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ABSTRACT: In this study, we propose a new approach for segmenting building roofs from Light Detection And Ranging 
(LiDAR) point clouds. The algorithm takes advantage of height gradients to automatically seed Purposive FastICA 
(PFICA) algorithm. The PFICA algorithm with a novel seeding method is implemented to detect ridge points from point 
clouds of building roofs. Then, 2D coordinates are used to rasterize the detected points. Eventually, morphological 
filtering and thinning algorithms are used to extract inner and external boundaries of the building roofs. In addition, the 
potential of PFICA algorithm in clustering 3D point clouds are discussed. The results obtained on a set of LiDAR point 
clouds demonstrate the efficiency of the developed method in automated segmentation of the building roofs with various 
characteristics. 

1.    INTRODUCTION 
 
With the development of technology in generating topographic data such as LiDAR (Light Detection and Ranging) that 
provide 3D geo-spatial information, new methods are needed for segmenting and modeling of the earth surface. Therefore, 
3D building modeling as an indispensable component in urban and rural areas has been an active research topic.  
LiDAR data provide 3D point clouds, which are not in a grid (pixel) format like images. However, grid format of these 
data can be driven from point clouds as Digital Elevation Model (DEM) or Digital Surface Model (DSM) while these 
products are not as accurate as raw LiDAR data. Thus, direct segmentation and modeling of the buildings from the data 
of laser points is quite necessary.  
In extraction of buildings in urban areas from LiDAR point clouds, some methods can be used to filter and separate the 
point cloud of a building roof from that of the ground. Then, the extracted point clouds correspond to the building roofs 
are considered individually to be classified as the most important part and first step of 3D building reconstruction. In 
object-based classification methods, segmentation step is the fundamental process to have an accurate final classification 
result. Therefore, point clouds of a building roof are classified by using suitable segmentation methods considering 
geometrical planes in the roof (Yan et al., 2015). Finally, building roof can be constructed based on segmentation and 
classification (if been needed) results based on geometrical features.  
Comprehensive literature reviews about various approaches in this field have been made available in (Vosselman, 1999; 
Brenner, 2005; Haala and Kada, 2010). In the literature, various 3D point cloud segmentation methods have been 
developed. The proposed methods are mostly based on signal processing and statistical learning algorithms, which use 
similarity of points, e.g., heights or normal vectors such as region growing (Rottensteiner, 2003; Dorninger and Pfeifer, 
2008), RANdom Sample Consensus (RANSAC) method (Tarsha-Kurdi et al., 2008; Hebel and Stilla, 2012), Hough 
transformation (Maas and Vosselman, 1999; Alharthy and Bethel, 2002), and clustering methods (Sampath and Shan, 
2010; Shi et al., 2011; Kong et al., 2013). Building roof segmentation and reconstruction methods can be categorized into 
two groups with regard to the use of ridge information; 1- Methods that extract building roof ridges (Sampath and Shan, 
2010; Kong et al., 2013; Fan et al., 2014; Yan et al., 2015), 2- Methods that do not extract building roof ridges as a 
preprocess (Huang et al., 2013; Xiong et al., 2014; Song, 2015). Since our proposed method uses ridge information, we 
dedicate our literature review to group one studies. For instance, Sampath and Shan (2010) extract breakline points (ridges) 
by computing the dimensionality of each point using eigenvalues before clustering the point clouds and segmentation of 
building roof. However, their proposed breakline point extraction method cannot extract all of the breakline points 
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specially the points on the external boundaries of the buildings. They deduced that non-planar (breakline) points can 
influence the accuracy of the final segmentation results. Furthermore, they utilized an automated fuzzy K-means algorithm 
to segment the building roofs after excluding non-planer points. Yan et al. (2015) extracted roof ridges and internal 
boundaries between adjacent roof facets to generate 2D topology of the building roofs. Then, they used an improved 2D 
Snake algorithm to segment the building roofs. However, their proposed method is based on several parameters to be 
predefined. In a different study, Fan et al. (2014) developed a method that starts with detecting roof ridges using RANSAC 
algorithm. Further, the extracted roof ridges are utilized to indicate the location and direction of the gabled roofs. They 
showed that their proposed method can segment building roofs with high correctness and completeness ratio. However, 
their method fails where two roof facets are immediately adjacent to each other and when the point cloud density is not 
high enough. Kong et al. (2013) used ridge lines to estimate geometrical planes after using Fuzzy K-means and K-plane 
clustering methods to efficiently segment the building roofs. In addition, they demonstrated that their proposed method 
can rapidly and appropriately classify the building roofs. Their developed method fails to extract all the ridge lines directly 
and they are needed to be estimated based on additional rules.  
Recently, Independent Component Analysis (ICA) has been studied for remote sensing applications to improve the 
efficiency of the existing methods or to develop a new model to solve the known quandaries (Bita et al., 2006; Birjandi 
and Datcu, 2010; Chen et al., 2012). In these studies, efficiency of the ICA-based methods in signal and image processing 
topics are demonstrated. However, ICA-based methods’ performance was not investigated for 3D LiDAR point clouds 
applications. Besides, ICA algorithm is defined as Blind Source Separation (BSS) method, which limits the use of ICA in 
object detection and segmentations applications. Purposive FastICA (PFICA) was developed as an improved FastICA 
algorithm that overcomes the limitations of the FastICA by giving ability to be targeted to extract a specific feature from 
remote sensing images (Ghaffarian and Ghaffarian, 2014).  
In this paper, we present a new approach based on Purposive FastICA (PFICA) algorithm and morphological filtering to 
automatically segment the building roofs. Our proposed method starts with extracting ridges in building roof using a new 
PFICA seeding method based on gradients of the height values of the laser points to efficiently detect ridge points from 
LiDAR point clouds. Then, the detected points are rasterized into 2D image space as a binary image. Finally, 
morphological filtering and thinning algorithms are used to extract final building roof segmentation results. In addition, 
potential of the PFICA algorithm in processing (clustering) LiDAR point clouds is demonstrated and discussed. 

