organic carbon depletion are the most 
limiting factor of higher coffee yields. It clearly emerges that coffee yield is 
not only based on soil fertility factor but on a combination of topographic, 
climate and soil factors which are all relevant to policy making and 
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development planning of the coffee sector. Based on our results, we 
recommend next to the ongoing distributing of mineral fertiliser, to aim for 
stimulating improved water and organic matter management in coffee farms.  

The study also indicated that expected climate change for Rwanda will have 
an overall positive impact on coffee yields. Projected combined increase of 
temperature and rainfall would potentially increase yield levels by almost 
50% in 2020 and by approximately 60% in 2050. An increase of average soil 
organic carbon content by 0.6% by using improved land management could 
potentially boost yield levels by another 50%. Implementation of more 
erosion control measures, agro-forestry and integrated small-scale coffee and 
livestock farming has the capacity to boost the productivity of coffee by 
elevating soil organic carbon contents. Smallholder coffee farmers can 
implement these proposed actions themselves to ensure higher yields and 
net income (assuming a stable coffee price) in the long term, making them 
less dependent of external inputs. 



83 

5 Understanding geographical origins of 
sensory quality for specialty coffees of 
Rwanda4 

4 This chapter is submitted as: Mukashema, A., Veldkamp, A., and Gatarayiha C.M. 
Understanding geographical origins of sensory quality for specialty coffees in Rwanda. 
In PLOS One 
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5.1 Introduction 
Coffee is the most important traded agricultural commodity providing a living 
to more than 125 million people globally (Tran et al., 2016) and to over 355 
thousand Rwandan families in particular. In Rwanda Bourbon arabica coffee 
produced in highlands can obtain premium prices on auction markets as high 
as US$67.5 per kilogram in the 2015 Cup of Excellence competition. The 
most recent data from the National Agricultural Export development Board 
(NAEB) indicate that over 22,185 tons of green coffee beans have been 
produced of which 18,750 tons were exported in 2015. Arabica coffee has the 
potential to produce coffees that result in a high-quality beverage (Ramos, 
Ribeiro, Cirillo, & Borem, 2016; Wintgens, 2009) and in Rwanda, has proofed 
to produce flavour and quality that is widely sought by the consumer market.  

However, coffee business development is lagging behind other industries 
such as for example wine and oil in terms of product differentiation (Antoine, 
Hoo Fung, & Grant, 2016; Belletti, Marescotti, Sanz-Cañada, & Vakoufaris, 
2015). Despite its potential for export growth in Rwanda, the sector faces a 
challenge of serving the specialty coffee market because traders demand a 
consistent high quality. Coffee in Rwanda is grown exclusively by smallholder 
farmers. Such small-scale farming system is a challenge for specialty coffee 
market because it involves collecting and mixing coffee from many different 
producers to meet the quantity demand without compromising the quality. 
This problem is common for other African countries growing specialty coffee 
in smallholder farming systems. Mixing a poor quality coffee lot into a better 
lot tends to reduce the quality of be better lot much more than it improves 
the quality of the poorer lot. 

In Rwanda, once coffee cherries are well ripe, they are harvested by farm 
owners. Subsequently they are transported by them to the nearest coffee 
washing station, typically owned either by farmer cooperatives or by local 
investors, for fully washing, drying and processing into green coffee beans. 
With such a standardized post-harvesting processing chain, the influence of 
off-farm factors on quality is assumed to be controlled and comparable. This 
post-harvest processing technique was introduced in 2002 when Rwanda 
began to put into action a strategy for enhancing the quality of coffee 
production so that it could be sold at the speciality coffee market. It has 
progressively replaced a traditional processing that used to be done at 
household level which was negatively affecting the quality of the processed 
coffee. The traditionally produced coffee was typically sold at the ‘ordinary’ 
coffee market. Through public-private partnerships the government of 
Rwanda supported coffee farmers to establish coffee washing stations which 
amounted up to 245 in 2016. This strategy tremendously improved the 
overall quality, enabling Rwanda to access specialty coffee markets since 
2008. Since then smallholder coffee farmers are connected with the 
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worldwide market for specialty coffee through annual Cup of Excellence (CoE) 
competitions and other promotional programs of Rwanda coffee.  

However, much of the effort that Rwanda invests in assisting farmers to 
produce high quality coffee, sensory analysis through CoE has revealed that 
arabica coffees in Rwanda produces different tastes, and although some have 
never been able to win the CoE competitions, they were as well of good 
quality and taste. Very little is known about the source of these quality 
differences, until recently where there has been increased interest in 
associating the flavour and quality of coffee product with its geographic 
origins (Antoine et al., 2016). Only a few studies are known on the 
relationships between different coffee genotypes their production 
environments and sensory quality (Ramos et al., 2016). For African coffee 
growing countries, these studies are completely lacking due to scarce spatial 
data on coffee farms and their sensory quality. This understanding is 
important for sustainable production of specialty coffees and further 
protection of special land uses (Alves, Vieira, Volpato, Lacerda, & Borem, 
2016) thus securing economic returns to coffee growers (Bosselmann et al., 
2009). Yet, in order to satisfy the speciality coffee market, farmers and 
processors need to know the geographical area, production factors and 
product quality characteristics (Quiñones-Ruiz et al., 2016). According to 
Rolle et al. (2012) adding information about the geographical origin of an 
agricultural product can also facilitate its acceptance in the global market. 

For specialty crops, Zou et al. (2012) state that the location where crops are 
grown generally co-determines their final quality. Coffee is a specialty crop 
whose diversity in production systems allows products with defined attributes 
for different markets (Silva, de Queiroz, Ferreira, Correa, & Rufinod, 2016). 
Production of high quality Arabica coffee is considered to depend on three 
main factors: the genetic resource, environmental conditions, and 
management (Bosselmann et al., 2009). It has been noted before that coffee 
quality highly depends on geographical factors (de Toledo et al., 2017) and 
that specific coffee sensory attributes are influenced by location-specific 
environmental factors (Vasconcelos, Franca, Gloria, & Mendonca, 2007). The 
association of arabica coffee genotypes with specific environmental conditions 
is known to produce outstanding coffees. But the same genotypes grown 
under different environmental conditions can also produce poor sensory 
quality coffee (Wintgens, 2009). In Rwanda only bourbon arabica coffee is 
grown in smallholder systems and they produce highly variable sensory 
qualities despite the uniform genotype and post-harvest processing. We 
therefore hypothesize that the high variability in coffee sensory quality is 
related to the local growing conditions on the small holder coffee fields where 
the coffee beans are produced.  

To produce a specialty coffee, it is important to take into consideration 
location attributes such as topography, soil type, and climate such as rainfall 
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distribution and seasonal temperature variability (Chemura, Kutywayo, 
Chidoko, & Mahoya, 2016; Joët et al., 2010; Ovalle-Rivera et al., 2015). 
Altitude determines microclimate in which coffee is grown and for the 
southern hemisphere (where Rwanda is located), fields with a face slope 
oriented to the south receive a smaller amount of solar radiation than do 
those oriented to the north (Bertrand et al., 2012). This lower amount of 
energy received affects the process of fruit ripening and thus the product 
quality (Bertrand et al., 2012; Silva et al., 2016). 

Topographical factors such as altitude and slope exposure (Avelino et al., 
2005; Bosselmann et al., 2009; Decazy et al., 2003), climate, specifically 
both precipitation (da Silva et al., 2005; Decazy et al., 2003) and 
temperature (Bertrand et al., 2012), and soil (Marquetti et al., 2016) are 
known to be able to determine the characteristics of coffee flavor profiles. 
Interaction of these factors gives the coffee a unique identity (i.e. profile) 
that defines the final quality as they jointly determine the chemical 
composition of the coffee beans (Marquetti et al., 2016). Coffee sensory 
quality has been evaluated by criteria such as flavor, taste, bean size, colour, 
shape, roast potential, processing method, and crop year, among others 
(Choi, Choi, Park, Lim, & Kwon, 2010). However, among these parameters, 
flavor and taste are the most important criteria (Vasconcelos et al., 2007) 
and they are potentially influenced by environmental factors such as soil and 
climate, as well as genetic factors such as species (Marquetti et al., 2016). 

In order to test our hypothesis, that coffee field characteristics are a main 
determinant of coffee quality we will analyse to what extent a set of 
topographic, climatic and soil factors can statistically explain the observed 
variability in coffee sensory results of the cup of excellence competitions from 
2008 to 2015. Once we know which factors are relevant we can gain some 
insight in the local constraints of specialty coffee production in Rwanda. With 
this knowledge we can potentially identify new areas that could be considered 
for future speciality coffee production in Rwanda. Given known future 
scenarios we can also explore how sensitive the speciality coffee production 
in Rwanda is for a plausible projected climate change scenario.  

5.2 Materials and Methods  
 
5.2.1 Coffee production and post harvesting processing 

chain 
Rwanda traditionally grows coffea arabica, bourbon variety in small holder 
farming systems farms. Coffee is cultivated on over 36,000 hectares (NAEB, 
2016) i.e. over 1% of the total country land, which produces on about 22,185 
tons of green coffee per year on average. Coffee in Rwanda is grown in sunny 
monoculture. The plantations are located on steep slopes and at various 



Chapter 5 

87 

positions relative to the sun. Plantations are established at different altitudes, 
climate regimes and on different soil types. The plantations are usually made 
in contour lines, with line spacing of 2m × 2m and are conducted for many 
years (over 50 years undergoing several pruning for regeneration). Detailed 
information on the distribution of coffee fields in Rwanda can be found in 
chapter 2 (Mukashema et al., 2014) and environmental and socio-economic 
conditions in which coffee is grown is described in chapter 3 (Mukashema et 
al., 2016).  

As soon as the coffee ‘cherries’ are ripe, farmers usually harvest them by 
hand, which they do every few days since they only pick the red (ripe) fruit. 
To extract the bean, the fruit hull has to be removed in a rigidly-defined 
multi-step process. Firstly, growers bring their cherries to the nearest coffee 
washing station (CWS) to get them weighed and de-pulped. Farmer is paid 
directly in cash for his unprocessed cherry. The cherries are then pre-sorted 
by floating them on water, which separates the heavier cherries from the 
lighter ones (which is at the same time a classification of quality). Next, the 
cherries are run through pulping machines that remove much of the fruit 
from the bean. The beans are then fermented in holding tanks, as 
fermentation makes it easier to remove the remaining mucilage. After the 
fermentation process is accomplished, the beans are washed up to four or 
five times. The beans are sorted again and left to float for 24 hours. After this 
period, the beans are laid out on sorting tables, and workers pick out 
damaged or irregularly-shaped beans. After that, the beans are dried in the 
sun until they reach the desired moisture level of about 12 per cent, which 
requires between ten days to two weeks depending on the weather and 
sunshine intensity. This ‘parchment’ coffee is then packed in burlap bags and 
stored for shipment by an exporter. Hulling coffee to green coffee beans is 
done by the local millers. No parchment coffee is allowed in export according 
to Rwanda export regulations. Only green or roasted coffee is exported. 

5.2.2 Coffee sample preparation and sensory test 
The coffee washing stations (CWS) play the primary role in ensuring that the 
small amounts of different farm produces are properly combined during the 
above described post-harvest processing chain so that uniform lots can be 
provided at the cupping stage. Cupping lots varied increasingly from 2008, 
and have reached 207 coffee lots in 2015 collected from 245 CWS. Not all 
CWS participate in the cupping exercise (Figure 5-1). There are CWS without 
coffee lots, as there are other CWS presenting more than one sample lot. Lot 
samples are prepared by coffee washing stations for the evaluation of 
beverage quality, knowing the geographic location (farm owner, latitude, 
longitude) where lots are harvested.  
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Figure 5-1: Map showing the provenance of coffee sample lots (used in the CoE) 
within the coffee washing station (CWS) supply areas. To avoid the loss in coffee 
quality, each coffee washing station is supplied by coffee farms located within 3 km 
radius on average. Where there are limited numbers of coffee washing stations, there 
are collection centres where farmers bring coffee cherries, and CWS arranges the 
transport. Agroecological zones: KS Kivu lake shore, IMP Impala, IMB Imbo, CND 
Congo-Nile watershed divide, MPB Mayaga plateau and Central Bugesera, CP Central 
Plateau, ERP Eastern Ridge and Plateau. 

