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Subcortical Vascular Cognitive Impairment, No Dementia: EEG
Global Power Independently Predicts Vascular Impairment and
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Background and Purpose: Vascular cognitive impairment, no dementia
S(vCIND) is a prevalent and potentially preventable disorder. Clinical

=presentation of the small-vessel subcortical subtype may be insidious, and

%differential difficulties can arise with mild cognitive impairment. We
Sinvestigated EEG parameters in subcortical vCIND in comparison with
:%amnestic multidomain mild cognitive impairment to determine the additional
éjdiagnostic value of quantitative EEG in this setting.
wMethods: Fifty-seven community-residing patients with an uneventful
gcentral neurologic history and first presentation of cognitive decline without
didementia were included. Neuropsychological test results were correlated with
;EEG parameters. Predictive values for vCIND and amnestic multidomain
2mild cognitive impairment were calculated using receiver operating charac-
Eten'stic curves and logistic regression modeling.
%Results: Vascular cognitive impairment, no dementia and amnestic multido-
Zmain mild cognitive impairment differed with regard to the EEG (delta +
Ztheta)/(alpha + beta) ratio (DTABR) and pairwise derived brain symmetry
index. We found statistically significant correlations between pairwise derived
brain symmetry index and immediate verbal memory, immediate global mem-
ory, verbal recognition, working memory, and mean memory score in vCIND.
>Verbal fluency (odds ratio: 1.54, 95% confidence interval: 1.04-2.28,
ZP = 0.033) and (delta + theta)/(alpha + beta) ratio (odds ratio: 2.28, 95%
* confidence interval: 1.06-4.94, P = 0.036) emerged as independent diagnostic
predictors for vCIND with an overall correct classification rate of 95.0%.
Conclusion: Our data indicate that EEG is of additional value in the
differential diagnosis and follow-up of patients presenting with cognitive
decline. These findings may have an impact on memory care.
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ascular cognitive impairment, no dementia (vCIND) is an etio-
logically and clinically heterogeneous disorder in which the pat-
tern of neurocognitive deficits is often related to the extent and
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Brain Symmetry Index Reflects Severity of Cognitive Decline
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location of the vascular lesions. Although executive and visuospatial
dysfunctions seem to constitute the core disturbances in vascular
cognitive impairment (Galluzzi et al., 2005; Jokinen et al., 2006,
2009b; Sachdev et al., 2004), variability is added by lesions in other
brain regions (Looi and Sachdev, 1999). Subcortical vCIND caused
by small-vessel disease is a more homogeneous subgroup of vascular
cognitive impairment and is relatively common in elderly popula-
tion. Frequently, its presentation is insidious with an unclear tempo-
ral relation between cognitive decline and brain imaging findings
(O’Brien et al., 2003). Mild cognitive impairment (MCI), especially
of the amnestic multidomain MCI (amdMCI), may represent the
early symptomatic stage of dementia of the Alzheimer type (Flicker
et al., 1993; Palmer et al., 2008; Petersen et al., 1995; Tierney et al.,
1996). Vascular risk factors and previous stroke increase the risk of
dementia (Di Carlo et al., 2007; Solfrizzi et al., 2004; Viswanathan
et al., 2009). In the Canadian Study of Health and Aging, which
included more than 10,000 participants, vCIND was the most prev-
alent form within the group of patients (aged 65 to 84 years) with
vascular cognitive impairment (including vascular dementia, mixed
dementia, and vascular cognitive impairment without dementia)
(Rockwood et al., 2000). Importantly, the rate of institutionalization
in patients with vCIND is similar to that in vascular dementia and the
mortality rate in vCIND is similar to that in vascular dementia or
mixed dementia of the Alzheimer type (Rockwood et al., 2000).
Patients with subcortical ischemic vascular disease were found to
have a threefold risk of developing dementia independent of age,
gender, education, and medial temporal lobe atrophy after 3 years of
follow-up (Jokinen et al., 2009a). Structural MRI or computerized
tomography imaging of the brain is crucial to diagnose vascular
cognitive impairment disclosing white matter lesions and/or lacunar
infarcts (Erkinjuntti et al., 2000; Roman, 2000). In patients with
MCI, deep white matter and periventricular lesions predicted pro-
gression to non-Alzheimer dementia, whereas isolated medial tem-
poral lobe atrophy was associated with progression to Alzheimer
disease (AD) (Stackenborg et al., 2009; van de Pol et al., 2007).
Regardless of their location, subcortical lacunar infarcts and white
matter lesions impair frontal lobe function (Reed et al.,, 2004;
Tullberg et al., 2004), resulting in a negative impact on general
cognitive status (Kuczynski et al., 2008; Kwan et al., 1999; Reed
et al., 2001), which is consistent with the hypothesis of disruption of
frontal-subcortical circuits in subcortical vascular cognitive impair-
ment (Cummings, 1994). Electroencephalography allows a noninva-
sive, inexpensive, and sensitive evaluation of cerebral function. The
EEG abnormalities correlated with cognitive function in and dis-
criminated between various types of dementia (Jeong et al., 2004;
Gawel et al., 2007, 2009). Some studies investigated the value of
EEG in MCI (Jelic et al., 1998, 2000; Liedorp et al., 2009; Moretti
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et al., 2007a) and the influence of vascular lesions in MCI on the
EEG (Babiloni et al., 2008a, 20085; Moretti et al., 20075, 2008a,
2008b). Previously, we reported that the cortical sources of abnormal
EEG activity in regions implicated in the default mode network are
revealed by standardized low-resolution brain electromagnetic
tomography at an early stage in vascular cognitive impairment
§(Sheorajpanday et al., 2013). Earlier, we investigated the reproduc-
Z Sibility and clinical relevance of the (delta + theta)/(alpha + beta)
ratio (DTABR) and the pairwise derived brain symmetry index