2.   BASICS 
 

2.1. ICA 
 
Independent Component Analysis (ICA) is known as a Blind Source Separation (BSS) technique (Herault and Jutten, 
1986). Further, Hyvarinen (1998) assumed signals as sources and implemented ICA as a blind signal separation method. 
He used ICA to declare a set of random variables as linear combinations of statistically independent component variables. 
Let 𝑉𝑉 = (𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘)𝑇𝑇  as a k-dimensional source signal vector whose components are statistically independent, and 
𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)𝑇𝑇as an n-dimensional observed signal vector have a linear combination of independent source signals 
based on an unknown mixing matrix 𝑈𝑈as follow: 
 
𝑋𝑋 = 𝑈𝑈𝑉𝑉                                                                                                                                                                               (1) 
 
In this letter, the vector 𝑋𝑋 is known from LiDAR point clouds data. The source vector 𝑉𝑉is the goal of the ICA algorithm.  
To compute source vector 𝑉𝑉from the remotely sensed vector 𝑋𝑋an unmixing matrix 𝑅𝑅 is utilized as follow: 
 
𝑊𝑊 = 𝑅𝑅𝑋𝑋                                                                                                                                                                               (2) 
 
In the equation above, 𝑊𝑊is an estimation of source signals, where 𝑊𝑊 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑚𝑚)𝑇𝑇are as independent as possible 
and 𝑈𝑈is the inverse of𝑅𝑅. 
To achieve best estimation of the source signal 𝑉𝑉from ICA algorithm three assumptions are considered as follows: 1-
Number of estimated components (sources) equals to number of inputs signal vectors𝑋𝑋; 2- The components in 𝑉𝑉 are 
statistically independent; 3- Independency of the components are based on non-Gaussianity. 
 
 



 

2.2. FastICA 
 
FastICA algorithm speeds up the ICA algorithm without a major effect on efficiency of the results. FastICA algorithm 
maximizes non-Gaussianity based on a fixed-point iteration (Hyvärinen, 1999), which can also been computed using 
Newton iteration method. FastICA starts with centering input vector data 𝑋𝑋using equation below: 
 
𝑋𝑋 = 𝑋𝑋 − 𝐸𝐸{𝑋𝑋}                                                                                                                                                                                         (3) 
 
Then, in order to uncorrelate the components (with a variation value one) the input vector data 𝑋𝑋is whitened as follow: 
 
