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SUMMARY

This paper studies state synchronization of homogeneous time-varying networks with diffusive full-state
coupling or partial-state coupling. In the case of full-state coupling, linear agents as well as a class of nonlin-
ear time-varying agents are considered. In the case of partial-state coupling, we only consider linear agents,
but, in contrast with the literature, we do not require the agents in the network to be minimum phase or at
most weakly unstable. In both cases, the network is time-varying in the sense that the network graph switches
within an infinite set of graphs with arbitrarily small dwell time. A purely decentralized linear static protocol
is designed for agents in the network with full-state coupling. For partial-state coupling, a linear dynamic
protocol is designed for agents in the network while using additional communication among controller vari-
ables using the same network. In both cases, the design is based on a high-gain methodology. Copyright ©
2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of synchronization among agents in a multi-agent system has received substantial
attention in recent years, because of its potential applications in cooperative control of autonomous
vehicles, distributed sensor network, swarming and flocking, and others. The objective of synchro-
nization is to secure an asymptotic agreement on a common state or output trajectory through
decentralized control protocols (see [1–4] and references therein).

State synchronization inherently requires homogeneous networks (i.e., agents have identical
dynamics). Therefore, in this paper, we focus on homogeneous networks and state synchronization.
So far, most work has focused on state synchronization based on diffusive full-state coupling, where
the agent dynamics progress from single-integrator and double-integrator dynamics (e.g., [5–9])
to more general dynamics (e.g., [10–13]). State synchronization based on diffusive partial-state
coupling has also been considered (e.g., [13–19]).

The extension from fixed networks to time-varying networks is generally carried out in the frame-
work of switching, using the concepts of dwell-time and average dwell-time. A critical assumption
in most literature is that the network switches among a finite set of network graphs. For example, see
[5], and [9] (full-state coupling) and [17, 18, 20, 21] (partial-state coupling). Also, the time-varying
network can be piecewise constant and frequently connected (e.g., [12, 22]), uniformly connected
(e.g., [13]), and uniformly connected on average (e.g., [19]) In the case of partial-state coupling,
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STATE SYNCHRONIZATION OF LINEAR AND NONLINEAR AGENTS 3759

restriction is always imposed on the agent dynamics. That is, the poles of agent dynamics should be
in the closed left-half complex plane [13, 19] or the zeros of agent dynamics should be in the closed
left-half complex plane [20].

Some authors have also studied synchronization in networks with nonlinear agent dynamics (e.g.,
[23–28]). Explicit controller design for nonlinear networks has, to a large degree, centered on the
relatively strict assumption of passivity. Passivity can in some cases be ensured by first applying
local prefeedbacks to the system; however, this requires the system to be introspective. The author
in [29] addresses the issue of state synchronization for homogeneous networks consisting of SISO,
non-introspective agents. However, all the aforementioned nonlinear work consider networks with
partial-state coupling and are not applicable to the case of full-state coupling.

1.1. Contribution of this paper

In this paper, we address several challenges in the problem of state synchronization based on
diffusive full-state coupling or partial-state coupling:

� We study state synchronization for general agent dynamics with full-state coupling in time-
varying networks. Most works in the literature address a finite set of network graphs, while the
network in this paper can switch in an infinite set of network graphs that is defined based on
some rough information of the graph. Moreover, the dwell-time can be arbitrarily small as long
as it does not trigger chattering.
� We study state synchronization for a class of general nonlinear time-varying full-state coupled

agents in time-varying networks. In that case, agents are not right-invertible, and previous
results mentioned earlier are not applicable.
� We also study state synchronization for general non-minimum-phase partial-state coupled lin-

ear agents in time-varying networks. In other words, agents can have both poles and zeros in
the open right-half complex plane.

In the case of full-state coupling, a purely decentralized controller, based on a high-gain method-
ology, is designed for each agent such that all agents achieve state synchronization under any
time-varying network that belongs to the set of network graphs. In the case of partial-state cou-
pling, a high-gain observer based controller is designed for each agent, where an additional standard
communication channel is used for the exchange of controller states.

1.2. Notations and definitions

Given a matrix A 2 Cm�n, A0 denotes its conjugate transpose, kAk is the induced 2-norm, and
�i .A/ denotes its i 0th eigenvalue whenm D n. A square matrix A is said to be Hurwitz stable if all
its eigenvalues are in the open left-half complex plane. We denote by blkdiag¹Aiº, a block-diagonal
matrix with A1; : : : ; AN as the diagonal elements, and by col¹xiº, a column vector with x1; : : : ; xN
stacked together, where the range of index i can be identified from the context. A˝ B depicts the
Kronecker product between A and B . In denotes the n-dimensional identity matrix, and 0n denotes
n � n zero matrix; sometimes, we drop the subscript if the dimension is clear from the context.