The samples brought to the national laboratory are analysed for their quality 
using a sensory quality test process popularly known as the cup test. 
Samples are roasted separately. According to Cup of Excellence (CoE) 
protocol, for the composition to be cupped and evaluated for effusion, a ratio 
of 12 g ground coffee per 180 ml hot water is used. Special care is given to 
the water used for tasting to ensure that it is clean and odourless and that it 
has a suitable pH. Water is boiled and subsequently added to the ground 
coffee. This water is added directly to the ground coffee in a circular motion, 
filling the cup until it is completely full. After this hydration process, the 
samples remain undisturbed for 3–5min prior to proceeding to the review.  

There are three step of evaluation: the pre-selection (round I), the cupping 
by national jury (round II), and the cupping by the international jury (round 
III) giving the final grade which determine the final quality and the price at 
auction. Members of pre-selection and national jury are well trained local 
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staff in coffee cupping organized by the National Agricultural Export Board 
(NAEB). International jury is recruited through the Alliance for Coffee 
Excellence (ACE). Some local experts are also selected from the large group 
of National cupping experts from different parts of the country, to work with 
the international cupping expert. National cuppers to be part of the 
international jury are rated on their score correlation, range of scoring and 
confidence for the samples cupped during rounds I and II. The Cup of 
Excellence protocol is used: 90–100 points are special coffees (and receive 
the presidential award); 85–89.99 are excellent coffees; 80–84.99 are fine 
coffees; and below 80 are coffee of less than premium quality, which is not 
classified (ordinary coffee). According to this classification, a specialty coffee 
cannot be defective; it must also have at least one well-defined attribute, 
such as aroma, flavor, body or acidity. Coffees that have grades below 80 are 
not classified. This designation means that a coffee that does not possess 
features that reflect a unique and particular flavor nor has a quality that is defective 
will be removed from classification.  

From each coffee sample, five cups are prepared and analyzed according to 
the sensory characteristics described above. The following sensorial attributes 
are evaluated: drink, sweetness, acidity, body, flavor, aftertaste, and balance 
with grades ranging from 0 to 8. By combining these scores, the overall 
grade for each sample is determined. According to the Cup of Excellence 
protocol, each sample begins with a pre-set score of 36 points, to which will 
be added the scores of each attribute. Scoring the coffee lots is on a scale 
from 0 to 100 points. Those samples that presented scores over 80 are 
classified as specialty coffee.  

Figure 5-2 shows the geographic location of coffee washing stations where 
coffee beans from surrounding coffee fields are processed. Coffee washing 
stations prepare and supply coffee samples to the national cupping 
laboratory, for analysis of the sensory quality. In total 503 sample lots were 
analysed in annual Cup of Excellence competitions 2008-2015.  
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Figure 5-2:.Map showing the overall sensory quality distribution and coffee washing 
stations (CWS) where coffee samples for sensory analysis are prepared. In total 503 
coffee samples were brought by CWS to the national cupping laboratory for analysis of 
the sensory quality during the Cup of excellence (CoE) competitions 2008-2015. These 
samples represent coffee fields in the CWS supply area. Agroecological zones: KS Kivu 
lake shore, IMP Impala, IMB Imbo, CND Congo-Nile watershed divide, MPB Mayaga 
plateau and Central Bugesera, CP Central Plateau, ERP Eastern Ridge and Plateau, EL 
Eastern Lowland, BH Buberuka Highlands, VHP Volcanoes and high plain. Winning 
coffee washing stations and farmer’s representatives are available online at 
https://www.allianceforcoffeeexcellence.org/en/cup-of-excellence/country-
programs/rwanda-program/  

5.2.3 Explaining the variation of coffee sensory quality  
 
5.2.3.1 Biophysical data and coffee sensory data 
To investigate the associated factors with the observed Arabica coffee 
beverage quality, we used the Cup of Excellence (CoE) competition results 
from 2008 to 2015 and environmental characteristics at coffee field locations 
where the tasted lot was harvested. The available CoE results were in total 
503 samples of which 207 samples are from CoE 2015, 173 samples from 
CoE 2014, 15 from CoE 2013, 26 from CoE 2012, 36 from CoE 2011, 22 from 
CoE 2010 and 24 samples from CoE 2008. We had to aggregate several years 
in order to increase the sample size. These samples represent about 14,286 
coffee fields (see Figure 5-1) used in sampled coffee lots of 207 CWS 
participated in the CoE. All 503 samples were considered in the study to 
ensure the country coverage. Using spatial join tool of ArcGIS10.3 software, 
the coffee map of Rwanda (Mukashema et al., 2014) was used to join the 
sensory quality to the coffee fields where it was produced. Data on 

Coffee beverage quality (2008-2015)
Overall beverage quality (%)

^ Non Participant to CoE (2008-2015)
! <80: Ordinary Coffee
! 80 - 85: Fine Coffee
! 85 - 87: Excellent coffee I
! 87 - 89: Excellent coffeeII
! 89 - 90: Excellent coffee II
! >90: Special coffee

National Parks
Agroecological zones
Lakes
Districts

https://www.allianceforcoffeeexcellence.org/en/cup-of-excellence/country-programs/rwanda-program/
https://www.allianceforcoffeeexcellence.org/en/cup-of-excellence/country-programs/rwanda-program/
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topography, Climate and Soil at coffee field location were obtained from 
various source described by Mukashema et al. (2016). Table 5-1 shows the 
situation in biophysical properties of coffee fields. 

Table 5-1: Summary statistics of environmental related parameters calculated on 
randomly selected 59, 520 coffee fields (i.e. 50% of the national coffee fields). Average 
values of each environmental variable are presented per agroecological zones. 
Standard deviations are in bracket (see chapter 4 for more detailed description). 
 
Environ. 
variables 

IMB IMP KLS CND CP MPB ERP EL BH 

Altitude  
(Alt m) 

1,269 
(125.4) 

1,608 
(126.1) 

1,650 
(114.3) 

1,955 
(144.7) 

1,702 
(127.6) 

1,461 
(86.0) 

1,604 
(132.2) 

1,437 
(76.5) 

1,925 
(124.8) 

Rainfall  
(R mm) 

1,581 
(179.5) 

1,601 
(160.6) 

1,269 
(72.3) 

1,439 
(121.1) 

1,256 
(109.6) 

1,133 
(69.1) 

1,050 
(64.7) 

988 
(83.2) 

1,247 
(100.4) 

Temperatur
e (ToC) 

20.8  
(0.9) 

19.8 
(0.6) 

19.6 
(0.6) 

17.9 
(1.0) 

18.9 
(0.7) 

20.5 
(0.7) 

19.7 
(0.7) 

19.9 
(0.8) 

18.2 
(0.9) 

Soil Sand 
(Sd %) 

25.0 
(7.1) 

28.1 
(10.9) 

45.9 
(7.2) 

42.8 
(5.7) 

52.3 
(8.0) 

51.7 
(5.0) 

37.7 
(7.6) 

53.7 
(8.0) 

37.2  
(7.1) 

Soil Clay 
(Cy %) 

47.1 
(4.3) 

52.9 
(12.4) 

34.7 
(6.2) 

38.5 
(5.2) 

30.9 
(6.8) 

36.0  
(5.8) 

43.7 
(6.6) 

30.2 
(5.5) 

33.9  
(7.4) 

Soil pH 
(pH-KCl) 

3.9  
(0.7) 

4.6 (0.4) 4.2 
(0.3) 

3.5 
(0.8) 

4.2 
(0.3) 

4.6  
(0.3) 

4.6 
(0.4) 

4.7 
(0.5) 

4.1 
(0.3) 

Soil CEC 
(cmol+kg-1) 

34.4  
(7.1) 

32.4 
(10.7) 

16.3 
(3.6) 

18.2  
(7.1) 

11.2 
(3.6) 

9.5  
(2.9) 

15.2 
(3.5) 

12.3 
(3.7) 

13.4  
(3.5) 

Soil org.  
Carbon (%) 

4.0 
(1.6) 

3.3 
(0.8) 

3.6 
(2.6) 

5.0 
(2.6) 

3.2 
(2.0) 

2.5  
(0.9) 

3.3 
(1.4) 

2.2  
(1.2) 

4.3 
(1.6) 

C/N ratio 
(C/N) 

12.7 
(1.2) 

12.4 
(0.7) 

12.7 
(2.9) 

13.8 
(1.2) 

13.5 
(0.9) 

13.2 
(1.1) 

13.8 
(0.8) 

13.4 
(1.7) 

13.7  
(1.0) 

Phosphorous 
(P ppm) 

22.4 
(13.7) 

15.8 
(15.2) 

10.7 
(9.4) 

7.6 
(8.6) 

8.3 
(12.5) 

2.8  
(4.6) 

4.0  
(11.3) 

11.4 
(11.0) 

2.4 
(3.7) 

Potassium 
(cmol+kg-1) 

0.5 
(0.2) 

0.5 
(0.2) 

0.3 
(0.1) 

0.3 
(0.1) 

0.3 
(0.1) 

0.4  
(0.1) 

0.4 
(0.1) 

0.4 
(0.1) 

0.3 
(0.1) 

Calcium 
(cmol+ kg-1) 

8.4 
(7.3) 

8.1 
(3.6) 

2.9 
(1.7) 

2.6 
(1.0) 

2.9 
(0.9) 

4.2  
(1.3) 

4.3 
(2.2) 

5.1 
(3.2) 

3.0 
(1.2) 

Aluminium 
(cmol+kg-1) 

3.0 
(2.7) 

2.0 
(1.9) 

1.8  
(0.9) 

2.4 
(0.8) 

1.5 
(0.8) 

1.1  
(0.9) 

1.0 
(0.7) 

0.3 
(0.3) 

2.1 
(0.9) 

N=59,520 1,492 2,580 6,103 3,752 20,339 4,398 14,633 2,922 1,318 

Agroecological zones: KLS Kivu lake shore, IMP Impala, IMB Imbo, CND Congo-Nile 
watershed divide, MPB Mayaga plateau and Central Bugesera, CP Central Plateau, ERP 
Eastern Ridge and Plateau, EL Eastern Lowland, BH Buberuka Highlands 

5.2.3.2 Statistical analysis 
We first analysed the spatial variation of coffee sensory quality using spatial 
autocorrelation and global Moran’s Index applied to average coffee beverage 
quality measured from 2008 to 2015 samples submitted to the national 
cupping laboratory for CoE competition. Except defective samples which were 
automatically disqualified in the analysis, other samples available were used 
in this study to ensure the national coverage (see Figure 5-2). Moran’s Index 
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indicates the behaviour of spatial autocorrelation, in which smaller value than 
the expected index demonstrates a trend for dispersion, whereas positive 
value indicates a clustering trend for contiguous areas (Silva et al., 2014). 
Second, we analysed the variance in the coffee sensory quality between 
agro-ecological zones of Rwanda by comparison of means and separation by 
Tukey tests (P≤0.05). To understand the local field source of variation of 
coffee quality, we used multiple (stepwise) regression analysis using a 
randomly selected subset of 80%. For each variable used the distribution 
variability was checked for a normal distribution. We identified relevant 
environmental properties (topography, climate and soil related) at coffee field 
location, to explain the coffee sensory quality variability across the country. 
Significant biophysical (topography, climate and soil) model parameters, 
model coefficients (b-values) explaining the variance in sensory quality and 
the level of importance (beta β-values) were estimated by the equation 1:  

i

n

i
yxii EMbbQ ε++= ∑

=1
),(0 )((%)

 (5.1) 

Where, Q is sensory quality model and ε is the error associated with the 
model; bi, i=1…n are model coefficients and EM are environmental 
(topographic, climate and soil) factors. Statistical analysis was performed in 
SPSSv.22 software. The quality model is selected on the basis of goodness-
of-fit (adjusted R2). Spatial autocorrelation of the residuals was checked with 
Moran’s Index. 

We then used raster data of significant biophysical parameters (P≤0.001) of 
the significant sensory quality model(s) to calculate a potential coffee sensory 
quality map. This map estimates the geographic origins of specialty coffees 
and predicts potential new areas where speciality coffees are most likely to 
be produced.  