=(pdBSI) as quantitative EEG spectral power parameters in ischemic

= cerebrovascular disease (Finnigan and van Putten, 2013; Sheorajpan-
< day et al., 2009, 2010, 2011a, 20115).

S Early and specific secondary prevention of cognitive decline
z2might be beneficial. The earliest stage potentially amenable to
Zspecific therapeutic intervention is when the patient presents with
% cognitive complaints. The primary aim of this study was to
%investigate the DTABR and the pdBSI as global EEG parameters
Sin community-residing patients with an uneventful central neuro-
gilogic history presenting with cognitive complaints for discriminatory
%features between amdMCI and subcortical vCIND. We furthermore
Sinvestigated if these EEG parameters correlate with the level of

@

ocognitive decline in vCIND.
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PATIENTS AND METHODS

Study Population
The EEG was recorded in 57 patients from our memory clinic
with a clinical diagnosis of amdMCI (n = 22) or vCIND (n = 35).
These patients presented with cognitive complaints confirmed by an
informant. Inclusion criteria were (1) first presentation of cognitive
ecline, (2) age =55 years, (3) intact activities of daily living, and
(4) able and willing to undergo full cognitive assessment. Exclusion
Seriteria were (1) reversible cause for cognitive dysfunction, (2)
” Zdementia as defined by the NINCDS-ADRDA and NINDS-AIREN
Zcriteria (McKhann et al., 1984; Roman et al., 1993), (3) mass (effect)
lesion on neuroimaging, (4) history of cerebrovascular event, (5)
large vessel disease and imaging findings showing cortical infarc-
tion, and (6) axis I DSM-IV disorder (American Psychiatric Associ-
ation, 1994). All patients underwent physical, neurologic, radiologic
(brain computed tomography or MRI), and biochemical (including
thyroid function, vitamin B12, folic acid, and syphilis serology)
evaluation as part of the diagnostic routine. The study was conducted
according to the revised Declaration of Helsinki (1998) and was
approved by the central Institutional Review Board of Ziekenhuis
Netwerk Antwerpen.
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Neuropsychological Assessment