A weighted directed graph G is defined by a triple .V; E ;A/ where V D ¹1; : : : ; N º is a node set,
E � V � V is a set of pairs of nodes indicating connections among nodes, and A D Œaij � 2 RN�N

is the adjacency matrix with aij > 0 iff .i; j / 2 E . Each pair in E is called an edge. A path from
node i1 to ik is a sequence of nodes ¹i1; : : : ; ikº such that .ij ; ijC1/ 2 E for j D 1; : : : ; k � 1. A
directed tree with root r is a subset of nodes of the graph G such that a path exists between r and
every other node in this subset. A directed spanning tree is a directed tree containing all the nodes
of the graph. For a weighted graph G, a matrix L D Œ`ij � with

`ij D

²PN
kD1 aik; i D j;
�aij ; i ¤ j;

is called the Laplacian matrix associated with the graph G. In the case where G has non-negative
weights, L has all its eigenvalues in the closed right-half plane and at least one eigenvalue at zero
associated with right eigenvector 1.
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Definition 1
Let LN � RN�N be the family of all possible Laplacian matrices associated with a graph with
N agents. We denote by GL the graph associated with a Laplacian matrix L 2 LN . Then, a time-
varying graph Gt with N agents is defined by

Gt .t/ D G�.t/;

where � W R ! LN is a piecewise constant, right-continuous function with minimal dwell-time �
[30], that is, �.t/ remains fixed for t 2 Œtk; tkC1/, k 2 Z and switches at t D tk , k D 1; 2; : : : where
tkC1 � tk > � for k D 0; 1; : : :. For ease of presentation, we assume t0 D 0.

2. TIME-VARYING NETWORK COMMUNICATION

In this paper, we consider time-varying networks composed of N identical agents of the form

Pxi D Axi C Bui C f .xi ; t /;

yi D Cxi ;
.i D 1; : : : ; N / (1)

where xi 2 Rn, ui 2 Rm, and yi 2 Rp are the state, input, and output of agent i , A 2 Rn�n; B 2
Rn�m; C 2 Rp�n are constant matrices. The system is either completely linear or A;B , and f
are in the so-called strict feedback form (details will be discussed later). The agents have no access
to their own states. The only information is from the network, that is, a linear combination of its
own output relative to that of other neighboring agents. In particular, each agent i 2 ¹1; : : : ; N º has
access to the quantity,

�i .t/ D

NX
jD1

aij .t/.yi .t/ � yj .t//; (2)

where aij .t/ > 0 and ai i .t/ D 0, are piecewise constant and right-continuous functions of time t ,
indicating time-varying communication among agents. This time-varying communication topology
of the network can be described by a weighted, time-varying graph Gt with nodes corresponding to
the agents in the network and the weight of edges at time t given by the coefficient aij .t/. Specif-
ically, aij .t/ indicates that at time t there is an edge with weight aij in the graph from agent j
to agent i . The Laplacian matrix associated with Gt is defined as Lt D Œ`ij .t/�. In terms of the
coefficients of Lt , �i can be rewritten as

�i .t/ D

NX
jD1

`ij .t/yj .t/: (3)

We refer to this network as partial-state coupling. The following assumption on the network
graph is needed.

Assumption 1
At each time t , the graph Gt .t/ describing the communication topology of the network contains a
directed spanning tree.

Based on the aforementioned assumption, it then follows from [9, Lemma 3.3] that the Laplacian
matrix Lt at time t has a simple eigenvalue at the origin, with the corresponding right eigenvector 1
and all the other eigenvalues are in the open right-half complex plane. Let �t;1; : : : ; �t;N denote the
eigenvalues of Lt such that �t;1 D 0 and Re.�t;i / > 0, i D 2; : : : ; N .

Next, we will define a set of time-varying graphs based on some rough information of the graph.
Before doing so, we first define a set of fixed graphs, based on which the set of time-varying graphs
is defined.
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Definition 2
For any given real numbers ˇ; � > 0 and a positive integer N , the set GN

ˇ;�
is an infinite set of

weighted, directed graphs composed of N nodes satisfying the following properties:

� The eigenvalues of the corresponding Laplacian matrixL, denoted by �1; : : : ; �N , satisfy �1 D
0, Re.�i / > ˇ for i D 2; : : : ; N .
� We have kLk < � .

Definition 3
For any given real numbers ˇ; �; � > 0 and a positive integer N , the set G�;N

ˇ;�
is the set of all

time-varying graphs Gt for which

Gt .t/ D G�.t/ 2 GN
ˇ;�

for all t 2 R, where � W R ! LN is a piecewise constant, right-continuous function with minimal
dwell-time � .

Remark 1
Note that the minimal dwell-time is required to avoid chattering problems. However, it can be
arbitrarily small.

Remark 2
If we have a finite set of network graphs each of which contains a directed spanning tree, then there
always exists a set of the form GN

ˇ;�
for suitable �; ˇ > 0, and N containing these graphs.

The agents in the network achieve state synchronization if

lim
t!1

.xi .t/ � xj .t// D 0; (4)

for all i; j 2 ¹1; : : : ; N º.
Note that if C has full column rank, without loss of generality C D I , and the quantity �i then

becomes

�i .t/ D

NX
jD1

aij .t/.xi .t/ � xj .t// D

NX
jD1

`ij .t/xj .t/; (5)

which means agents have access to the relative state of their neighboring agents in the network. This
kind of network is called full-state coupling.

3. LINEAR AGENTS WITH FULL-STATE COUPLING

In this section, we consider linear agents with full-state coupling. The agent dynamics are in the
form of

Pxi D Axi C Bui ; .i D 1; : : : ; N /: (6)

Without loss of generality, we assume that .A;B/ is stabilizable, and the matrix B is full column
rank.

We then formulate the state synchronization problem for time-varying networks with full-coupled
linear agents as follows.

Problem 1
Consider a multi-agent system described by (6) and (5). For any real numbers �; ˇ; � > 0, and a
positive integerN that defines a set of time-varying network graphs G�;N

ˇ;�
, the state synchronization

problem with a set of time-varying network graphs G�;N
ˇ;�

is to find, if possible, a linear static protocol
of the form,

ui D F �i ; (7)
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such that, for any time-varying graph Gt 2 G�;N
ˇ;�

and for all initial conditions of agents, state
synchronization among agents is achieved.