The validation of the predicted quality map was done by calculating the 
model fit between measured quality and modelled sensory quality expressed 
by the adjusted coefficient of determination (adj.R2) and the minimized root 
mean square prediction error (RMSPE) per equation 2. For the model 
calculation 70% (CWS n=144) of the of the total CWS sample lots was used 
and the remaining (CWS n=63) unused 30% was used for quasi-validation 
purpose. This validation was done for both the national model and the 
regional model. 

2

1
)(1∑

=

−=
n

i
pm QQ

n
RMSPE

 (5.2) 

Where Qm is the measured sensory quality at the cup of excellence 
competition, Qp is the quality predicted by the sensory quality model. Beside 
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adjusted R2 and RMSPE, we also assessed the spatial autocorrelation (Global 
Moran's I) on the model residuals (Qm-Qp) to see if the under/over-
predictions are clustered or not. Once the residuals are spatially random, it 
means that a model fairly predicted the dependant variable in our case the 
coffee quality.  

5.3 Results 
 
5.3.1 Spatial variability of Arabica coffee sensory in Rwanda 
Figure 5-3 presents the calculated Moran’s Index value and the spatial 
autocorrelation significance tests for the overall quality scores at the 207 
CWS participating in Cup of Excellence competitions 2008-2015. A Moran’s 
Index of 0.23 demonstrates that the coffee sensory quality in Rwanda has a 
slightly clustered pattern. Given the z-score of 2.008, there is less than 5% 
likelihood that this clustered pattern could be the result of random chance 
(P< 0.05). This means that the spatial variation of sensory quality observed 
in 503 sample lots collected in all agro-ecological zones of Rwanda is slightly 
clustered. Hence there is a need to understand the driving location factors of 
this clustering. We therefore continued with a randomly selected 70% sub 
sample.  

The quality scale was divided according to the Cup of Excellence (CoE) 
protocol for sensory classification of specialty coffees. As shown earlier in 
Figure 5-2 the plateaus and mountains regions produced coffee of good to 
excellent quality that are classified as ‘special’ coffees. The lowlands and 
Bugesera region do not produce premium quality coffee and therefore are 
classified as ordinary coffees.  

 
Figure 5-3: Spatial autocorrelation test and Moran’s index showing the spatial 
dependence between coffee sensory qualities measured at 207 coffee washing stations 
using 503 coffee sample lots used in this study. 
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When the coffee sensory quality variability between agro-ecological zones 
(Table 5-2) is analysed and compared the pattern becomes clearer. We 
observed that the overall quality values were significantly different (P<0.05) 
in comparison between central plateau and other AEZs. The overall quality 
scores ranged from 75.2 to 92.7% between agro-ecological zones, while their 
variability within AEZ regions ranges from 0.48 to 1.95 scores. Amayaga and 
Bugesera (MPB) regions have the lowest quality (75.2%) while the central 
plateau (CP) had the highest sensory quality (92.07%). Higher grades 
(>90%) were mainly found in South and the northern plateau (CP). Although 
the analysis of coffee quality variance revealed a significant difference in 
sensory quality between agro-ecological zones (F=375, P<0.001), Tukey post 
hoc test clustered them into two homogeneous subsets (α=0.05): Impala, 
Kivu lake shore, Congo-Nile divide and Buberuka highlands in one set, central 
plateau and eastern ridges and lowlands in other set with the central plateau 
scoring high as compare to other agro-ecological zones. The mean difference 
between the central plateau and other agro-ecological zones ranged between 
0.58 and 1.89% (see Table 5-3). 

Table 5-2: Separation of coffee beverage quality means between agroecological zones 
in homogeneous subsets at α= 0.05 according to Tukey HSD test. 
AEZ IMB IMP KLS CND CP MPB ERP EL BH 

Min 86.2 86 83.2 82.2 78.2 75.2 80.1 83.9 85.4 

Max 87.9 88.2 89.1 89.1 92.7 87.9 88.5 88.5 89.5 

Mean 87.1ab 86.9a 86.4a 86.8a 88.3b 86.8a 87.5ab 87.7ab 86.5a 

SD 0.48 0.60 1.22 1.95 1.33 1.86 1.39 1.66 1.18 

N 598 611 3,222 1,982 3,974 856 2,454 331 256 

Agroecological zones (AEZ): IMB Imbo, IMP Impala, KLS Kivu lake shore, CND Congo-
Nile watershed divide, CP Central Plateau, MPB Mayaga plateau and Central Bugesera, 
ERP Eastern Ridge and Plateau, EL Eastern Lowland, BH Buberuka Highlands. SD: 
Standard deviation, N is the number of coffee fields where coffee samples were 
collected. 
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Table 5-3: The mean difference (α=0.05) in coffee sensory quality between 
agroecological zones of Rwanda 
(I) Agro-
ecological zones 

Mean 
Difference 
(I-J) 

Std. 
Error 

Sig. 95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

n=14,286 

KLS 1.89* 0.03 0.000 1.78 2.00 3,222 

IMP 1.37* 0.06 0.000 1.17 1.56 611 

IMB 1.22* 0.06 0.000 1.02 1.42 598 

CND 1.43* 0.04 0.000 1.30 1.55 1,982 

MPB 1.45* 0.05 0.000 1.27 1.62 856 

ERP 0.79* 0.04 0.000 0.67 0.91 2,454 

EL 0.58* 0.08 0.000 0.33 0.85 331 

BH 1.80* 0.09 0.000 1.51 2.09 256 

5.3.2 Biophysical factors of coffee sensory variation 
Table 5-4 shows which analysed biophysical factors significantly contributed 
to the explanation of the coffee sensory quality variability for the whole 
country and specific agro-ecological zones using multiple linear regression 
analysis (stepwise). All studied variables were normally distributed, so no 
transformations were necessary. Spatial autocorrelation of the residuals was 
checked with Moran’s Index. None of the developed regression model 
residuals display significant spatial autocorrelation according to (Global 
Moran’s test). This demonstrates that the residuals are spatially random, 
suggesting that we were able to capture the underlying relationships that 
contributed to the spatial autocorrelation in the coffee quality samples.  

For each model all significant biophysical factors contributing to the 
explaining the coffee sensory quality variability is listed (Table 5-4) with their 
coefficients (b-values), standardized beta’s (β-values), coefficient of 
determination (R2) and minimized error of the model (ε). β-value varies 
between 0 and 1, and provides a scale of the relative importance among 
biophysical factors combined within each developed sensory quality 
regression model. Overall the results of the multivariate analysis indicate that 
sensory quality is generally explained by the location topography (altitude 
and slope) where coffee beans are produced, local climate (average 
temperature and total annual rainfall), and soil properties (structure, acidity 
and nutrients). The study revealed that the soil nutrients (nitrogen, 
phosphorous and potassium) are important factors in explaining the 
difference in sensory quality of coffee. To a lesser extent are the 
contributions of soil structure (soil organic carbon and sand content of the 
topsoil) and the soil acidity.  
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The national model explained 21% of the overall sensory quality variability. 
The stratified the country dataset (503 samples) based on agroecological 
zones, produced regionalised models with improved explanatory power with 
R2 ranging from 21% to 47-98%. The regionalised models show that the 
sensory quality of coffee in Impala (IMP), and Kivu lake shore (KLS) is 
positively influenced by a favourable climate (βrain, t=0.6) and a reduced soil 
acidity (βC/N, pH, Ca=0.3-0.4), and regionally affected by increased sand 
content and high potassium content (βSd, K=-0.3-0.4) at a lower elevation of 
Imbo zone (IMB). In the Congo Nile divide (CND) watershed, very high 
altitudes (1,955m±145m) and soil quality are negatively associated with 
coffee sensory quality. Unfortunately, these two parameters are not easy to 
change, making a big part of Congo-Nile Divide zone less suitable for 
producing high coffee quality coffee. In the central and south plateau and 
eastern ridges, soil properties have a stronger positive contribution in 
determining quality of coffee than the contributions of climate and the 
topography. In the South and Central plateau (CP), soil structure (clay soils) 
are positively associated coffee beverage quality (βCy=0.4), however soil 
potassium has a negative contribution (βK=-0.2). In Mayaga and Bugesera 
region, high temperature and carbon-nitrogen ratio (βt,C/N=0.1-0.2) seem to 
have a slightly positive contribution to the quality of coffee produced, 
however other parameters were included in the model with equal and weaker 
relationships with coffee sensory quality.  

In the eastern lowlands (EL), soil properties have a positive contribution to 
sensory quality together with topography than climate. Altitude (βAlt=0.24) 
has a positive association with coffee quality variability produced in eastern 
lowlands. An increase of calcium (βCa=0.5) and clay content (βCy=0.4) have a 
positive effect on the coffee sensory quality produced in East. However high 
temperature (βt=-0.13) and high soil cation exchange capacity (CEC) (βCEC=-
0.7) in this region have a negative association with coffee quality. In 
Buberuka highlands (BH) in the north of Rwanda, are almost not used for 
coffee growing. The 256 farms producing in Buberuka highlands indicated 
that the quality is affected by extreme climate (low temperature: βt=-0.5), 
and high precipitation: βt=-0.4) which is associated with an increased soil 
acidity and aluminium toxicity (βpH, Al=-0.3) due to the process of nutrient 
leaching. 
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Table 5-4: Coffee sensory regression models: country model and regionalised models 
based on agro-ecological zones. Model coefficients (b-values) of biophysical factors and 
their respective importance (i.e. Beta: β-values) are presented between brackets. All 
factors are significant at 0.1% level (P≤0.001). 
Biophysical 
factors 

Country 
model 

Agroecological zone based models 

IMB IMP KLS CND CP MPB BH ERP EL 

Constant 105.18 93.45 67.26 77.78 93.35 100.6 81.44 102.8 96.58 83.35 

Altitude 
(Alt m)  

-0.001  
(-0.16) 

-0.001  
(-0.12) 

 0.002 
(0.19) 

-0.001  
(-0.12) 

 0.001 
(0.04) 

0.001 
(0.125
) 

-0.002  
(-0.12) 

0.004 
(0.24) 

Slope  
(S %) 

-0.018  
(-0.12) 

-0.430  
(-0.17) 

   -0.008 
(-0.06) 

    

Total rainfall 
(rain mm) 

-0.001  
(-0.11) 

0.003 
(0.17) 

0.002 
(0.63) 

0.005 
(0.24) 

0.003  
(0.17) 

 0.001 
(0.04) 

-0.009  
(-0.39) 

  

Avg Tempe-
rature (t oC) 

-0.692  
(-0.49) 

 0.412 
(0.62) 

  -0.513  
(-0.21) 

0.277 
(0.14) 

-0.500  
(-0.46) 

-0.657  
(-0.22) 

-0.270  
(-0.13) 

Soil sand  
content (Sd %) 

-0.035  
(-0.20) 

-0.139 
(-0.34) 

 -0.080 
(-0.48) 

-0.139 
(-0.34) 

-0.022  
(-0.10) 

-0.012  
(-0.03) 

 -0.031  
(-0.21) 

0.053 
(0.28) 

Soil clay  
content (Cy %) 

 -0.053 
(-0.17) 

0.081 
(0.38) 

-0.051  
(-0.24) 

-0.050  
(-0.16) 

0.079 
(0.44) 

 0.026 
(0.16) 

0.038 
(0.22) 

0.180 
(0.34) 

pH KCl  
(pH) 

-0.644  
(-0.30) 

 0.245 
(0.18) 

0.942 
(0.30) 

 -0.904  
(-0.17) 

 -1.652  
(-0.30) 

1.587 
(0.25) 

 

Soil CEC 
(cmol+kg-1) 

 0.072 
(0.22) 

  0.072 
(0.22) 

-0.091  
(-0.18) 

-0.018  
(-0.02) 

 -0.088  
(-0.21) 

-0.350  
(-0.72) 

Soil organic 
carbon (%) 

-0.261  
(-0.33) 

 -0.029  
(-0.06) 

 -0.015  
(-0.02) 

-0.107  
(-0.15) 

  0.133 
(0.08) 

 

C/N ratio 0.293 
(0.36) 

 0.304 
(0.42) 

  0.112 
(0.09) 

0.938 
(0.19) 

   

Soil available P 
(P ppm) 

0.018 
(0.15) 

0.031 
(0.14) 

 0.009 
(0.07) 

0.031 
(0.14) 

 -0.016  
(-0.02) 

 0.011 
(0.14) 

0.018 
(0.13) 

Soil K  
(cmol+kg-1) 

1.811 
(0.14) 

-5.210 
(-0.18 

 -3.765  
(-0.37) 

-4.941  
(-0.17) 

-2.890  
(-0.21) 

  3.081 
(0.24) 

 

Soil Al  
(cmol+kg-1) 

 0.340 
(0.17) 

-0.054  
(-0.28) 

0.434 
(0.34) 

-0.437 
(-0.17) 

0.306 
(0.15) 

-0.056 
(-0.03) 

-0.351  
(-0.29) 

 -2.389  
(-0.25) 

Soil Ca  
(cmol+kg-1) 

   0.253 
(0.34) 

0.303 
(0.16) 

   -0.270  
(-0.19) 

0.729 
(0.46) 

Adj. R2 0.21 0.56 0.51 0.47 0.60 0.52 0.98 0.81 0.27 0.62 

Std. Error (ε) 1.4 0.32 0.42 0.88 1.2 0.91 0.12 0.51 1.1 1.0 

N farms  14,286 598 611 3,199 1,982 3,974 856 256 2,454 331 

Agroecological zones: KLS Kivu lake shore, IMP Impala, IMB Imbo, CND Congo-Nile 
watershed divide, MPB Mayaga plateau and Central Bugesera, CP Central Plateau, ERP 
Eastern Ridge and Plateau, EL Eastern Lowland, BH Buberuka Highlands. 
 