The neuropsychological test battery for all study participants
consisted of: the Mini-Mental State Examination (MMSE) (Folstein
et al., 1975), the Wechsler Memory Scale III (WMS-III; Wechsler,
1997b), matrix reasoning from the Wechsler Adult Intelligence Scale
I (Wechsler, 1997a), the Trail Making Test (Reitan and Wolfson,
1992), the Rey-Osterrieth Figure (Osterrieth, 1944), the Boston Naming
Test (Kaplan et al., 1983; Marién et al., 1998), a semantic and phono-
logical verbal fluency task (1-minute generation of names of animals,
means of transport, vegetables, clothes, and words starting with pho-
neme F, A, and S) (unpublished norms), Raven Progressive Matrices
(Raven et al., 2003), and Hierarchic Dementia Scale (Rénnberg and
Ericsson, 1994). To account for individual age and education effects
and to allow comparisons, neuropsychological test results were

Copyright © 2014 by the American Clinical Neurophysiology Society

transformed to z-score. The z-scores of the WMS-III subtests were
averaged to create the mean WMS-III score as a composite measure
of global memory function. Hachinski Ischemic Score (Hachinski et al.,
1975) was determined as well. Mild cognitive impairment was defined
clinically as an impairment in one or more cognitive domains larger
than expected for age or education, typically below —1.5 SD, but
insufficient to interfere with social and occupational functioning
(Petersen, 2004). Patients with clinically significant memory impair-
ment that did not meet the criteria for dementia, and at least one other
non—-memory-related dysfunction were diagnosed with amdMCL
Patients were diagnosed with vCIND if: (1) the cognitive impairment
did not meet the NINDS-AIREN criteria (Roman and Goldstein, 1993)
for vascular dementia, (2) the cognitive impairment was presumed to
have a vascular cause (e.g., by evidence of sudden onset, stepwise
progression, patchy deficits on cognitive testing, other evidence of ath-
erosclerosis, focal neurologic findings), and (3) evidence of subcortical
lacunes and/or white matter lesions, excluding patients with cortical or
nonvascular lesions, on neuroimaging, according to previously sug-
gested criteria (Erkinjuntti et al., 2000; Ingles et al., 2002).

EEG Analysis

EEG was recorded during at least 10 minutes in an eyes-closed
state with the patient awake and alert using a Brainlab Measure Station
(OSG, Belgium) as previously described (Sheorajpanday et al., 2009).
Nineteen Ag/AgCl electrodes were positioned in accordance to the
international 10-20 system, with impedances <5 kQ. Analog to digital
conversion rate was 250 Hz for all channels using a 16-bit AD con-
vertor. Visual artifact rejection and data analysis were performed in
EEGLAB (Delorme and Makeig, 2004) with supplementary scripts
operating in the MATLAB environment. After data filtering (high pass
0.3 Hz, low pass 30 Hz) and visual artifact rejection, 128 seconds of
EEG were analyzed. We have shown that 128 seconds of artifact-free
EEG serves as a reliable sample of a particular EEG recording for
classic spectral parameters with excellent intrarecord, intrarater and
interrater reproducibility (Sheorajpanday et al., 2009). Spectral power
was calculated by fast Fourier transform for each electrode over the
1 to 30 Hz range. Power spectral density was calculated using Welch
averaged, modified periodogram spectral estimation method with
a 2-second Hamming window and 50% overlap. The power of
the delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), and beta 1 (14—
20 Hz) frequency bands was used to calculate the DTABR. EEG
spectral asymmetry was quantified by the pdBSI, which evaluates
asymmetry along homologous channel pairs. The pdBSI is defined as:

1 M N
deSI=Wj;;

with R;; and L being the fast Fourier transformation-based power
spectral density of the signal obtained from a right and left channel,
respectively, of a homologous channel pair i (withi = 1, 2, ..., M),
for example, C3 and C4, P3 and P4, etc, at frequency j (or Fourier
coefficient, with index j = 1, 2, ..., N). For this specific setting,
M = 8. The pdBSI was calculated for frequency range (N) 1 to
25 Hz (Sheorajpanday et al., 2009).