𝛾𝛾 = 𝐸𝐸𝑇𝑇𝑋𝑋

√𝐷𝐷
                                                                                                                                                                                          (4) 

 
where 𝐷𝐷is the diagonal matrix of eigenvalues of covariance matrix (𝐸𝐸{𝑋𝑋𝑋𝑋𝑇𝑇}). 𝐸𝐸is the matrix of eigenvalues. Indeed, the 
FastICA algorithm maximizes the non-Gaussianity of the projection 𝑅𝑅𝑇𝑇𝛾𝛾 for data𝑋𝑋, and finds the direction from Eq. (4). 
In this letter, function 𝑔𝑔(𝛼𝛼)is used as a non-quadric function to extract independent components as follows: 
 
𝑔𝑔(𝛼𝛼) = log cosℎ(𝛼𝛼)                                                                                                                                                                          (5) 
 
𝑔𝑔′(𝛼𝛼) = tanℎ(𝛼𝛼)                                                                                                                                                                                (6) 
 
𝑔𝑔′′(𝛼𝛼) = 1 − tanℎ2(𝛼𝛼)                                                                                                                                                                    (7) 
 
where 𝑔𝑔′(𝛼𝛼) and 𝑔𝑔′′(𝛼𝛼) are the first and second derivatives of function 𝑔𝑔(𝛼𝛼), respectively. 
Then, the unmixing matrix 𝑅𝑅 is iteratively renewed to extract final independent components using equation below: 
 
𝑅𝑅 = 𝐸𝐸{𝛾𝛾𝑔𝑔′(𝑅𝑅𝑇𝑇𝛾𝛾)} − 𝐸𝐸{𝑔𝑔′′(𝑅𝑅𝑇𝑇𝛾𝛾)}𝑅𝑅                                                                                                                                                     (8) 
 
Each iteration is finalized by computing the normal value of 𝑅𝑅to increase the stability of the algorithm: 
 
𝑅𝑅 = 𝑅𝑅

‖𝑅𝑅‖�                                                                                                                                                                                          (9) 
 
The fixed-point iteration is stopped when the changes in the direction of 𝑅𝑅 are very small, which can be predefined as a 
threshold value. 

 

2.3. PFICA 
 
Purposive FastICA (PFICA) algorithm (Ghaffarian and Ghaffarian, 2014) improves FastICA by adding capability of 
initializing unmixing matrix 𝑅𝑅 using Moore-Penrose pseudo inverse matrix. Consequently, by seeding the PFICA 
algorithm final results become stable, and thus, selection of components can be automated with an appropriate 
initialization. 
Let the reference component 𝑍𝑍 is one estimated component and 𝑅𝑅0 is the corresponding column of the unmixing matrix 
that can be computed as follow: 
 
𝑍𝑍 = 𝑋𝑋𝑅𝑅0                                                                                                                                                                                               (10) 
 
where 𝑍𝑍 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛)𝑇𝑇, n is the number of samples. Therefore, 𝑅𝑅0as an estimated component can be calculated using 
equation below: 
 
𝑅𝑅0 = 𝑋𝑋†𝑍𝑍                                                                                                                                                                                          (11) 
 
where 𝑋𝑋† is the Moore-Penrose pseudo inverse of the matrix 𝑋𝑋. Finally, 𝑅𝑅0matrix is utilized as seeding matrix for the 
FastICA algorithm instead of randomly initializing procedure. 



 

3. THE PROPOSED METHOD 
 
The PFICA algorithm was introduced for automatically detecting buildings from high resolution images. In this case 
bands of the images are used as input data, and seeding operation is based on statistical relations between pixel values. 
Then, result is generated by maximizing the non-Gaussianity between pixel values. However, in LiDAR point clouds 
there are only geometric relations between point clouds, which are not appropriate information for segmenting building 
roofs. Thus, first step is to compute appropriate information as input data 𝑋𝑋. To do so, normal vectors for each point are 
calculated by choosing points using k-nearest neighborhood (K-nn) method (Sankaranarayanan et al., 2007). The k-nearest 
neighborhood method is specially selected because it allows selecting as many as neighborhood points that are needed in 
computing normal vectors. The normal vectors are selected as input data for PFICA algorithm. The input data matrix 𝑋𝑋 
becomes a three dimensional matrix. In addition, considering the rules to obtain best estimation results from the ICA 
algorithm, number of estimated components should equals to number of input signals 𝑋𝑋. Therefore, the PFICA algorithm 
should be seeded with a three dimensional matrix (data), indeed, three seeding information are needed.  
Initially, gradients between the heights of the points are computed for each point for 𝑚𝑚 number of nearest points. The 
distances between points are calculated based on three dimensional Euclidean equation. For example, if 𝑚𝑚 has a value of 
three, each point has three gradients for three of nearest points. Then, 𝑝𝑝 numbers of probes are randomly distributed among 
point clouds. These probes start to evolve toward ridges based on following rules:  