The effect of the CoE sample size and the spatial distribution of coffee fields 
on the model performance were observed. For example, in Mayaga and 
Bugesera (MPB) region, limited coffee farms (n=856 coffee fields located in 
consolidated land) participated in the CoE competition (6 CWS participating in 
CoE). The MPB model looks very accurate (R2=0.98) due to homogeneous 
samples unlike in Eastern ridge and plateau where coffee samples are from 
scattered farms (n=2,454 coffee farms) with 25 CWS scattered across ERP 
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zone. The quality model of Eastern ridge and plateau (ERP) explained up to 
27% of the variation in coffee sensory quality (closer to the national model). 
ERP zone is highly heterogeneous in term of relief (altitude: 1,604 ±132 m) 
and associated soil and climate parameters making the sensory quality more 
heterogeneous. For other agro-ecological zones, resulting significant models 
explained coffee sensory variation (R2=0.47-0.81) with medium to high 
explanatory power by significant sensory factors and display a low standard 
error of the model (ε=0.12-1.2%). 

5.3.3 Geographic areas for special coffee production in 
Rwanda  

Figure 5-4 shows potential areas of coffee sensory quality production as 
estimated by both national (a) and regionalised (b) sensory models. The 
national model (Figure 5-4a) suggests that the coffee sensory quality in 
Rwanda could be higher on average. It generally overestimated the potential 
quality offered by current natural environment especially in the east and the 
north is probably due to biased distribution of available CoE samples. 
Instead, the regional Agro-ecological models highlight a number of 
environmental constraints that negatively contribute to the sensory quality of 
coffee. Some constraints are manageable, others are not feasible or their 
management is not cost efficient. Figure 5-4b highlights geographic areas 
where specialty coffee (i.e. Qp >85%) may occur according to the regional 
regression models based on local climate and soil properties. The regional 
models performed relatively well in predicting speciality coffee potentials up 
to 64% (or 55% assuming that the intercept is zero). We also calculated 
Moran’s I for the model residuals to check for spatial autocorrelation. Moran’s 
Index was 0.003 while Expected Index is -0.007 (Z-score=0.629, P-
value=0.529) demonstrating that the residuals are spatially randomly 
distributed. The model thus satisfactorily predicts the coffee quality with good 
precision (RMSPE=0.98%) and without any remaining autocorrelation.  

Furthermore, these models demonstrate that not all regions have equal 
potential for producing specialty coffee within the current smallholder farming 
system. According to these models, the south and central plateau (CP) 
remain areas of special coffees (>90%). However, in the Congo-Nile 
watershed divide (CND) some local hotspots with special coffee are 
highlighted. More hotspots of excellent coffees (87-90%) are also found in 
the north and south eastern ridges and plateau (ERP) while in lowland areas, 
very few hotspots produce fine coffees which are located in upper Muvumba 
catchment area in the Northern East of Rwanda. Although Buberuka 
highlands (BH) is not generally used for coffee, our analysis suggests that in 
this area could potentially produce more coffee of excellent quality.  
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Figure 5-4:.Coffee sensory quality potential (overall grade in percentage) as estimated 
by (a) the national model and (b) the agro-ecological based models. The scatter plot 
(C) presents the validation results of the national model (a), and the graph (d) 
presents the validation of the regional model (b). 

5.4 Discussion 
 
5.4.1 Effect of soil fertility management on coffee sensory  
Bourbon coffee arabica, grown in the various agro-ecological zones of 
Rwanda, produces coffee with different tastes and flavours. Valued good 
quality coffees are found in Kivu lake shore (Nyamasheke, Rutsiro and 
Rubavu districts), and in Congo-Nile watershed divide (Karongi district), in 
south and central plateau (southern Province districts). Although, little is 
known about the direct influence of soil on the sensory quality, existing 
studies indicated that Arabica coffee planted in different soils produces coffee 
with different bean size and cup quality (Sanchez, Marques, Siqueira, 
Camargo, & Pereira, 2013). The types and texture of soils influence the root 
systems and soil-water holding due to high bulk density (Innocent Nzeyimana 
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et al., 2017). In Rwanda, soils with sand content less than 46.2%, soil acidity 
(pH<5.8) and organic carbon content greater than 1.2% produce high 
sensory quality of coffee. This is in line with A. Youkhana and Idol (2009) 
who found that soils with less coarse and with clay content above 30% are 
good for improving coffee cherries quality.  

Fertile soils produce larger beans often resulting in a higher final quality. 
Experiments have shown that a high levels of Nitrogen fertilizer applications 
increases total production but also reduces beans density (Wintgens, 2009), 
hence reduced overall coffee quality. However, our study shows that an 
increase of Carbon-Nitrogen ratio could improve the quality of coffee; adding 
nitrogen fertilizer without increasing soil organic carbon content would have a 
negative effect on sensory quality. In general can an excess of nitrogen 
increases the caffeine content, resulting to a more bitter taste of the brew 
which in not desired for Arabica coffee, lowering is sensory quality (Wintgens, 
2009). These examples indicate that under certain conditions there is a 
trade-off between increase of yield and the sensory quality. We advocate to 
improve the soil organic carbon content and quality as demonstrated by 
Bucagu et al. (2013) and A. H. Youkhana and Idol (2016) as a sustainable 
way to enhance coffee quality. Except in the eastern ridges, more potassium 
on the exchange complex is negatively associated with the sensory quality of 
coffee. The coffees which won the CoE competitions came from the shores of 
Kivu Lake, Congo-Nile divide and central plateau where potassium content in 
soils is at minimum level (K≤0.3 cmol+kg-1). There is moderate correlation 
and positive contribution of phosphorous content on the quality of coffee, 
similar with other studies (Wintgens, 2009). Cup quality responded to soil 
cation exchangeable calcium (Ca) which is inline of what has been found in 
Costa Rica by Castro-Tanzi et al. (2012). Calcium is the abundant element 
identifier of coffee beans and depth-profile testing has shown that Ca is 
homogenous inside the beans (Anggraeni, Nasution, & Suyanto, 2016). 
Therefore, improving calcium content in soils of Kivu lake shore, Congo-Nile 
divide, and central plateau, to around 4 cmol+kg-1 of soil could potentially 
improve the quality of coffee in these regions. However, it is important to 
note that doubling the concentration of calcium in soils can result in a bitter 
taste in the cup. This is the case of moderate quality of coffee produced by 
Impala and Imbo zones where soils are rich in calcium (Ca> 8 cmol+kg-1). 
Improving calcium will not only improve the quality, but will potentially boost 
the yield through lowering of acidity and aluminium toxicity which has been a 
major constraint to productivity of acid soils of Rwanda (Cyamweshi et al., 
2014).  

5.4.2 Impact of climate change on coffee quality 
Climatic variables are the most factors controlling the yield and quality of 
coffee (Aparecido, Rolim, Lamparelli, de Souza, & dos Santos, 2017). The 
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appropriateness of climate for the cultivation of coffee depends on the 
latitude and height above sea level (Wintgens, 2009). Among the climatic 
factors, the mean air temperature during seed development greatly 
influenced the sensory profile (Bertrand et al., 2012). In Rwanda, the 
sensory attributes such as fine acidity and flavour quality are found in coffee 
produced in the cool climate of the south plateau area (Songer, 2008). This is 
in line with what found by Bertrand et al. (2012) that sensory attributes such 
as acidity, fruity character and flavour quality of arabica coffee produced in 
Reunion Island were correlated with typical of coffees produced under cool 
climates. Rainfall is also correlated with bitterness while high 
evapotranspiration is reported to induce ‘green’ taste (Bertrand et al., 2012). 
However, extreme high rainfall influences the growth of the coffee trees and 
the development of pests. Frost at high altitudes can damage the plants and 
cherries, and affect the quality of coffee beans (Murugan, Shetty, Ravi, 
Anandhi, & Rajkumar, 2012). This is the case of Northern Buberuka highlands 
where the sensory quality model shows that an excessive increase of rainfall 
(1,247±100m) coupled with an excessive low temperature (<18±0.9oC) 
cause a decrease of coffee quality. Amayaga and Bugesera region suffer from 
a prolonged period drought which causes diseases and insects induced 
damage to coffee cherries, resulting in lower quality beans. Besides defects, 
high temperature and solar radiations of Mayaga and Bugesera region could 
reduce aromatic quality of green coffee which would be detected as off-
flavours even after roasting (Bertrand et al., 2012). In fact coffee washing 
stations of Bugesera and many of Mayaga zone (Ruhango and Nyanza 
districts) have not been able to participate in CoE and those who participated 
were not able to win (Q <85%). 

An accelerated maturation in hot and humid environment result to a strong 
intensity, roasted flavour and bitter (Steen, Waehrens, Petersen, Munchow, & 
Bredie, 2017). This seems to be the case of Impala and Imbo in western 
Rwanda. On the other hand, has it been reported that beans produced at too 
high altitude (low temperature) have a silvery, greenish skin and low acidity 
(Bertrand et al., 2012) making Congo-Nile watershed divide and highlands 
definitely less suitable for producing high quality coffee. Bourbon Arabica 
coffee produced at altitude higher than 1400m of central plateau and eastern 
ridges display more acidity, aroma and flavours. This is the case of 
Muyongwe coffee that has been performing remarkably well and has won 
several prizes including Cup of Excellence awards at several occasions. 
Besides winning the CoE competitions, Muyongwe coffee won an appreciation 
at East Africa Fine Coffee Association “EAFCA” in 2009. The price winning 
tasting described aromatics that included nuts, spices, fruits, and flowers. It 
also had several descriptors applied to the mouth feel and the cleanest, 
sweetest, and longest finishes of the set of samples.  
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Coffee requires sufficient and well-distributed rainfall (Wintgens, 2009). In 
Rwanda, the dry months of June-August correspond to the summer. The 
flowering starts with the first rain of September and October. When this 
period is prolonged to September-October, the flowering is delayed; the rain 
season is shortened, thus causing losses of quality because of the 
development of empty beans due to lack of sufficient water. Furthermore the 
remaining beans are smaller due to physiological deficiency known as “die-
back”(Wintgens, 2009). This phenomenon occurs in Amayaga and Bugesera 
region as well as in Eastern lowlands. In this case it is necessary to improve 
conditions by mulching coffee plants, adapting nutrients inputs, as well as 
applying suitable drainage or appropriate shade.  