3.1. Protocol design

In the case of full-state coupling, the matrix C is an identity matrix that implies agents .A;B; C /
are non-right-invertible. Thus, previous results for partial-state coupling cannot be used in this case
because they require the system to be right-invertible.

According to [31, Theorem 1], there exists non-singular transformation matrix Tx 2 Rn�n and
Tu 2 Rm�m such that . OA; OB/ D .T �1x ATx; T

�1
x BTu/. Moreover, OA and OB have the following

special structure:

OA D

0
B@
A1d

: : :

Amd

1
CAC

0
B@
B1d

: : :

Bmd

1
CAE;

OB D

0
B@
B1d

: : :

Bmd

1
CA ;

where

Ajd D

�
0 I�j�1
0 0

�
; Bjd D

�
0

1

�
; E D

0
B@
E11 : : : E1m
:::

: : :
:::

Em1 : : : Emm

1
CA :

Note that
Pm
jD1 �j D n. We define

Ad D diag.A1d ; : : : ; Amd / and Bd D OB D diag.B1d ; : : : ; Bmd /:

Define OF D diag. OF1; : : : ; OFm/ and choose OFj D �B 0jdPj where Pj > 0 is the unique solution of
the following algebraic Riccati equation:

A0jdPj C PjAjd � 2ˇPjBjdB
0
jdPj C I�j D 0: (8)

It is well known that Ad C�Bd OF is Hurwitz stable for each non-zero eigenvalue � of the Laplacian
matrix L in light of Re.�i / > ˇ for all i D 2; : : : ; N .

Let

D" D

0
B@
"��1

: : :

"��m

1
CA ; S" D

0
B@
S1"

: : :

Sm"

1
CA

with Sj" D diag.1; : : : ; "�j�1/. Choosing F D TuD" OFS"T
�1
x , the static protocol (7) can be

designed as

ui D TuD" OFS"T
�1
x �i : (9)

We state the main result in this section as follows.

Theorem 1
Consider a multi-agent system described by (6) and (5) with .A;B/ stabilizable. Let any real num-
bers �; ˇ; � > 0 and a positive integer N be given, and hence a set of time-varying network graphs
G�;N
ˇ;�

be defined.
In that case, the state synchronization problem stated in Problem 1 is solvable. In particular, the

protocol (9) with " sufficiently small achieves state synchronization for any time-varying graph
Gt 2 G�;N

ˇ;�
.
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Before we prove the aforementioned theorem, we need a preliminary lemma.

Lemma 1
The matrix

QAt D .IN�1 ˝ Ad /C .Ut ˝ Bd OF /

is asymptotically stable for any upper diagonal matrix Ut 2 R.N�1/�.N�1/ with kUtk < Q� whose
eigenvalues satisfy Re.�i / > ˇ for all i D 1; : : : ; N � 1. Moreover, there exists QP > 0 and a small
enough 	 > 0 such that

QA0t
QP C QP QAt 6 �	 QP � I (10)

is satisfied for all possible upper diagonal matrices Ut .

Proof
If we define

QAt;i D Ad C �iBd OF

and

QB D Bd OF ;

then,

QAt D

0
BBBB@

QAt;1 	1;2 QB � � � 	1;N�1 QB

0
: : :

: : :
:::

:::
: : :

: : : 	N�2;N�1 QB

0 � � � 0 QAt;N�1

1
CCCCA ;

where �i is eigenvalues of Ut and 	i;j D ŒUt �ij for j > i is the bounded upper diagonal elements
of U . Define

P D diag.P1; : : : ; Pm/

with P1; : : : ; Pm given in (8). Then, we have

QA0t;iP C P
QAt;i 6 �I:

Define

NPm D

0
BBBB@

˛i1P 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 ˛imP

1
CCCCA ;

NAt;m D

0
BBBB@

QAt;1 	1;2 QB � � � 	1;m QB

0
: : :

: : :
:::

:::
: : :

: : : 	m�1;m QB

0 � � � 0 QAt;m

1
CCCCA ;

for m D 1; : : : ; N � 1. We will next use a recursive argument. For m D 1 and ˛i1 D N , we have

NA0t;1
NP1 C NP1 NAt;1 D ˛

i1. QA0t;1P C P
QAt;1/ < �NI:

Assume that for some m D j , we have for some ˛i1 ; : : : ˛ij that

A11 D NA
0
t;j
NPj C NPj NAt;j < �.N � j C 1/I (11)

We will show that for m D j C 1 there exists ˛ijC1 such that

NA0t;jC1
NPjC1 C NPjC1 NAt;jC1 < �.N � j /I (12)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3758–3776
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Note that

NA0t;jC1
NPjC1 C NPjC1 NAt;jC1 D

�
A11 A12
A012 �˛

ijC1I

�

where A11 is defined by (11) while A12 is given by

A12 D

0
B@
˛i1	1;N�j QBP

:::

˛ij	j;N�j QBP

1
CA

Note that the coefficients 	1;N�j are unknown but bounded because the norm of U is bounded and
hence there exists M such that kA12k < M . Via Schur complement, it is easy to verify that for
given bound M there exists ˛ijC1 sufficiently large such that the matrix�

A11 A12
A012 �˛

ijC1I

�
< �.N � j /I:

for all matrices A11 and A12 such that A11 < �.N � j C 1/I and kA12k < M . This guarantees
that (12) is satisfied.