)

Ry — Ly
Rj+L;

Statistical Analysis

Sample size was calculated based on the previously reported
difference * standard error of the difference in pdBSI of 0.0666 *+
0.0135 between stroke patients and control subjects from an
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independent cohort with a two-tailed alpha level for between-group

comparisons set at P = 0.05 and for correlation analysis at a multiple

comparison adjusted level of P = 0.0033 with an estimated clinico-

encephalographic correlation of no less than 0.64 (Sheorajpanday et al.,

2009). For the comparison between vCIND and amdMCI, this resulted
Din a sample power of almost 100% and for the correlation analysis
2 between pdBSI and neuropsychological tests, a power of at least 97%
= (SamplePower 2.0; SPSS Inc, Chicago, IL). Data were analyzed using
the Statistical Product and Service Solution 16.0 software package for
= Windows (SPSS Inc). Results of neuropsychological tests were trans-
= formed to z-scores. Comparisons between z-scores of neuropsycholog-
Sical tests were made by the paired t-test. Between-group comparisons
Swere made by independent sample #-test and Mann—Whitney test ac-
5 cording to distribution. Spearman correlation coefficient was used to
Zcalculate correlations between neuropsychological scores and quantita-
=tive EEG measures. Independent predictive value of parameters for
2 diagnosis as dichotomized state was assessed using binary forward
S stepwise regression. To avoid overfitting of the model, only variables
githat were significantly correlated to the outcome parameter in univar-
£ jate nonparametric analysis were selected. Significance level was set at
SP < 0.05 with adjustment for multiple comparisons as indicated.

x
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RESULTS
Clinical characteristics of the patients are listed in Table 1. We
did not find significant correlations between DTABR and any of the
evaluated neuropsychological tests (MMSE, WMS-III subtests,
< Wechsler Adult Intelligence Scale III matrix reasoning, Trail Making
= Test, Rey-Osterrieth Figure, Boston Naming Test, semantic and pho-
Znological verbal fluency, Raven Matrices, and Hierarchic Dementia
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TABLE 1. Group Characteristics of Patients Presenting With
Cognitive Decline

€202/TT/80 U0
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vCIND
(n = 35)

amdMCI
(n = 22)

Demographics

Age, mean = SD (range), years 75 * 6.3 (55-85) 73 = 7.7 (57-87)

Male gender 24 (69) 9 (26)
Risk factors
Arterial hypertension 29 (83) 11 (31)
Carotid stenosis = 50% 2 (6) 0
Cardiac arrhythmia 8 (23) 2 (6)
Congestive heart failure 13 (37) 13
Coronary disease 17 (49) 2 (6)
Diabetes mellitus 6 (17) 0
Dyslipidemia 16 (46) 5(14)
Regular alcohol consumption 309 0
Current smoking 2 (6) 2 (6)
Hachinski Score, mean + SEM 51 *+0.14 45 * 0.14
Prior treatment
Antiplatelets 25 (71) 7 (20)
Anticoagulants 7 (20) 2 (6)
Neuropsychological performance,
significant differences at P < 0.0033
Working memory —1.53 £ 0.11 —0.95 = 0.15
Verbal fluency —2.43 £ 0.27 —0.61 = 0.17
Matrix reasoning —1.55 £ 0.19 —0.69 = 0.19

Values are given as n (%) unless otherwise stated.
amdMCI, amnestic multidomain mild cognitive impairment; pdBSI, pairwise
derived brain symmetry index.

Scale) in vCIND (P > 0.05) and between neuropsychological tests
and pdBSI or DTABR in amdMCI (P > 0.05).

In vCIND, we found significant Spearman correlations after
multiple comparison adjustment with significance level set at
P = 0.0033 between immediate verbal memory, immediate global
memory, verbal recognition, working memory, mean verbal WMS-III,
mean global WMS-III, and pdBSI (Table 2). The correlation between
mean WMSH-III z-score and pdBSI is illustrated in Fig. 1.

There was a significant difference between patients with vCIND
and amdMCI in DTABR (mean = SEM: 2.71 = 0.46 vs. 1.09 £ 0.15,
Mann—-Whitney test, P = 0.002) and in pdBSI (mean = SEM: 0.14 *
0.006 vs. 0.12 = 0.004, Mann—Whitney test, P = 0.023).

As shown in Table 3, Hachinski Ischemic Score, matrix rea-
soning, working memory, verbal fluency, pdBSI, and DTABR dis-
played significant predictive value for vCIND in receiver operating
characteristic analysis. Diagnostic accuracy for vCIND was not
improved by basic Boolean operators.