Rwandan climate is expected to change towards a slightly warmer and wetter 
climate (McSweeney & Semafara, 2011; Muhire & Ahmed, 2015). The mean 
temperature is projected to increase by 0.35oC per decade (McSweeney & 
Semafara, 2011), whereas the annual rainfall is expected to increase by 4 
mm per year (Muhire & Ahmed, 2015). Using this projected increase in 
temperature and rainfall, we recalculated the map of sensory quality for the 
expected climate conditions in 2020 (Figure 5-5a) and 2050 (Figure 5-5b) 
using quality models earlier determined with model parameters and their 
coefficients (b-values) presented in Table 5-4. The underlying assumption is 
that empirical relationships of the multiple regressions are still valid from 
2020 to 2015. Fig 4 shows that projected future increase in temperature and 
rainfall will cause a decrease in coffee quality up to 4.8% in some parts of the 
country. Most affected coffees areas are Huye Mountain coffees in south 
plateau, Gakenke: Muhondo and Muyongwe coffees in north plateau, 
Nyamasheke and Rutsiro coffees along Kivu lake shore and Rwimbogo coffees 
in Impala, in south west.  

An increase in coffee quality up to 10.4% is however expected in other 
regions which are presently marginal in terms of coffee sensory quality. For 
example, Buberuka highlands will become more suitable (Burera district) as 
result of increase in temperature by 1.4oC by 2050. In eastern lowlands 
(Gatsibo, Kirehe and Ngoma districts), coffee quality potential will improve by 
10.4% by 2050 due to expected increase of rainfall by 160 mm in 2050. The 
net overall balance in quality change is limited to about 0.3% in 2020 and 
1.1% in 2050.  
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Figure 5-5: Maps showing the coffee quality potential as result of projected increase in 
temperature by 0.35oC and rainfall by 40 mm in 2020 and by 1.4 oC and by 160 mm in 
2050 (McSweeney & Semafara, 2011; Muhire & Ahmed, 2015). 

5.4.3 Coffee quality and production trade-off 
The international market values speciality coffees with much higher prices 
(Alves et al., 2016). As illustrated in the Figure 5-6, using four consecutive 
annual Cup of Excellence (CoE) Competitions, it is clear that as soon as 
Rwanda started to participate in the CoE, the price of coffee increased. 
Consumers show an increasing interest in local and quality coffees than 
ordinary coffees at world coffee market. Since 2013, special coffees is 
commanding as higher as US$20 per kilogram (minimum domestic price) at 
CoE auction in Rwanda while ordinary the commercial grade coffees are 
hardly sold at US$5per kilogram of green coffee. This clearly demonstrates to 
coffee growers that though the production quantity is important, a higher 
quality can easier generate a much higher income. 
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Figure 5-6: The value (US$/lb) of speciality coffees during the annual Cup of 
Excellence (CoE) auction: the value presented is the high bid price (1lb=0.454kgs). 
Ordinary coffees (coffee with score below 85%) are not sold at CoE auction. Of the 
total 245 coffee washing stations ( CWS) in 2015, CWS winners were only 24 CWS in 
CoE 2015, 28 CWS in CoE 2014, 15 CWS in CoE 2013, and 26 CWS in CoE 2012. 

Usually, good practices to increase the productivity also result in producing 
good quality cherries. But we also saw earlier with N fertilizer and soil Ca 
properties a trade-off between quantity and quality management. Figure 5-7 
shows that overall there is no meaningful correlation (from 2012-2015) 
between the quality of the coffee and the production levels. Farmers could 
gain a lot it they understand their local coffee environments and if they 
should invest in either higher coffee yields or in higher coffee quality. Ideally, 
if possible they could opt for both high yield and high quality to have 
maximum returns. Otherwise they have to make a smart trade-off between 
yield quantities versus coffee quality. 
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Figure 5-7: The total production of speciality coffee (coffee with score above 85%) in 
relation to their quality as measured at the Cup of Excellence (CoE) 2012-2015. Of the 
total 245 CWS in 2015, CWS winners were only 24 CWS for CoE 2015, 28 CWS for CoE 
2014, 15 CWS for CoE 2013, and 26 CWS for CoE 2012. 

5.5 Conclusions 
This study demonstrated that the sensory quality of Arabica coffee is partially 
explained by the geographic origins where coffee was produced. Overall 
coffee quality grade is statistically correlated with the biophysical conditions 
of coffee origins using multiple regression analysis. Significant geographical 
factors and their co-interactions were used to predict geographic locations of 
specialty coffees.  

The study showed that although the topography and climate of Rwanda play 
an important role in the spatial distribution of coffee quality in Rwanda, local 
soil conditions are often a predominant factor.  

The study demonstrated also that overall coffee quality is not very sensitive 
to projected climate change (nationally only net 1% increase in 2050). There 
will be regional shifts of the potential specialty coffee locations. 
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There are multiple soil properties contributing to high sensory quality. 
Unfortunately, they are in general not easy to improve.  

A smart soil organic matter management (both in terms of quality and C/N) 
could help to improve Rwandan coffee quality. Alternatively, one could 
explore new potential high quality producing coffee locations which will 
change coming decades.  
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6 Synthesis: Integrating land suitability, 
productivity and sensory quality in 
‘Coffee terroirs’ for sustainable coffee 
production systems in Rwanda5 

 

                                           
This chapter is submitted as: Mukashema, A., and Veldkamp, A. Integrating land 
suitability, productivity and sensory quality in Coffee terroirs for sustainable coffee 
production systems in Rwanda. In Land Use Policy. 
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6.1 Introduction  
Terroir is a French concept which finds its origin in viticulture. A terroir refers 
to a specific area where the interactions between local environment and 
viticulture practices leads to wines with distinctive characteristics (Costantini, 
Lorenzetti, & Malorgio, 2016). Gangjee (2017) defines “terroir” as a limited 
area or terrain whose specific soil and micro-climate impart distinctive 
qualities to food products. Most Geographical Indicators (GI) of terroirs which 
are linked to a specific origin and protection of a product are found in Europe 
and USA (e.g. S. Bowen, 2010; S. Bowen & Zapata, 2009; Vaudour, 2002), 
for mainly wine (e.g. Berard & Marchenay, 2006; Foroni et al., 2017; Rotaru 
et al., 2010) and olive oil (Belletti, Marescotti, Sanz-Cañada, et al., 2015). 
Some terroirs are found outside Europe, such as the example of Taquila 
cheese in Mexico (S. Bowen, 2010; S. Bowen & Zapata, 2009), and wine of 
specific British Columbia valleys (P. A. Bowen et al., 2005). A few terroir like 
examples are found in the third world (e.g. Schlesier et al., 2009; Smeyers-
Verbeke et al., 2009) and all are for wine.  

However, for coffee, no specific terroirs exist yet, although the origin and 
provenance of coffee beans becomes more important in the global coffee 
trade. Nowadays the origin is often linked to the country of origin but coffee 
buyers tend to focus on those areas that produce the highest quality coffee. 
These highest quality coffees are also predominantly linked to the origin of 
beans and to a lesser extent to the post harvesting process or roasting. When 
a green coffee bean is roasted, thousands of compounds are formed via 
chemical reactions. These molecules originate from precursors present in the 
green coffee bean, which are transformed into a large variety of volatile and 
non-volatile compounds during roasting (Folmer, 2014). This growing 
awareness that the location of coffee production matters makes coffee 
“terroirs" a logical next step.  

The concept of “terroir” was first used in coffee studies to determine the 
effect of climate on beverage quality of coffee beans in large scale production 
of Brazil (da Silva et al., 2005), and Costa Rica (Avelino et al., 2005; Decazy 
et al., 2003; Vaast, Bertrand, Perriot, Guyot, & Genard, 2006). Both studies 
found that high altitude and annual rainfall under 1500 mm were favourable 
factors of coffee sensory quality (Decazy et al., 2003), east-facing slopes 
gave coffee beverages generally superior attributes (Avelino et al., 2005), 
and shade also positively affected coffee beans size and coffee beverage 
quality (Vaast et al., 2006). This was confirmed by Silva et al. (2016) who 
recently found that the position and altitude of the fields are the main 
variables that influence coffee quality. Sanchez et al. (2013) assessed the 
effect of soil properties on yield and quality of coffee and found that coffee 
grown on soils with high clay and available iron contents, and low pH and 
base saturation, provided the highest yield and best sensory quality. They 
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further concluded that soil–relief relationships contained in a digital elevation 
model (DEM) can be effectively used for the hybrid mapping of areas of 
varying suitability for coffee production and quality. However, none of these 
studies considered analysing a “terroir” in a holistic manner in order to 
discern collective environmental characteristics and co-interactions for 
distinctive terroirs as defined by Costantini et al. (2016) and Gangjee (2017). 

Although many scholars explain the terroir concept (e.g. Barham, 2003; 
Belletti, Marescotti, Sanz-Cañada, et al., 2015; S. Bowen, 2010), very limited 
work has been done on systematic mapping of terroirs (e.g. Marciniak, 
Reynolds, & Brown, 2009; Reynolds, Senchuk, van der Reest, & de Savigny, 
2007). Most of the terroir studies have found effective sensory-differentiation 
of wines from experimental plots of commercial wineries, but they often lack 
a clear spatial delineation (Vaudour, 2002). A recent attempt to map terroirs 
aimed to reconstruct the past biological condition of vines and their mortality 
(Vaudour, Leclercq, Gilliot, & Chaignon, 2017). The study found strong 
relationships between vine mortality, soil type, past land use, and long term 
soil management, particularly in terms of soil organic carbon. Reynolds et al. 
(2007) used GPS and GIS for terroir mapping and concluded that sandy soils 
reduce wine acidity. Geospatial technologies were also used to understand 
the relationship between wine terroir and local conditions in the vineyards 
(Marciniak, Reynolds, & Brown, 2013; Marciniak, Reynolds, Brown, Jollineau, 
& Kotsaki, 2017). They observed for their case study that soil-water content 
was correlated with vine water status which allowed them to establish spatial 
relationships between soil, yield and wine flavours. However, in these 
studies, topo-climatic spatial variability was not considered. One reason is 
that the relationship between land characteristics and product quality has 
been mostly studied at the detailed or semi-detailed scales like in vineyards 
(Vaudour, 2002; Vaudour et al., 2017). In such small scale case studies the 
topographic and climatic variability will be very limited. 

This approach could potentially be applied to large scale commercial coffee 
farms but not on small-scale farming systems where coffee is mostly grown 
mixed with many other crops by smallholder farmers. Another challenge is 
that relating coffee yield and sensory quality to environmental conditions 
requires a large amount of coffee field scale, spatially explicit, data about 
location suitability, yield and sensory taste variables for the whole country. 
For Rwanda, such detailed data on coffee field locations became only 
available during this research after high resolution mapping (Chapter 2) 
(Mukashema et al., 2014), yield (Chapter 3) and sensory quality (Chapter 4) 
through annual cup of Excellence competitions between farmers, as well as 
national biophysical and socio-economic data at coffee location level (Chapter 
3) (Mukashema et al., 2016) potentially allowing the delineation of coffee 
terroirs for the whole country territory. 
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Mapping possible coffee terroirs requires relating coffee yield and sensory 
data to its local production environment. Many spatial multi-criteria fuzzy-
based land suitability models have been developed, mainly in the area of 
suitability analysis of land use (e.g. dos Santos et al., 2017; Taleai, Sharifi, 
Sliuzas, & Mesgari, 2007), infrastructure development and planning (e.g. 
Makropoulos & Butler, 2006), and human settlement (Chow & Sadler, 2010). 
Recently, in agriculture, fuzzy based spatial models have been used in 
irrigated agriculture planning (Y. Chen, Khan, & Paydar, 2010), crop 
suitability (e.g. Perveen, Nagasawa, Ahmed, Uddin, & Kimura, 2008), 
forestry (e.g. Bustillos-Herrera, Valdez-Lazalde, Aldrete, & Gonzalez-Guillen, 
2007; dos Santos et al., 2017), natural resource management (Sporcic, 
Landekic, Lovric, Bogdan, & Segotic, 2010) and biodiversity conservation 
(e.g.Breceda, Arriaga, Bojorquez, & Rodriguez, 2005).  

All of these multi-criteria methods use analytic hierarchy process (AHP) 
combined with linguistic ordered weighted average (OWA) approach and are 
based on three-steps algorithms (Makropoulos & Butler, 2006) described by 
Despic and Simonovic (2000). Step 1 consists of decomposing a complex 
fuzzy set (A) into less complex subsets (Bi). Step 2, the fuzzy sets Bi is 

constructed, representing the set ),,( 21 nBBBfA = ; and Step 3, consists of 
aggregation of fuzzy subsets Bi into a fuzzy set A.  