Using a recursive argument, we find that there exist ˛i1 ; : : : ; ˛iN�1 such that

QA0t
NPN�1 C NPN�1 QAt 6 �2I:

because QAt D NAt;N�1. This obviously implies that for 	 small enough we have (10) for QP D NPN�1.
�

Proof of Theorem 1
The closed-loop system of the static protocol (7) and the agent (6) is written as

Pxi D Axi C BF �i :

Define Nxi D xN � xi and Ǹij .t/ D `ij .t/ � `Nj .t/ for i 2 ¹1; : : : ; N � 1º. Then, we obtain

PNxi D A Nxi C BF

N�1X
jD1

Ǹ
ij .t/ Nxj (13)

for i D 1; : : : ; N � 1. We define NLt 2 R.N�1/�.N�1/ such that Œ NLt �ij D Ǹij . In that case, the
eigenvalues of NLt are equal to the nonzero eigenvalues of Lt and kLtk < � implies k NLtk 6 N� Dp
N� .
Next, we will prove that the system (13) is asymptotically stable for any time-varying graph

Gt 2 G�;N
ˇ;�

, which immediately implies that limt!1.xi .t/ � xN .t// D 0 for i D 1; : : : ; N � 1

under any time-varying graph Gt 2 G�;N
ˇ;�

. Let

Nx D

0
B@
Nx1
:::

NxN�1

1
CA :

The error dynamics of the whole network can be written as

PNx D .IN�1 ˝ A/ Nx C . NLt ˝ BF / Nx: (14)

Define NQ�1t NLt NQt D NUt , where NUt is the Schur form of NLt . In particular, the diagonal elements of
NUt are the non-zero eigenvalues of the Laplacian matrix NLt at time t while k NUtk 6 N� . Moreover,
NQt is unitary. Let Qx.t/ D . NQ�1t ˝ I / Nx.t/. Then,

PQx D .IN�1 ˝ A/ Qx C . NUt ˝ BF / Qx: (15)

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3758–3776
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Now, let 
 D .IN�1 ˝ T �1x / Qx. Then,
P
 D .IN�1 ˝ OA/
 C . NUt ˝ T

�1
x BF Tx/
: (16)

Because B D Tx OBT
�1
u and F D TuD" OFS"T

�1
x , we have T �1x BF Tx D OBD" OFS". Moreover,

OA D Ad C BdE and Bd D OB , and therefore, the dynamics (16) can be rewritten as

P
 D .IN�1 ˝ .Ad C BdE//
 C . NUt ˝ BdD" OFS"/
: (17)

Let

G" D

0
BBB@
"�m��1I�1

"�m��2I�2
: : :

I�m

1
CCCA

and define v D .IN�1˝S"G"/
 . Because Sj"AjdS�1j" D "
�1Ajd and Sj"Bjd"�m��j D "�m�1Bjd ,

the dynamics of v can be written as

" Pv D
�
.IN�1 ˝ Ad /C . NUt ˝ Bd OF /

�
v C .IN�1 ˝ BdED

�1
" S�1" /v (18)

Note that v experiences discontinuous jumps when the network graph switches. Denote W" D
IN�1˝BdED

�1
" S�1" , which is O."/, and let QAt D .IN�1˝Ad /C . NUt ˝Bd OF /. Then we obtain

" Pv D QAtv CW"v: (19)

Define a Lyapunov function V D "v0 QPv. It is easy to find that V also has discontinuous jumps
when the network graph changes. The derivative of V is bounded by

PV 6 �	"�1V � kvk2 C 2Re.v0 QPW"v/

6 �	"�1V � kvk2 C "rkvk2

6 �	"�1V;
for a small enough ". In the aforementioned second inequality, choose "r > 2k QPW"k.

By integration on both sides, we have

V.t�k / 6 e
��"�1.tk�tk�1/V.tC

k�1
/:

There is a potential jump in V at time tk�1. However, we have V.tC
k�1

/ 6 mV.t�
k�1

/, where

m D
�max. QP /

�min. QP /
:

Using the fact that tk � tk�1 > � , there exists small enough " such that

V.t�k / 6 e
��.tk�tk�1/V.t�k�1/:

Combining these time-intervals, we obtain

V.t�k / 6 e
��tkV.0/:

Assuming tkC1 > t > tk , we have

V.t/ 6 me��tV.0/:

Hence, limt!1 v.t/ D 0 under a time-varying network graph. Because

Nx.t/ D . NQt ˝ TxG
�1
" S�1" /v.t/;

where NQt is unitary, we obtain that

lim
t!1

Nx.t/ D 0;

which proves the result. �
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4. NON-LINEAR TIME-VARYING AGENTS WITH FULL-STATE COUPLING

In this section, we consider nonlinear time-varying agents with full-state coupling. Specifically, we
consider agents that can be represented in the canonical form,

Pxi D Adxi C �.t; xi /C Bd .ui CExi /; .i D 1; : : : ; N / (20)

where xi 2 Rn, ui 2 Rm, are states and inputs of agent i . Let the relative degree of the afore-
mentioned agent system (20) be �. Ad 2 R�m��m and Bd 2 R�m�m have the following special
form:

Ad D

0
BBB@
0 Im � � � 0
:::
: : :

: : :
:::

0 � � � 0 Im
0 � � � 0 0

1
CCCA ; Bd D

0
BBB@
0
:::

0

Im

1
CCCA :

We can partition xi and � as

xi D

0
B@
xi1
:::

xi�

1
CA ; xij D

0
B@
xij1
:::

xijm

1
CA ; � D

0
B@
�1
:::

��

1
CA ; �j D

0
B@
�j1
:::

�jm

1
CA :

Then, we assume that the time-varying nonlinearity �.t; xi / satisfies the following assumption.