In forward stepwise binary logistic regression entering gender,
Hachinski Ischemic Score, mean WMS z-score, z-scores of working
memory, verbal fluency, matrix reasoning, pdBSI, and DTABR as
parameters, which correlated significantly in univariate nonparamet-
ric analysis, verbal fluency z-score, and DTABR emerged as
independent predictors for vCIND with an odds ratio of 1.54 (95%
confidence interval: 1.04-2.28, P = 0.033) for the verbal fluency
z-score and an odds ratio of 2.28 (95% confidence interval: 1.06—
4.94, P = 0.036) for DTABR, with a Hosmer—Lemeshow statistic of
0.98 indicating a good model fit of the data. This model had an
overall correct classification rate of 95.0% compared with an overall
correct classification rate of 82.5% when DTABR was omitted from
the model.

DISCUSSION

In this study, community-residing patients with complaints of
cognitive decline were evaluated in a clinical setting with a diagnosis
of subcortical vCIND based on a standardized protocol consisting of
neuropsychological assessments, clinical, biochemical, and neurora-
diological evaluations. We selected patients with amdMCI, instead
of cognitive healthy persons, as control subjects to allow more
clinically relevant comparisons. Patients with amdMCI did have
vascular risk factors as indicated in Table 1 and small, presumably
nonsignificant, vascular microlesions were allowed, to allow extrap-
olation of our findings to routine clinical practice in which vascular
risk factors are more prevalent as the “hyperhealthy” subject from
a normative database might not be frequently encountered in general

TABLE 2. Statistically Significant Spearman Correlations
Between Neuropsychological Tests and Pairwise Derived Brain
Symmetry Index in Vascular Cognitive Impairment, No
Dementia

Test Spearman rho P

Immediate verbal memory —0.66 0.0004
Immediate global memory —0.57 0.0027
Verbal recognition —0.75 <0.0001
Working memory —0.59 0.0026
Mean verbal WMS-III —0.72 <0.0001
Mean global WMS-III —0.67 <0.0001

WMS-III, Wechsler Memory Scale 111
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metric criteria without etiopathogenetic certainty. The —1.5 SD cut
%point might be of limited value in routine clinical practice to deter-
“mine cognitive impairment in highly educated individuals, where
impairment might reflect a decline from a superior to an average
cognitive performance (Luis et al., 2003). To account for individual
age and education effects in this study, neuropsychological test
results were transformed to z-score. However, we cannot exclude
the possibility of including more severely affected highly educated
individuals in the vCIND and/or amdMCI groups. Vascular cogni-
tive impairment, no dementia and amdMCI groups were balanced
in terms of age and MMSE score. Homogeneity in global memory
functioning between the two groups in our study was post hoc
confirmed by the absence of a significant difference in mean global
WMS-III score.

(Delta + Theta)/(Alpha + Beta) Ratio

Cognitive impairment secondary to subcortical infarcts is
often accompanied by generalized cortical blood flow and metabolic
changes (De Reuck et al., 1998; Sabri et al., 1998; Sultzer et al.,
1995). Subcortical lesions in mixed dementia induce an increase of
slow frequency EEG power (Schreiter Gasser et al., 2008). Increased
delta and decreased alpha power was associated with the severity of
vascular damage in MCI (Moretti et al., 2007b). In our previous
study in the same cohort of patients on EEG source activity using
standardized low-resolution brain electromagnetic tomography, we
found a statistically significant decrease in parieto-occipital alpha 1
relative power current density in vCIND compared with patients
with transient ischemic attack (TIA) and MCI. There was a significant
decrease in frontal and parieto-occipital beta 1 relative power
current density in vVCIND compared with patients with TIA, and a sig-
nificant increase in (pre)frontal delta activity in vCIND compared with
amdMCI (Sheorajpanday et al., 2013). Concordantly, we found a sig-
nificant higher global DTABR in vCIND compared with amdMCI.
Moreover, DTABR emerged as an independent diagnostic predictor
for vCIND. In subcortical vascular dementia (SVD) and AD, Gawel
et al. (2007) and Gawel et al. (2009) found that patients with mild,
moderate, and severe AD as a whole group showed significantly
decreased alpha/(delta + theta) power ratio compared with the whole
group of patients with mild and moderate SVD. In the comparison
based on the severity of cognitive decline (determined by MMSE
score), global alpha/delta power ratio was found to be a differentiating
parameter between AD and SVD only in moderate dementia. The
mean frequency at one of three selected derivations (T3-T4) was
found to differentiate between AD and SVD in mild and moderate
dementia (Gawel et al., 2009). Besides differences in patient selection
according to the level of cognitive decline, the incorporation of power
spectral density in the beta 1 frequency range may have contributed to
this discrepancy. Beta activity is related to cognitive processes
(Ray and Cole, 1985). Significantly less resting state power was
observed in MCI exclusively, and in AD primarily in the beta fre-
quency (12-22 Hz) range (Baker et al., 2008). In a simultaneous
functional MRI and EEG study during resting wakefulness, power
in the 17 to 23 Hz beta activity range was positively correlated with
Blood-Oxygen-Level-Dependent functional MRI activity in posterior
cingulate cortex, precuneus, temporo-parietal junction, dorsomedial
prefrontal cortex, suggesting that spontaneous cognitive operations
during conscious rest, that is, in the default mode of brain function
is mediated by 17 to 23 Hz beta activity (Laufs et al., 2003). Early in
AD, changes occur in the beta frequency range (Kwak, 2006; Wada
et al., 1997). Therefore, we chose to use the ratio of relative power in
alpha and beta to theta and delta band as global EEG measure to cover
a more extended pathophysiological frequency range of interest. We