We propose to use a similar logical framework to generate coffee terroirs. 
The primary issue is how to combine geographical indicators (e.g. natural 
environment, social, and know-how factors etc. into a composite fuzzy set 
representing coffee terroir set.  

It is the objective of this synthesis chapter to develop a methodology to 
delineate Rwandese coffee terroirs using a fuzzy logic based spatial multi-
criteria evaluation of coffee production of smallholder farming systems of 
Rwanda. These terroirs should identify where high quality specialty coffee can 
be produced in relatively large quantities. For our purpose, we define a coffee 
terroir as a three-dimensional set of highly suitable land, producing high 
yields and high sensory quality. All terroir components are analyzed 
independently and used to reconstruct and map coffee terroirs. The 
generated coffee terroir zones could be used to identify, protect and further 
develop the specialty coffees geographical origins in Rwanda.  
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6.2 Identifying coffee terroir zones and 
geographical indicators of origin 

 
6.2.1 Conceptual model of coffee terroir 
Establishing relationships between smallholder coffee production and its local 
production conditions was already done in Chapter 2 to 5. All relevant data is 
already described in those chapters and will not be repeated here. 

For consistency purposes, we have rasterized all data to 3 * 3 km grids. The 
Coffee Washing station supply units are the spatial units for which the yield 
data is collected. The average travel distance to the nearest coffee washing 
stations by the farmer is about 3 km. The lots used for the sensory coffee 
determination are usually also the aggregate of fields within a radius of 3 km. 
The accuracy of the biophysical data and coffee field locations is much more 
accurate but we use the coarser spatial resolution as support of the terroir 
identification and mapping. 

Three main subsequent steps were used to build the coffee terroir model: 

1. Coffee distribution (Chapter 2) and environmental data preparation and 
processing, 

2. Identification of underlying factors of coffee location suitability (Chapter 
3), yield level (Chapter 4) and sensory quality variation (Chapter 5), 

3. Predicting suitability to coffee growing, achievable yields and potential 
quality (Chapter 3,4, and 5), 

4. Zoning coffee terroirs through integration of coffee location suitability, 
achievable yield and quality potentials.  

 
Figure 6-1 summarizes the hierarchical steps used to develop the coffee 
terroir model that allowed prediction of coffee terroirs and identification of 
geographical indicators of origin in Rwanda. 
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Figure 6-1: A methodological flowchart showing steps followed in developing Coffee 
Terroir Model 
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6.2.2 Spatial distribution of coffee fields, location and size of 
the farm 

Relating coffee to its geographical origin (terroir) requires a reliable 
description of the origin as a physical environment (Vaudour, 2002). Hence 
mapping coffee fields was a primary step in the terroir model development. 
The coffee field map (Chapter 2) provided geographic coordinates (x,y) of 
coffee production locations in mixed smallholder farming systems, and 
allowed collecting the data of environmental factors at coffee field location for 
further development of the terroir model and terroir components. Figure 6-2 
illustrates the different sizes and distributions of the coffee fields within the 
different agro-ecological zones for 3 km2. It clearly makes the point that 
there is still a lot of local variability in the 3*3 km grid cells used to derive 
the terroirs. 
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Figure 6-2 Coffee field distribution in agro-ecological zones of Rwanda; SW-NW: IMB 
Imbo, IMP Impala, KS Kivu lake shore, VHP Volcano high plain. Central S-N: CND 
Congo-Nile watershed divide, CP Central Plateau, BH Buberuka Highlands. SE-NE: MPB 
Mayaga plateau and Central Bugesera, ERP Eastern Ridge and Plateau, EL Eastern 
Lowlands. The black dots represent coffee washing stations. By 2016 coffee washing 
stations were operational across the country. For presentation purpose, we present for 
all agro-ecological zones an area of 3Km2 only. The full map can only fit visually to A4 
paper size at a scale of 1:1,000,000. 
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6.2.3 Analysing coffee terroir subsets (land suitability, yield 
and quality) 

 
We made three terroir subsets. Figure 6-3 below shows coffee location 
suitability (probability map) from the environmental and socio-economic 
point of view. Chapter 3 describes how the subset was derived.  

 
Figure 6-3 Coffee terroir based on suitability predicted by biophysical factors of coffee 
field location. The original data used in the analysis had a grid size of 10m, however for 
integration with other data and presentation purposes, the resolution has been reduced 
to a grid cell size of 1 x 1km 

Figure 6-4 highlights areas of high coffee yield across the country and areas 
where lower yields occur as result of local climate and soil management 
constraints (Yach<0.5 t ha-1). The yield model performed relatively well in 
predicting achievable yield (R2=0.6). Details have previously been discussed 
in Chapter 4.  
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Figure 6-4 Coffee terroir areas predicted using relationship between actual yields and 
biophysical factors at coffee field location.  

Figure 6-5 indicates the geographic origins of high quality coffees produced 
and new potential areas where there is likelihood that specialty coffees would 
be produced if any expansion takes place in that zone. Chapter 5 describes 
how the subset was derived. 
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Figure 6-5 Predicted terroir based on sensory quality data and biophysical conditions 
of coffee fields  

6.2.4 Integrating land suitability, yield and quality subsets 
into coffee terroir sets 

We define in this study a coffee terroir as a three-dimensional set composed 
by land aptitude to coffee growing (L), with high yield (Y>1t ha-1) and with 
special sensorial quality (Q>85%). The assumption is that all three 
components have a different and independent contribution in explaining 
coffee terroirs. Prior to integration of coffee field location suitability (L), 
achievable yield (Y) and quality (Q) subsets into a terroir set, a first stage 
membership function was defined for each subset by L= f(X1, X2.... Xn), 
Y=f(X1, X2,... Xn), and Q=f(X1, X2 ... Xn) using the derived multiple linear 
regression models, where X1, X2...Xn form a matrix of variables with 
coefficient b-value and weight β-value of each variable. Best locations, high 
yield and special sensory quality were indicated by discriminant variables (Xi) 
with high beta (β-value) and P≤0.001. Variables (Xi) represent the influence 
of soil (Xsoil), topography (Xtopo) and climate (Xclim) on the coffee terroir 
through the terroir subsets (L, Y, Q) modelled by linear membership 
regression function. This means that the individual components location, yield 
and quality link individual environmental criteria to a final terroir index model 
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through above linear relationships. One question for example is “does the 
coffee field C belongs to terroir T?” and the answer can be for example: yes if 
C plantation is located on soil with a pH greater than 4.5 or less than 6.5. 
Obviously, soil pH is not a fuzzy variable. What is fuzzy is the ‘‘suitability for 
location (Lx,y) where coffee is grown to belong to coffee terroir’’ from a pH 
point of view. Simple fuzzy linguistic is the location Lx,y to be suitable for 
terroir membership IF pH is between 4.5 and 6.5. This location Lx,y should 
produce yield (Yx,y) greater than 1.5 tons per hectare and overall sensory 
grade (Qx,y) above 87%. The main assumption here is that either terroir set 
(Tx,y) or coffee field location suitability (L), yield (Y) and quality (Q) subsets 
are fuzzy sets or are reclassified into new fuzzy sets and vary from one 
location to another. This means fuzzy members are utilized to transform the 
variables in which the criteria are measured into a common [1-5] scale 
following fuzzy membership as proposed by Makropoulos and Butler (2006). 
The terroir is indicated by a 5 when the actual value of L,Y,Q subsets 
represent the best area for producing special coffees and a 1 for the worst 
areas when the actual value of the subsets L,Y,Q produce ordinary coffee or 
are not productive at all.  

The spatial reclassification function of ArcGIS 10.4 software by Jenks 
optimization method was applied to the matrix L,Y,Q fuzzy layers for 
determining the terroir areas, to represent excellent (5), good (4), regular 
(3), bad (2), and inappropriate (1) terroir. The Jenks optimization method, 
also called the Jenks natural breaks classification method, is a data clustering 
method designed to determine the best arrangement of values into different 
classes. This is done by seeking to minimize each class's average deviation 
from the class mean, while maximizing each class's deviation from the means 
of the other groups (dos Santos et al., 2017).  

6.2.5 Weighting the land suitability, yield and quality factors 
in the terroir  

The individual terroir subsets link individual environmental criteria to a final 
terroir index model through a terroir weighted additive function

QwYwLwT QYL ++=
, giving the quality four times more importance than other 

subsets QYL www <<
.  

The importance of the quality subset in the terroir definition is proven by the 
continuous increase of coffee value ($/lb) as a result of increased quality 
from ordinary coffee to specialty coffee production as shown by Figure 6-6. It 
shows that when the farmer aims to produce ordinary coffee with quality 
below 87%, a 2% grade increase from 85% corresponds to an increase of 2.5 
US$/lb (1:1 V/Q ratio). Any effort of the farmer to improve quality one unit 
grade above 87%, will lead to a quadruple gain in value to 4 US$/lb (4:1V/Q 
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ratio). Therefore, we considered this general relationship between the value 
and quality of the produce in determining the quality and yield (Q/Y) ratio for 
terroir zoning both depending on land quality (L) as basis for terroir 
modelling. By using the global trade value the developed terroir is dependent 
on the global coffee market.  

 
Figure 6-6 Average value (US$/lb) of speciality coffee lots sold at the annual Cup of 
Excellence (CoE) auction 2012-2015. The value presented is the average high bid price 
(1lb=0.454kgs). Ordinary coffees (coffee with score below 85%) are not sold at CoE 
auction. In this trend analysis, we considered 93 lots CoE winners of 421 total sample 
lots submitted in the 2012-2015 CoE competition 

In the modelling of best coffee terroirs, L,YQ matrix fuzzy subsets are 
combined by GIS-based overlay analysis to calculate the fuzzy terroir index 
shown in Figure 6-7.  
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Figure 6-7 Coffee terroirs map produced by combining fuzzy field location, yield and 
quality subsets produced using field location suitability, yield levels and sensory quality 
models.  

Coffee terroirs are strongly dependent on quality since at purchasing points 
(cooperatives) higher quality of coffee is rewarded with higher prices 
(Quiñones-Ruiz et al., 2016) and higher quality has therefore direct links with 
the specific places where it is produced. Such relationship between quality of 
a product and location, is what makes a geographic area, a terroir (Foroni et 
al., 2017). World-wide CoE excellence competitions have shown that prices of 
coffees rely on the cupping results and are less dependent on the volume of 
the lots. However, it is not sufficient to have high quality without the required 
quantity to sustain the specialty market. Thus, we consider a terroir to fulfil 
the productivity criterion as well as the quality criterion. Those two can only 
be achieved if a coffee field is located in suitable environmental and socio-
economic conditions. Figure 7 shows the terroir index map resulting from the 
overlay of land, yield and quality fuzzy subsets with class values [1-5] 
corresponding to fuzzy values from low to high conditions of belonging to a 
terroir set. Figure 8 shows the proportion of the country land (frequency of 
pixels) belonging to potential terroir zones. In this analysis, we did not 
exclude land which is used for other land uses, as our analysis aims primarily 
to explore possibility of establishing coffee where it can grow well, producing 
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high quality and high yields. Based on this analysis, therefore, possible land 
reallocation can be suggested to contribute to better land use planning.  