1) Find 𝑚𝑚 number of nearest points using three dimensional Euclidean distance. 

             
                               (a)                                                   (b)                                                                     (c)  
 

                              
                                      (d)                                                       (e)                                                           (f)  
 

                                        
                                    (g)                                                           (h)                                                          (k)  
 
Fig. 1.  The illustration of steps of the proposed automatic building roof segmentation method for test building #1. (a) The 
results for seeding PFICA algorithm, where the red points are the seeding points, (b), (c) and (d) are the results of PFICA 
algorithm after implementing binary k-means for IC1, IC2 and IC3, respectively, (e) 2-D illustration of the points after 
refinement as input for inner boundary extraction, (f) morphological filtering result after rasterizing the inner ridge points, 
(g)  Morphological thinning result,  (h) external boundary extraction result overlaid on morphological filtering result for 
external ridge points, (k) final result after  merging inner and external segments and executing line simplification algorithm 
(Douglas-Peucker algorithm). 



 

2) Move to the points that have lowest height among the points which are selected in previous step with no more 
than a specified threshold value of height gradients. The threshold based on height gradients prevents points from 
evolving toward noise points. 

3) Probe cannot move to the points that previously have crossed that point.  

The evolution process stops when there is not a new point which satisfies the above-mentioned rules (Fig. 1a). The 
detected points are used as first seeding data for PFICA algorithm. Since the detected points denote the ridge points and 
our goal is to target the PFICA algorithm to detect ridges, the next seeding data are generated randomly from the rest of 
the point clouds. 
After generating the seeding matrix 𝑊𝑊, the PFICA algorithm is implemented. Since the ridge points are seeded as the first 
matrix, the IC1 is the component that involves the ridge information. As the final step of PFICA algorithm IC1 is clustered 
using K-means algorithm with two number of clustering. Then, to remove the remaining points which are not ridge points 
a method based on eigenvalues is used to find and exclude remaining planer points from remaining points very similar to 
the method which is used in (Sampath and Shan, 2010). The differences are that in our proposed method k-nn method is 
used to find points for computing normal of the points and unlike their method we exclude the planer points instead of 
non-planer points (Fig. 1e). Note that these points are only used for delineating internal ridges, and whole points which 
are resulted from binary clustering of the IC1 are used for delineating external boundaries (Fig. 1h). 
In the final step the points in 2-D space is rasterized using the x and y coordinates of the points. Accordingly, by using 
the morphological filtering building roofs are segmented. For external boundaries in morphological operations after 
rasterizing the points, morphological dilation and filling are used and boundary of the object is traced. In addition, for 
internal boundaries, morphological dilation, opening, closing and thinning algorithms are implemented. As a post process 
floating internal boundaries are extended to intersect to the external boundaries. Eventually, Douglas-Peucker algorithm 
(Hershberger and Snoeyink, 1992) is implemented as line simplification method to obtain straight lines. 

4. RESULTS AND DISCUSSIONS 
 

          
(a)                                                                                 (b) 

           
(c)                                                                             (d) 

Fig. 2.  Segmentation results for test buildings #1 (a), #2 (b), #3 (c) and #4 (d) overlaid on very high resolution aerial 

images. 