Assumption 2
Assume that �.t; xi / is continuously differentiable and globally Lipschitz continuous with respect
to xi uniformly in t , and piecewise continuous with respect to t . Moreover, the nonlinearity has the
lower-triangular structure

@�j .t; xi /

@xik
D 0; 8k > j: (21)

Remark 3
This lower-triangular structure for the nonlinearity is the well known strict feedback form, which
was widely studied by nonlinear researchers in the early 1990s.

Next, we formulate the state synchronization problem for state-coupled nonlinear time-varying
agents:

Problem 2
Consider a multi-agent system described by (5) and (20). For any real numbers �; ˇ; � > 0 and a
positive integerN that defines a set of time-varying network graphs G�;N

ˇ;�
, the state synchronization

problem with a set of time-varying network graphs G�;N
ˇ;�

is to find, if possible, a linear static protocol

of the form (7) such that, for any time-varying graph Gt 2 G�;N
ˇ;�

and for all the initial conditions of
agents, the state synchronization among agents can be achieved.

4.1. Protocol design

Let " 2 .0; 1� be a high-gain parameter, and S" D diag.Im; : : : ; "��1Im/ be the high-gain scaling
matrix. Construct the static protocol (7) as

ui D "
��FS"�i ; (22)

where F D �B 0
d
P , and P D P 0 > 0 is the unique solution of the algebraic Riccati equation,

PAd C A
0
dP � 2ˇPBdB

0
dP C P C I D 0; (23)

where ˇ is the lower bound on the real parts of non-zero eigenvalues of Lt for all time t .
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Theorem 2
Consider a multi-agent system described by (5) and (20) with full-state coupling. Let any real num-
ber �; ˇ; � > 0 and a positive integer N be given, and hence, a set of time-varying network graphs
G�;N
ˇ;�

be defined.
Under Assumptions 1 and 2, the state synchronization problem is solvable. In particular, there

exists an "� 2 .0; 1� such that for all " 2 .0; "��, controller (22) solves the state synchronization
problem for any time-varying graph Gt 2 G�;N

ˇ;�
.

Proof
For each i 2 ¹1; : : : ; N º, let Nxi D xN � xi . The state synchronization is achieved if Nxi ! 0 for all
i 2 ¹1; : : : ; N � 1º.

By Taylor’s theorem, we can write �.t; xN / � �.t; xi / D ˆi .t/ Nxi , where

ˆi .t/ D

Z 1

0

@�

@xi
.t; xi C p Nxi /dp:

Because of the Lipschitz property of the nonlinearity, ˆi .t/ is uniformly bounded, and the lower-
triangular structure of the nonlinearity implies that ˆi .t/ is lower triangular. Now, the dynamics of
Nxi can be written as

PNxi D Ad Nxi C Bd"
��FS"

N�1X
jD1

Ǹ
ij .t/ Nxj C BdE Nxi Cˆi .t/ Nxi ;

where the equality holds in light of

NX
jD1

.`Nj .t/ � `ij .t//xj D

N�1X
jD1

Ǹ
ij .t/ Nxj

with Ǹij .t/ D `ij .t/ � `Nj .t/. Defining 
i D S" Nxi , we have

" P
i D Ad 
i C BdF

N�1X
jD1

Ǹ
ij .t/
j CWi"
i ;

where Wi" D "�BdES
�1
" C "S"ˆi .t/S

�1
" . The first term of Wi" is obviously O."/. The second

term is O."/ because ˆi .t/ is lower triangular.
Let 
 D Œ
1I : : : I 
N�1� and NLt D Œ Ǹij .t/�. We obtain

" P
 D ..IN�1 ˝ Ad /C . NLt ˝ BdF //
 CW"
;

where W" D diag.W1"; : : : ; W.N�1/"/. Define Qt such that Q�1t NLtQt D Ut , where Ut is the Schur
form of NLt and Qt is unitary. Let � D .Qt ˝ Im�/
 . Then,

" P� D OAt� C OWt;"�; (24)

where OAt D .IN�1 ˝ Ad / C .Ut ˝ BdF / and OWt;" D .Qt ˝ Im�/W".Q
�1
t ˝ Im�/. We see

that � has discontinuous jumps when the network graph switches. In a similar way, we will first
demonstrate that the dynamics (24) is asymptotically stable for a fixed network graph. We also
neglect the subscript t for the analysis of the fixed network graph.

Similar to Lemma 1, we can show that

OP D diag.˛i1P; ˛i2P; : : : ; ˛iN�1P /

will satisfy

OP OAt C OA
0
t
OP 6 �	 OP � I
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for ˛ sufficiently large where i1 > i2 > : : : > iN�1. Consider the Lyapunov function V D "�0 OP�,
for which we have

PV D �	"�1V � k�k2 C 2Re.�0 OWt;" OP�/

6 �	"�1V � k�k2 C "r1k�k2

6 �	"�1V;

for a small enough ", where "r1 > 2k OWt;" OP k.
Following the steps in the proof of Theorem 1, for a small enough ", we can achieve that Nxi ! 0

for all i 2 ¹1; : : : ; N � 1º under time-varying graphs. �

4.2. Transforming nonlinear time-varying systems to the canonical form

It is obvious that not any arbitrary nonlinear time-varying multivariable systems can be transformed
to the canonical form (20). We will discuss next the transformation of general nonlinear time-varying
systems to the canonical form (20).