Figure 6-8a shows that land suitability satisfies the terroir criteria at 26% of 
which 19% fall in the range between 50-75% and 7% in range of 75-100% 
suitable. About 34% of total country land (i.e. 831,087 hectares) satisfies the 
terroir condition from the yield point of view (Figure 6-8b) of which 16% 
would have yield ranges of 1.5 - 2 t ha-1 and 19% with yields greater than 2t 
ha-1. Figure 6-8c shows that the terroir set from the sensory quality criterion 
is limited (24%), but due to its high weight (4-times) in the terroir model, 
the final terroir feature is more strongly related to quality than to yield and 
location suitability (see Figure 6-5 & 7). About 20% of the country land (i.e. 
432,648 ha) are classified as terroir to produce excellent coffee with grade 
between 87 and 90%, only 4% land is classified as a terroir of special coffee 
with grade above 90%. The overall terroir (Figure 6-8d) output shows that 
only 9% of the country land has the potential to consistently produce very 
high yield, and special coffee, while 18% of the country land can be used as 
terroir at the next level. Figure 6-9 shows that terroir hotspots with special 
coffee occur for the majority of pixels in The Central Plateau, followed by 
Impala, Amayaga and Buberuka Highlands zones. At the edge of Congo-Nile 
agro-ecological zone and eastern ridges and plateau also shows areas with 
excellent coffees. These two zones can be considered for the process of 
appellation and protection of geographic indications of origin. However, the 
model finds very few areas of high quality coffee along the Kivu lake 
shoreline and Eastern Lowlands. It is important to note that this analysis did 
not exclude land already occupied by other land uses. To date about 50% 
(i.e. 13,131 hectares) of the country coffee areas belongs to the prospected 
terroirs, and 56 of 66 terroirs units already have coffee. Only 10 new terroir 
units are projected by the terroir model as best candidate areas for the future 
coffee expansion. 
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Figure 6-8 Land area in percentage of the total country land (i.e. 2.3 million hectares) 
for the range of fuzzy terroir subsets: Coffee field location suitability (a), Yield levels 
(b), Sensory quality (c), and overall terroir index (d). The last two classes are 
considered to contribute to terroir zones. 
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6.2.6 Geographical indicators of origin 

 
Figure 6-9 Coffee terroirs with only geographic areas that are expected to produce 
special coffee (Sensory Grade ≥ 90%) and excellent coffees (Sensory Grade = 87% - 
90%).  
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Table 6-1: Geographic indicators of origins and thresholds for 56 identified coffee 
terroirs  
Biophysical 
Factors 

Biophysical indicators Min Max Mean Std. 
Dev. 

Altitude (Alt m) 1,400 2,149 1,676 181 
Slope (degrees) 6 24 14 4 
Aspect (degrees) 90 226 161 27 

Climate Annual rainfall (mm) 926 1,975 1,276 203 
 Avg temperature (oC) 18 21 19 2 
Soils pHKcl 3.0 5.3 4.3 0.5 
 PHH2O 3.7 5.8 5.0 0.3 
 Cation exchange capacity (CEC cmol+ 

kg-1) 
5.1 36.5 14.7 5.5 

 Avail. Phosphorous (P ppm) 0.1 29.1 6.4 6.8 

 Sand content (Sd %) 19.7 58.4 43.0 9.2 

 Clay content (Cy %) 25.6 64.8 37.8 7.7 
 C/N ration 10.6 14.8 13.5 0.8 
 Organic carbon (SOC %) 1.2 8.9 3.7 1.6 
 Calcium (Ca cmol+ kg-1) 1.8 10.3 3.5 1.4 
 Magnesium (cmol+ kg-1) 0.7 6.5 1.5 0.8 
 Potassium (K cmol+ kg-1) 0.2 0.6 0.3 0.1 
 Aluminium (Al cmol+ kg-1) 0.3 4.6 1.7 1.0 

6.2.7 Coffee terroir dynamics in relation to climate change 
The Rwandan climate is projected to change towards a warmer and wetter 
climate (McSweeney & Semafara, 2011). An increase of 0.35oC per decade 
has been registered over the past 40 years (McSweeney & Semafara, 2011). 
An increase of rainfall between 1.5 and 6.8 mm per year (4 mm yr-1 in 
average) was also noted for the period from 1931-2010 (Muhire & Ahmed, 
2015). Using these projections, we recalculated coffee terroirs under a future 
temperature and rainfall change scenario (holding constant other matrix 
variables of terroir model). Figure 6-10 presents the current coffee terroir 
layer (2015) and the future terroir in 2050. Superimposed, the two layers 
show that extensive areas of current coffee terroirs in Bugesera, and eastern 
ridges and plateau in Ngoma, and Rwamagana districts will become ordinary 
to marginal due to projected climate change (high change or disappearance). 
The greatest victim seems to be Bugesera District, for which the terroir 
model predicts that it will become climatically unsuitable for both coffee yield 
and quality production by 2050. Even along the Kivu lake shoreline (KLS) 
where predictions show that the total area will not change significantly, there 
will be shifts in the terroir belt towards upper Kivu Lake Catchment and the 
Congo-Nile watershed (CND). Buberuka highlands (BH) will experience a 
possible terroir gain due to an increase in temperature by 2050. The changes 
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in climatic variables will affect coffee terroirs which means that it will become 
more difficult and expensive to achieve high quality and high yields (Chemura 
et al., 2016) in coffee terroirs predicted to become marginal, while it will 
become easier for those future terroirs that will become climatically favoured. 
It is important that farmers in current coffee terroirs that will turn marginal 
revise their strategies in the face of climate change. This will include adopting 
new coffee varieties and agro-economic models that are suited to climate 
change (Chemura et al., 2016) with greater tolerance of high temperatures 
and altered pest and disease pressures (Schroth et al., 2009). The 
Government of Rwanda should consider renewing the national policy that 
promotes weather-based insurance (Akter, Krupnik, Rossi, & Khanam, 2016; 
Rao, Gopinath, Prasad, Prasannakumar, & Singh, 2016). This does not apply 
to the Rwandan coffee sector alone as other studies also pointed that coffee 
areas will reduce or will undergo transformative adaptation due to climate 
change (Chemura et al., 2016; Davis, Gole, Baena, & Moat, 2012; Gay, 
Estrada, Conde, Eakin, & Villers, 2006; Jayathilaka, Soni, Perret, Jayasuriya, 
& Salokhe, 2012; Laderach et al., 2017).  

 
Figure 6-10 Projected coffee terroirs shifts in relation to climate change by 2050 as a 
result of increased average temperature by 1.4oC and total annual rainfall by 160mm. 
The shift in coffee terroirs is generally negative and East-West and South-North 
oriented causing a reduction of special coffee grade (≥ 90%) to excellent coffees (87% 
- 90%), and excellent coffees to fine coffee (80-85%). 
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6.2.8 Effect of scale on terroir mapping and uncertainty 
While spatially explicit quantification of coffee yields and quality allows the 
identification of areas of coffee terroirs for specialty coffee production, the 
accuracy and usefulness of the terroir information varies considerably 
depending on the spatial scale and methods used. Terroir analysis required to 
draw together data from numerous sources. The manipulation of data from 
the multiple disciplines, scales and locations raises the question of the choice 
of the appropriate spatial level of analysis, or ‘scale’. Such a question is 
particularly relevant for terroir (Vaudour, 2002). As previously explained we 
used the spatial resolution of the coarsest data source (3 km * 3 km) to 
identify terroirs. This is automatically the smallest terroir possible in the used 
methodology. We also illustrated in Figure 6-2 that this resolution is too 
coarse to capture the coffee field diversity within Rwanda. 

When we consider the uncertainties of the calculated terroirs we have to take 
into account that the source factors have all been quantified at a similar 
national extent with varying spatial resolution and for the terroir mapping all 
aggregated to 3*3km2. The underlying multiple regression models have also 
been (quasi) validated yielding model fits of 60% for location suitability, 60% 
for coffee yield and 64% for coffee quality. All three were independently 
derived and demonstrate that 60% accuracy at 3 km * 3 km grids seems 
realistic given the data sources used. This still leave a large margin of 
uncertainty but the reconstructed relationships point us towards the locations 
where Rwandese coffee terroirs are most likely to be found. Since terroirs as 
such cannot be measured in the field we do not propose a sampling scheme 
to come to independent confirmation of our results. We therefore suggest 
that the produced terroirs maps, especially the extrapolated maps for 2050, 
should be used with caution and treated as locations of higher probability of 
high yields and sensory quality and its possible directions of change in the 
future.  

6.3 Conclusions and outlook 
While determining land suitability for speciality coffee production in Rwanda, 
we applied the concept “terroir” usually known in viticulture to represent an 
eco-geo-pedological unit that can be distinguished as a special or excellent 
coffee-producing entity.  

The most commonly used criteria are climatic, geological, topographical and 
pedological land properties. Yet the appropriate resolution for the spatial 
modelling of terroir is not clearly established so far in previous studies, 
moreover a conceptual methodology for terroir analysis and mapping is not 
straight forward. Thresholds and rules are involved and the methods should 
be crop specific. The present study demonstrated a stepwise approach to 
determine potential coffee terroirs in small-scale farming systems. The 
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modelling approach proposed in this study is flexible and can incorporate 
additional variables whenever needed and dynamic enough to accommodate 
the ever-changing environment. While it is too early to conclude about the 
reality of the delineated terroirs, we suggest there is a need for more 
independent confirmations such as, for example, biochemical fingerprinting of 
coffee produced in these specific terroirs. A simple first confirmation of the 
derived terroirs is the observation that all permanent winners of Cup of 
Excellence competitions (2008-2015) are located within the delineated 
terroirs for special coffees. But we should not forget that the current 
underlying models only have an accuracy of 60%. We consider the proposed 
methodology to be usable in other small-scale coffee producing country, or 
adaptable to other high earning agricultural commodity crops in Rwanda and 
elsewhere. Specifically, cacao seems to be a very similar crop as coffee 
where large gains can be made by applying the terroir concept. The coffee 
terroirs could be directly applied in a similar fashion in Ethiopia and East 
Africa. 
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7 Future directions 
In this study, we developed a stepwise probabilistic approach for coffee 
mapping using an expert Bayesian network model applied to national 
orthophotos dataset. The method provided an accurate representation of the 
spatial distribution of coffee plantations of Rwanda at an overall accuracy of 
87% despite the spectral diversity of coffee trees and the field sizes. We 
demonstrated that spectral-based image classification is not sufficient to 
accurately map small-scale agricultural fields, but when combined with 
object-based classification yields higher accuracy. We anticipated that the 
method has potential for mapping other perennial small scale cropping 
systems in the East African Highlands and elsewhere. This line of research 
consists of a probabilistic approach to mapping mixed and small-scales land 
use systems. Such information is a prerequisite for new land use policies and 
management in countries where land is becoming a scarcer resource every 
year. Such data are also useful for land suitability assessment for agricultural 
value chain improvement.  

Evaluating crop suitability is usually based on traditional land approaches in 
many countries, using only agroecological zoning and soil data. However, 
land use is also influenced by socio-economic and other biophysical factors. 
This study demonstrated how coffee location suitability is influenced by socio-
economic factors as well as biophysical factors, and determined the strength 
of each factor and relationships between factors in locating some coffee in 
sub-optimal growing areas. This study clearly demonstrated that coffee 
distribution is part of a complex land use system where not only many 
different factors play a significant role, but where locally different trade-off 
decisions are made. We demonstrated that coffee cropping systems are not 
only environmentally driven as often assumed. Sometimes human factors 
overtake biophysical land suitability factors, which implies that land 
evaluation should consider human decisions as an equally strong factor as 
physical and bio-climatic factors in shaping present and future land use 
systems and related productivity. Future work could explore linkages 
between natural and human systems in increasing resilience to coffee 
stressors such as increased risk of extreme weather events, and decreasing 
coffee suitability at lower altitudes. The study could be scaled up to a regional 
level to explore the possibility of shifting coffee cultivation following the 
change in environmental niches. Such a study could use Agent Based 
Modelling to simulate human decision making at different levels. Farmers 
make decisions based on local conditions, while the National coffee board 
makes policy decisions based on national plans and ambitions. It would be 
relevant to understand how these different levels interact and lead to new 
patterns of coffee production. This is specifically important given the 
imminent climate changes. 
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At a more detailed level would it be interesting to investigate how coffee 
competes with other crops within a smallholder environment for farmer’s 
attention and investments. A household has only a limited amount of capital 
and labour available that needs to be divided among all farm activities. It is 
very well possible that in specific farm/household configurations coffee 
management is far from optimal due to competing claims on available 
farmers’ resources. Such a research could combine farmer interviews with 
Agent Based Modelling to better understand decision making and emerging 
patterns at farm level. 

Studying crop suitability requires further analysis of local yields. Most 
unsuitable/marginal classified land produces low yields while high suitable 
lands are confirmed by production of high yields. However, this study 
revealed that 60% of current coffee fields are located in appropriate socio-
economic and environmental locations. We also found that coffee yield 
depends on a range of environmental conditions (topography, climate and 
soils) in which coffee is grown and this is not correlated to the site suitability. 
More research is required to better understand how site suitability and coffee 
yield and coffee quality relate. We saw already in Chapter 5 that for some 
management options there is a trade-off between high yields and high 
quality. Only in some cases are both are possible. We identified such win-win 
locations and delineated them as terroirs for sustainable coffee land use.  