 

The laser scanning data that is used for the experiments was acquired over Istanbul, Turkey. The data set has an average 
point spacing of 6 points per 𝑚𝑚2. Fig. 2 illustrates the test buildings and the results of our proposed method in segmenting 
building roofs. These buildings were particularly selected to demonstrate and test the efficiency of the developed method 
in divers and complicated building roofs segmentation from LiDAR point clouds.  
The proposed method is evaluated based on the number of segments that are extracted using our developed method and 
actual number of segments same as is used by Fan et al. (2014). The results are compared to very high resolution aerial 
images for qualitative evaluation through visual inspections. 
In addition, quantitative results of the developed method are provided considering the number of facets that is segmented 
by the developed method and the completeness accuracy value for the results are computed (Table I). 
Three of four building roofs are segmented with correct number of facets using the proposed method. However, building 
roof #2 is segmented into 7 number of facets instead of 11 number of facets and produces 64% completeness performance 
in segmenting building roof from LiDAR point clouds. This low accuracy value is due to proximity of the points around 
inner ridges. Furthermore, number of points that is used in computing normal vectors is important and influences the 
results. In this study, 24 nearest number of points are selected using k-nn algorithm to compute normal vector for each 
point. This value is selected based on the least number of points that PFICA needs to detect ridge point clouds. This 
number of points in normal vector calculation might lead to miss ridges which are near than selected value. Accordingly, 

TABLE I 
QUANTITATIVE EVALUATION OF THE PROPOSED METHOD 

Building 
Roof 

Number of 
segmented roof 

facets 

Actual number of roof 
facets Completeness (%) 

#1 4 4 100 
#2 7 11 64 
#3 10 10 100 
#4 2 2 100 

Mean 91 
 

 

                
                                               (a)                                                                              (b) 

              
                                               (c)                                                                              (d) 
Fig. 3.  Binary k-means clustering of IC2 results for test buildings #1 (a), #2 (b), #3 (c) and #4 (d). 
 
  



 

a facet is missed in such a challenging case that point clouds denoting ridges are so close to each other. Furthermore, as 
it can be seen from Fig. 2b, in upper side of #2 building is a gabled roof which is also detected as one facet instead of two 
facets due to geometric proximity of the point clouds around ridges. Buildings #1, #3 and #4 are segmented with 100% 
completeness accuracy values that demonstrate the reliability of the developed method in such cases. In building #3, the 
building has several connected facets which are detected and segmented correctly not only in terms of number of facets 
but also in terms of geometrical precision. In buildings #1 and #4 the number of facets is correctly extracted; however, 
the geometrical precision is low where the ratio of the noise points on the roof of the building is high. Finally, mean 
completeness accuracy value of 91% is computed for all building roofs, which shows the efficiency of the developed 
method in automatically segmenting building roofs.  
Besides, results of the IC2 after implementing binary k-means clustering for the building roofs are illustrated in Fig. 3 to 
demonstrate the potential of the PFICA algorithm in clustering point clouds. Since we have three results as independent 
components which one of them is seeded for detecting ridge points, the other components are seeded randomly. IC2 results 
for buildings #3 and #4 are quite promising. While IC2 results for buildings #1 and #2 are clustered the most similar point 
clouds in terms of normal vectors that merges the closest point clouds. However, in right side and upper side of the 
building roof #2 the small planes are also successfully distinguished from their nearside different planer points. Altogether, 
as it can be seen from Fig. 3, the PFICA algorithm has the potential of clustering point clouds directly instead of detecting 
ridge points. The most important challenges in this way are the limited number of resulted ICs and generating appropriate 
seeding of PFICA algorithm. 

5. CONCLUSION 
 
In this letter, we proposed a novel method for automated building roof segmentation using LiDAR point clouds. The 
method is based on PFICA algorithm with a novel seeding technique and a new approach of morphological filtering. The 
detected ridge points are rasterized using x and y coordinates of the points to conduct morphological operations. By using 
gradients of the height data the distributed probes were guided and the PFICA algorithm was seeded and targeted to extract 
ridge points through building LiDAR point clouds. The new seeding approach leads to detecting ridge points with PFICA 
algorithm in high accuracy ratio. As it can be seen from Fig. 3 and discussed, the PFICA has the potential of clustering 
point clouds directly as well as detecting ridge points. However, seeding of PFICA algorithm and limited number of ICs 
are the remaining problems to be solved. Another limitation of the PFICA algorithm which was observed during this study 
is that the PFICA algorithm, considering the seeding points, extracts the data which are in larger number. This is also the 
reason that we used 24 number of points in k-nn for computing normal vectors. However, it leads to merging very close 
ridge points in the building roofs. Finally, the building roof segmentation results demonstrate the efficiency of the 
developed method in automatically segmenting building roofs from LiDAR point clouds.  
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