Consider a general nonlinear time-varying system

PQxi D QA Qxi C QB Qui C Q�.t; Qxi /; (25)

We assume that . QA; QB/ is controllable, and QB has full column rank. Following the construction in
the Appendix, a pre-compensator of the form

Pxi;c D Acxi;c C Bc Nui ; Qui D Ccxi;c CDc Nui (26)

is designed such that the cascade of the nonlinear system (25), and the pre-compensator (26) is of
the form

PNxi D NA Nxi C NB Nui C N�.t; Nxi /; (27)

with all controllability indices of . NA; NB/ equal and denoted by �. The following result is a
modification of a result from [29].

Theorem 3
Consider the nonlinear time-varying system (27). Assume that . NA; NB/ has all controllability indices
equal to �; and N�.t; Nxi / is continuously differentiable and globally Lipschitz continuous with respect
to Nxi uniformly in t , and piecewise continuous with respect to t . Let 
x 2 Rn�n and 
u 2 Rm be
nonsingular state and input transformations such that the pair .A;B/ D .
�1x

NA
x; 

�1
x
NB
u/ is in

the the short SCB [31], and define Nxi D 
xxi and Nui D 
uui . Then either

� the system satisfies the canonical form (20) or
� there exists no set of linear, non-singular state, and input transformations that take the system

to the canonical form.

Proof
All we have to show is that all transformations that take the linear portion of the system to the short
SCB are equivalent with respect to satisfying Assumption 2. Consider therefore the system (20) sat-
isfying Assumption 2, and let .A;B/ denote the corresponding linear pair. Let M
x 2 Rn�n and M
u 2
Rm�m denote state and input transformations such that the pair . MA; MB/ D . M
�1x A M
x; M


�1
x B M
u/ is

also in the short SCB. Define xi D M
x Mxi and ui D M
u Mui . Then we can write

PMxi D Ad Mxi C M�.t; Mxi /C Bd . Mui C ME Mxi /;

and we need to show that M�.t; Mxi / satisfies (21). Let

M
x D

0
B@
t1;1 : : : t1;�
:::
: : :

:::

t�;1 : : : t�;�

1
CA ;
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where ti;j 2 Rm�m. Note that M
x MB D B M
u, which implies that t1;� D : : : D t��1;� D 0. Further-
more, M
x.Ad C Bd ME/ D .Ad C BdE/ M
x . Because ME and E dominate only the last m rows, then
M
xAd equals Ad M
x in terms of the first .� � 1/m rows. It then follows that t2;1 D : : : D t�;1 D 0

and ti;j D tiC1;jC1 for i; j 2 ¹1; � � 1º. Together with t1;� D : : : D t��1;� D 0, we can find that
ti;j D 0 for i ¤ j and ti;i D tj;j for i; j 2 ¹1; : : : ; N º. Therefore, M
x D ˛I for some ˛ 2 R,
which means M�.t; Mxi / satisfies Assumption 2. �

5. LINEAR AGENTS WITH PARTIAL-STATE COUPLING

In this section, we consider linear agents with partial-state coupling. The agent dynamics are written
in the form of

Pxi D Axi C Bui ;

yi D Cxi ;
.i D 1; : : : ; N / (28)

where xi 2 Rn, ui 2 Rm, and yi 2 Rp are the state, input, and output of agent i , A 2 Rn�n; B 2
Rn�m; C 2 Rp�n are constant matrices. Without loss of generality, we assume that matrices B and
C are full column rank and row rank, respectively. We make the following standard assumption for
the agent dynamics.

Assumption 3
.A;B/ is stabilizable and .A; C / observable.

It is worth noting that for partial-coupled agents, we do not impose any constraints on poles and
zeros of the agent dynamics. In other words, we allow any general agent dynamics, including non-
minimum-phase agents. However, we have to allow the communication among controller states by
using the same network. Suppose the state of the controller for agent i is �i for i D 1; : : : ; N . Then,
agent i has access to the quantity

O�i D

NX
jD1

`ij .t/�j : (29)

In this section, we assume that there exists an agent K such that for all time t there exists a
directed spanning tree for the graph with root K. Let QLt be the matrix obtained from the Laplacian
Lt by deleting the K’th row and column. In that case, K being a root agent guarantees that QLt is
invertible. We define the graph set GK;N

ˇ;�
and G�;K;N

ˇ;�
as before but we assume agent K is a root

agent for all time and the eigenvalues �1; : : : ; �N�1 of QLt satisfy Re.�i / > ˇ while k QLtk 6 � .
We then formulate the state synchronization problem for time-varying network as follows.