Finally, a more quantified study of all uncertainties involved could be 
executed. A systematic Monte Carlo sensitivity analysis using the known data 
variability could give us more realistic estimates of the uncertainties involving 
the coffee terroir map. Some effects of uncertainty propagation might also 
play a role in our methodology of terroir delineation. A good example on how 
this could be done is well explained in Nol, Heuvelink, Veldkamp, de Vries, 
and Kros (2010). A proper execution of such an uncertainty propagation 
analysis goes beyond the scope of this thesis.  
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Summary 
Coffee is an important crop that provides a livelihood to millions of people 
living in developing countries and to over 355 thousand Rwandan families in 
particular. It is the second most traded commodity in the world after 
petroleum. However, coffee business development is lagging behind other 
industries such as for example wine in terms of product differentiation. No 
specific terroirs exist yet, although the origin and provenance of coffee beans 
becomes more important in the global coffee trade. For Rwanda, this 
constitutes a challenge of serving the specialty coffee market because traders 
demand a consistent high quality. Arabica coffee is grown exclusively by 
smallholder farmers. Such small-scale farming system is a challenge for 
specialty coffee market because it involves collecting and mixing coffee from 
many different producers to meet the quantity demand without 
compromising the quality. Hence the aim of this study was to identify 
specialty coffee terroirs of Rwanda, characterize them so that they will 
further serve as tool for policy-making towards protection of geographical 
origins of specialty coffee in Rwanda. 

Mapping coffee terroirs requires relating coffee yield and sensory quality to 
its local production environment. The first activity was to be able to avail 
coffee map which will allow us to link coffee with its geographical production. 
We first developed an expert Bayesian network model to extract the small-
scale coffee fields from aerial orthophotos covering more than 99% of 
Rwanda and on one QuickBird image for the remaining part. The method 
consists of a stepwise adjustment of pixel probabilities, which incorporates 
expert knowledge on size of coffee trees and fields, and on their location. The 
combination of spectral and digital elevation and forest data allowed mapping 
of coffee fields with an overall accuracy of 87%. 

We secondly linked coffee fields with biophysical and socio-economic location 
factors to identify significant factors underlying coffee field location. We 
identified 29 potential factors, including demography, and environmental 
factors such as climate, soil and topography. These factors were reduced to 
17 variables explaining 86 % of the total dataset variability, by factor 
analysis. Using multiple regression analysis, we produced agro-ecological 
based models used to predict suitable location for growing coffee in Rwanda. 
These regional models show that 60 % of the actual coffee farms are located 
in suitable locations. 

Current coffee yields in Rwanda are about 0.7±0.4 t ha-1 which is generally 
below the average yield (1.2 t ha-1) obtained in small scale farming systems 
worldwide. An empirical analysis of coffee yields was made to determine 
which local environmental factors are associated with observed coffee yield 
levels. We third analysed the relationship between current yield level and the 
production environment. The developed yield models were used to estimate 
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the achievable coffee yields within the current smallholder farming systems. 
The resulting yield map shows that within Rwandan smallholder coffee 
systems, yield levels could be up to 40% higher if land management 
improves given local biophysical conditions. We further analysed the potential 
effect of projected near future climate change. Combined projected increase 
of temperature and rainfall revealed that yield levels would potentially 
increase by almost 60% in 2050.  

Fourth, based on the results of annual Cup of Excellence competitions (2008-
2015), we determined the geographical origins of specialty coffees. Multiple 
regression analysis was applied to identify significant biophysical location 
factors determining coffee sensory quality in Rwanda. The developed 
regression models were used to identify the geographic origins, their extent 
and their level of sensitivity to climate change. The study showed that the 
inherent coffee sensory quality in Rwanda is always determined by specific 
topographic and soil properties. Direct improvement of these soil factors in 
often not possible or cost ineffective. Furthermore, can measures such as N-
fertilizer applications, intended to increase yield levels lead to a reduced 
coffee sensory quality. Climate, specifically extreme temperatures, also 
reduces coffee quality regionally. A plausible climate change scenario for 
2050 applied to the developed coffee quality regressions models 
demonstrated that coffee quality will probably have both regional increases 
as well as decreases. The net national change is a slight increase of only 1%, 
suggesting a limited overall climate sensitivity of Rwandan coffee quality for 
projected climate change. 

By integrating Land suitability, achievable yields, and sensory quality 
potentials, in a fuzzy logic based spatial multi-criteria model, we delineated 
speciality coffee terroirs of Rwanda and their geographical indicators. We 
demonstrated also that coffee terroirs of Rwanda are climate sensitive. It is 
important that farmers in current coffee terroirs that will turn marginal revise 
their strategies in the face of climate change. This will include adopting new 
coffee varieties and agro-economic models that are suited to climate change 
with greater tolerance of high temperatures and altered pest and disease 
pressures. The government of Rwanda should consider renewing the national 
the policy accordingly that promote climate change in coffee sector 
developments and applied research.  
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Samenvatting 
Koffie is een belangrijk gewas dat voor miljoenen mensen in 
ontwikkelingslanden een belangrijke bron van inkomsten is. In Rwanda 
voorziet koffie productie 355 duizend Rwandese families in hun 
levensonderhoud. Het is op olie na de meest verhandelde grondstof in de 
wereld. De ontwikkeling van de koffie-industrie blijft echter achter bij andere 
industrieën, zoals bijvoorbeeld wijn in termen van productdifferentiatie. Er 
bestaan nog geen specifieke ‘terroirs’, herkomst gebieden, al hoewel de 
oorsprong en herkomst van koffiebonen steeds belangrijker wordt in de 
wereldwijde koffiehandel. Voor Rwanda vormt dit een extra uitdaging om de 
koffiemarkt te bedienen, omdat handelaren een consistente hoge kwaliteit 
eisen. In Rwanda wordt Arabica koffie uitsluitend geteeld door kleine boeren. 
In dergelijke kleinschalig landbouwsystemen is extra moeilijk om consequent 
genoeg hoge kwaliteit koffie te produceren. Vaak wordt koffie van 
verschillende herkomst  gemengd om aan de vraag te voldoen terwijl dit kan 
leiden tot een afname in de geleverde kwaliteit.  
 
Het doel van deze studie is daarom om de locaties van hoogwaardige koffie, 
zogenaamde ‘terroirs’ in Rwanda te identificeren, ze te karakteriseren en te 
inventariseren, zodat ze als hulpmiddel kunnen dienen voor het verder 
ontwikkelen van de koffie productie in Rwanda. 
 
Het karteren van koffie terroirs vereist een relatie tussen locatie 
geschiktheid, koffieopbrengst de sensorische kwaliteit en de lokale 
productiefactoren. Om deze relaties te kunnen onderzoeken is er een 
koffiekaart nodig om koffie karakteristieken te kunnen koppelen aan de 
locatie karakteristieken. We hebben daarom een nieuw expert Bayesiaans 
netwerkmodel ontwikkeld om de kleinschalige koffievelden te kunnen 
karteren op basis van bestaande orthofoto’s welke meer dan 99% van 
Rwanda beslaan en een QuickBird-afbeelding voor het overige deel van het 
land. De combinatie van spectrale en digitale expert regels en waarneembare 
veldkarakteristieken maakte het mogelijk om koffievelden te inventariseren 
met een totale nauwkeurigheid van naar schatting 87%. 
 
Vervolgens zijn alle koffievelden gekoppeld aan hun biofysische en 
sociaaleconomische locatie karakteristieken. Er zijn 29 mogelijke factoren 
geïdentificeerd welke de geschiktheid van de locatie voor koffie productie kan 
bepalen. Hieronder zijn demografische en omgevingsfactoren zoals klimaat, 
bodem en topografie. Deze factoren werden gereduceerd tot 17 variabelen 
die 86% van de totale dataset variabiliteit verklaarden, door middel van 
factoranalyse. Met behulp van meerdere regressieanalyses, zijn significante 
agro-ecologische modellen gemaakt welke gebruikt zijn om de geschikte 
locaties voor koffie in Rwanda te voorspellen. Deze regionale 
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geschiktheidsmodellen tonen aan dat 60% van de huidige koffievelden  zich 
op geschikte locaties bevinden. 
 
De gemeten koffieopbrengsten in Rwanda liggen ongeveer 0,7 ± 0,4 t ha-1. 
Dit ligt onder het  mondiale gemiddelde (1,2 t ha-1) wat in kleinschalige 
landbouwsystemen wordt verkregen. Een empirische analyse van 
koffieopbrengsten is gemaakt om te bepalen welke lokale omgevingsfactoren 
geassocieerd zijn met waargenomen opbrengstniveaus van koffie. We hebben 
de relatie tussen het huidige opbrengstniveau en de productieomgeving 
geanalyseerd. De ontwikkelde opbrengstmodellen werden gebruikt om de 
haalbare koffieopbrengsten te beoordelen binnen de huidige kleinschalige 
landbouwsystemen. De resulterende opbrengstkaart laat zien dat binnen 
Rwandese kleinschalige koffiesystemen de opbrengstniveaus tot 40% hoger 
kunnen zijn indien plaatselijke biofysische omstandigheden verbeterd worden 
door de boeren. Het potentiële effect van geprojecteerde nabije toekomstige 
klimaatverandering zijn ook bekeken. Gecombineerde geprojecteerde 
toename van de temperatuur en de regenval bleek volgens de gemaakte 
opbrengstmodellen te leiden tot opbrengstniveaus in 2050 welke zo’n 60% 
hoger liggen. 
 
Op basis van de resultaten van de jaarlijkse Cup of Excellence competities in 
Rwanda (2008-2015), hebben we de geografische herkomst van 
hoogwaardige koffie bonen bepaald. De kwaliteitsbeoordelingen van de Cup 
of Excellence competitie is hierbij leidend. Multiple regressieanalyses werden 
wederom  toegepast om significante biofysische locatie factoren te bepalen 
die sensorische koffie kwaliteit in Rwanda bepalen. De ontwikkelde 
regressiemodellen werden gebruikt om de geografische oorsprong, hun 
omvang en hun gevoeligheid voor klimaatverandering te identificeren. Uit de 
studie bleek dat de inherente koffie sensorische kwaliteit in Rwanda altijd 
bepaald wordt door specifieke combinatie van topografische en 
bodemeigenschappen. Directe verbetering van deze bodemfactoren is vaak 
niet mogelijk of niet lonend. Bovendien kunnen maatregelen zoals hogere N-
kunstmest giften, welke bedoeld zijn om de opbrengst te verhogen, juist 
leiden tot een verminderde sensorische kwaliteit van de geproduceerde 
koffie. Klimaat, met name extreme temperaturen, kunnen ook de regionale 
koffiekwaliteit reduceren. Een aannemelijk klimaatverandering scenario voor 
2050 toegepast op de ontwikkelde modellen van koffiekwaliteit laat zien dat 
de koffiekwaliteit waarschijnlijk zowel regionale toenames als afnames zal 
kennen. De netto nationale verandering laat een lichte stijging zien van 
slechts 1%, wat in tegenstelling tot de opbrengsten een beperkte algemene 
klimaatgevoeligheid voor Rwandese koffiekwaliteit suggereert. 
 
Door het integreren van koffie locatie geschiktheid, koffie opbrengsten en de 
sensorische koffie kwaliteit in een fuzzy logic gebaseerde multi-criteria 
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model, hebben we geprobeerd de koffie ‘terroirs’ van Rwanda af te bakenen. 
Deze exercitie laat zien waar de Rwandese koffie ‘terroirs’ zijn en hoe 
klimaatgevoelig hun locaties zijn. Het is daarom belangrijk dat de boeren in 
de huidige koffie ‘terroirs’ hun management strategieën aanpassen aan de 
komende verwachtte klimaatverandering. Dit kan door het introduceren van 
nieuwe koffie variëteiten met een grotere tolerantie van hogere temperaturen 
en neerslag regimes. Ook wordt aangeraden dat de Rwandese overheid zijn 
nationale het beleid moet vernieuwen waarbij de informatie van dit 
onderzoek wordt meegewogen om de koffie productie meer 
toekomstbestendig te maken. 
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