Problem 3
Consider a multi-agent system described by (2) and (28). Suppose agents have access to the quan-
tity (29). For any real numbers �; ˇ; � > 0 and positive integers K and N that defines a set of
time-varying network graphs G�;K;N

ˇ;�
, the state synchronization problem with a set of time-varying

network graphs G�;K;N

ˇ;�
is to find, if possible, a linear time-invariant dynamic protocol of the form,

Pxi;c D Ai;cxi;c C Bi;ccol¹�i ; O�iº;

ui D Ci;cxi;c ;
(30)

where xi;c 2 Rn, such that, for any time-varying graph Gt 2 G�;K;N
ˇ;�

and for all the initial conditions
of agents, state synchronization among agents can be achieved.
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5.1. Protocol design

The main idea to achieve synchronization is to set the controller of the root agent K to zero (i.e.,
uK D 0 and �K D 0). On the other hand, for all the other agents, we use an identical controller,
that is,

Ai;c D Ac ; Bi;c D Bc ; Ci;c D Cc

for i ¤ k. We then design this controller for all the other agents such that their states asymptotically
synchronize with the states of root agent K under time-varying networks, that is, limt!1.xi �

xK/ D 0 for any Gt 2 G�;K;N
ˇ;�

.
Let Nxi D xi � xK , and ei D yi � yK . Then, the dynamics of Nxi can be written as

PNxi D A Nxi C Bui ;

ei D C Nxi :
(31)

Define �i D T Nxi , where

T D

0
B@

C
:::

CAn�1

1
CA :

Note that T is not necessarily a square matrix; however, because of the observability of .A; C /, T
is injective, which implies that T 0T is nonsingular [32]. In terms of �i , we can write the equations
governing ei as

P�i D .Ad C L/�i C Bui ; �i .0/ D T Nxi .0/;

ei D Cd�i ;
(32)

where Ad ; Cd ;L, and B are in a special form

Ad D

�
0 Ip.n�1/
0 0

�
; Cd D

�
Ip 0

�
; L D

�
0

L

�
; B D TB;

and where L D CAn.T T 0/�1T 0.
Let " 2 .0; 1� be a high-gain parameter and define S" D diag.Ip; : : : ; Ip"n�1/. The high-gain

controller for agent i 2 ¹1; : : : ; N ºnK is designed as

O�i D .Ad C L/ O�i C Bui C "�1S�1" PC 0d .�i �
O�i /;

�i D Cd O�i ;

ui D F.T
0T /�1T 0 O�i ;

(33)

where

O�i D

NX
jD1

`ij .t/�j D

NX
jD1

`ij .t/C O�j

with �K D 0, F is chosen such that ACBF is Hurwitz, and P D P 0 > 0 is the unique solution of
the algebraic Riccati equation,

AdP C PA
0
d � 2ˇPC

0
dCdP C I D 0: (34)

The main result is given in the following theorem.

Theorem 4
Consider a multi-agent system described by (2) and (28) with partial-state coupling. Suppose the
agents have access to the quantity (29). Let any real numbers �; ˇ; � > 0 and positive integers K
and N be given, and hence, a set of time-varying network graphs G�;K;N

ˇ;�
be defined.

Under Assumptions 1 and 3, the state synchronization problem stated in Problem 3 is solvable.
In particular, controller (33) solves the state synchronization problem under any time-varying graph
Gt 2 G�;K;N

ˇ;�
.
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Proof
For i D 1; : : : ; N with i ¤ K, let N�i D �i � O�i . Then

PN�i D .Ad C L/ N�i � "�1S�1" PC 0d .�i �
O�i /: (35)

Noting that for i D 1; : : : ; N , we have
PN
jD1 `ij .t/ D 0, and therefore,

�i � O�i D

NX
jD1

`ij .t/yj �
X

j2¹1;:::;N ºnK

`ij .t/Cd O�j

D
X

j2¹1;:::;N ºnK

`ij .t/Cd�j �
X

j2¹1;:::;N ºnK

`ij .t/Cd O�j

D
X

j2¹1;:::;N ºnK

`ij .t/Cd N�j :

Then, dynamics (35) can be rewritten as

PN�i D Ad N�i C L N�i � "�1S�1" PC 0dCd

NX
jD1

`ij .t/ N�j :

Define 
i D S" N�i . Then, we obtain

" P
i D Ad 
i C L"
i � PC 0dCd
X

j2¹1;:::;N ºnK

`ij .t/
j ;

where

L" D
�

0

"nLS�1"

�
:

Let 
 D col¹
iº and QL" D diag¹L"º. Then, the dynamics of the complete network becomes

" P
 D ŒIN�1 ˝ Ad C QL" � QLt ˝ PC 0dCd �
; (36)

Define QQ�1t QLt QQt D QUt , where QUt is the Schur form of QLt and QQt is unitary. Let v D . QQ�1t ˝Ipn/
 .
Then we obtain

" Pv D .IN�1 ˝ Ad /v CW"v � QUt ˝ .PC
0
dCd /v; (37)

where

W" D . QQ
�1
t ˝ Ipn/

QL". QQt ˝ Ipn/:

Note that when a switching of the network graph occurs, v will in most cases experiences a dis-
continuity (because of a sudden change in QUt and QQt ). Next we will analyze first the stability of
dynamics (37) between the graph switches, that is, for time t 2 Œtk�1; tk/.

Let Ad;t D IN�1 ˝ Ad � Ut ˝ PC 0dCd . Similar to Lemma 1, we can show that

QP D diag.˛i1P; ˛i2P; : : : ; ˛iN�1P /

will satisfy

Ad;t QP C QPA
0
d;t 6 �	 QP � I

for ˛ sufficiently large where i1 > i2 > : : : > iN�1.
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Define Lyapunov function V D "v0 QP�1v, and we obtain

PV D �	"�1V � k QP�1vk2 C 2Re.v0 QP�1W"v/

6 �	"�1V � k QP�1vk2 C "rk QP�1vk2

6 �	"�1V;

for a small enough ". In the second inequality, "r > 2kW" QP k for suitable r because QQt is unitary.
Similar to the proof of Theorem 1, for a small enough ", we can achieve that limt!1 V.t/ D 0

under time-varying graphs. Given thatQt is unitary for any graph in GK;N
ˇ;�

for any time t , we obtain
limt!1 N�i .t/ D 0, that is, limt!1.�i .t/ � O�i .t// D 0 under time-varying graphs. Next, we plug
the controller input ui D F.T 0T /�1T 0 O�i into the dynamics (31). Then, we obtain

PNxi D A Nxi C BF.T
0T /�1T 0 O�i ;

D .AC BF / Nxi C BF..T
0T /�1T 0 O�i � Nxi /;

D .AC BF / Nxi C BF.T
0T /�1T 0. O�i � �i /;

which is asymptotically stable, because AC BF is Hurwitz and lim
t!1

.�i .t/ � O�i .t// D 0. Hence,

lim
t!1

.xi .t/ � xK.t// D 0, which proves the result. �

6. EXAMPLE

In this section, we illustrate our results on a time-varying homogeneous network of N D 6 agents.
The agent model is written as

A D

0
@�1 �1 �12 1 �4
0 0 �2

1
A ; B D

0
@ 11
1

1
A :

We assume that the communication topology switches among three graphs in a circular manner with
dwell-time � D 3 s, shown in Figure 1. For such a set of graphs, ˇ D 0:1 and � D 6.

By using the state and input transformations

Tx D

0
@ 1 �1 10 1 1

1 0 1

1
A ; Tu D 1;

we obtain the agent dynamics in the special structure:

Ad D

0
@ 0 1 00 0 1

0 0 0

1
A ; Bd D

0
@ 00
1

1
A ; E D .�2 � 1 � 2/ :

By using the algebraic Riccati Eq. 8, we easily obtain OF D .�2:2361 � 6:5161 � 8:3762/.
Now choosing the high-gain parameter " D 1, we obtain the static protocol

F D .0:3760 � 6:1401 � 2:6120/ :

Figure 2 shows that all agents achieve state synchronization under the time-varying communication
topologies.

Next, we consider the nonlinear agent model

Px D

0
@ 0 1 00 0 1

0 0 0

1
A x C

0
@ 00
1

1
A .u � 2x1 � x2 � 2x3 C 60 cos.3x1/C 30 sin.0:1x2//: (38)
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Figure 1. Three communication topologies.

Figure 2. The trajectories of agents’ states. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 3. The trajectories of agents’ states. [Colour figure can be viewed at wileyonlinelibrary.com]

We use the same OF as in the aforementioned linear case. Here, we choose the high-gain parameter
" D 0:5. Then the protocol is

F D .�17:8885 � 26:0644 � 16:7524/ :

Figure 3 shows that all agents achieve state synchronization under the time-varying communication
topologies.

7. CONCLUSION

In this paper, the state synchronization problem for homogeneous time-varying networks with dif-
fusive full-state coupling and partial-state coupling is solved. For the case of full-state coupling,
both linear and nonlinear agents are considered. The essence of the protocol design in this case is
to use different time scales such that, by tuning the high-gain parameter ", the difference between
the states of different agents can decay as fast as required. For the case of partial-state coupling,
we have so far only dealt with linear agents, but the agents can be general and, for instance, can be
non-minimum-phase. The protocol design in this case is based on a high-gain observer with an extra
communication channel for controller states. The time-varying network can be switching among
an infinite set of graphs with a priori given properties. For a finite set of graphs which each has
a directed spanning tree, these required properties are automatically satisfied. Thus, our protocol
design can always be applied given a finite set of graphs.

APPENDIX A: PRE-COMPENSATOR DESIGN

In this section, we will construct a pre-compensator (26) for the system

PQx D QA Qx C QB Qu; (39)

where x 2 RQn and Qu 2 Rm, such that the interconnection of the pre-compenstator and system (39)
has all controllablity indices the same.
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Assume that . QA; QB/ is controllable and that QB has full-column rank. According to
[31, Theorem 1], there exist nonsingular transformation matrices Tx and Tu such that the trans-
formed system, with Mx D Tx Qx and Mu D Tu Qu, is in the canonical form (that is the short SCB
form),

PMxj D Aj Mxj C Bj

2
4 Muj C

�jX
qD1

Ajq Mxq

3
5 ; (40)

for j D 1; : : : ; m where Mxj 2 R�j , Muj 2 R, and

Mx D

0
B@
Mx1
:::

Mxm

1
CA ; Mu D

0
B@
Mu1
:::

Mum

1
CA ; Aj D

�
0 I�j
0 0

�
; Bj D

�
0

1

�
:

Note that
Pm
jD1 �j D Qn. Next, we will construct a pre-compensator such that all controllability

indices are the same. Let � D max¹�1; : : : ; �mº. For each subsystem of dimension �j , we will add
� � �j integrators before the input Muj . Thus, the pre-compensator for subsystem j with �j < � is

Pxj;c D Aj;cxj;c C Bj;cuj ;

Muj D Cj;cx
(41)

where uj is the new input, and

Aj;c D

�
0 I���j
0 0

�
; Bj;c D

�
0

1

�
; Cj;c D .1 0/ :

If �j D �, we simply set Muj D uj .
Next, combine the pre-compensators for j D 1; : : : ; m, and use the inverse input transformation

T �1u . Then, we obtain the pre-compensator in the form of (26). Moreover, the interconnection system
of the pre-compensator and the system (39) is controllable.
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