TABLE 3. Predictive Values of Clinical, Neuropsychological, and EEG Parameters for Vascular Cognitive Impairment, No
Dementia in Receiver Operating Characteristic Analysis

AUC SE 95% CI1 P Value SNS SPC PPV NPV FPR FNR ACR
Hachinski 0.70 0.07 0.57-0.84 0.010 5 0.77 0.46 0.69 0.56 0.55 0.23 0.65
Matrix reasoning 0.82 0.07 0.69-0.95 0.001 —1.15 0.67 0.82 0.73 0.62 0.32 0.33 0.67
Working memory 0.80 0.07 0.66-0.94 0.002 —1.15 0.71 0.77 0.67 0.64 0.36 0.33 0.65
Verbal fluency 0.89 0.05 0.79-1.00 <0.001 —1.15 0.81 0.82 0.82 0.72 0.28 0.18 0.78
pdBSI 0.68 0.07 0.54-0.82 0.023 0.13 0.71 0.46 0.70 0.48 0.41 0.40 0.60
DTABR 0.75 0.06 0.63-0.88 0.002 1.00 0.77 0.60 0.74 0.59 0.41 0.26 0.68

ACR, accuracy; AUC, area under the curve; CI, confidence interval; DTABR, (delta + theta)/(alpha + beta) ratio; FNR, false-negative rate; FPR, false-positive rate; pdBSI,

pairwise derived brain symmetry index; PPV, positive predictive value; NPV, negative predictive value; SE, standard error; SNS, sensitivity; SPC, specificity.
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have shown that this range is of interest in ischemic cerebrovascular
disease (Sheorajpanday et al., 2010, 2011a, 20115, 2009) and in vas-
cular cognitive decline (Sheorajpanday et al., 2013).

A significant correlation between alpha/(delta + theta) ratio and
mean wave frequency and mental impairment according to total
MMSE score was found in SVD (Gawel et al., 2007). The absence

g 5of such a correlation in our study of a less severely affected patient
z gpopulatlon might be explained by the transformation of the total
@MMSE scores to age and educational level-adjusted z-score (Crum

(@R . . . o
< zetal., 1993) in our population. Moreover, the MMSE is not a sensitive

Ztest for subcortical cognitive decline as it may overlook executive
gdysfunction (Jefferson et al., 2002; Mamikonyan et al., 2009; Price
Set al., 2005; Roman et al., 2002) In SVD, no significant association
iwas found between white matter lesions and MMSE score (Price et al.,
=2005). In Parkinson disease, another prototypical fronto-subcortical
= disorder, almost one third of patients with intact global cognition as
;deﬁned by a normal score on the MMSE met the criteria for MCI
5 (Mamikonyan et al., 2009), which suggests that the severity of sub-
gicortical cognitive impairment may be underestimated by the MMSE.
gSeverity matching based on MMSE scores should also be recognized
Sas a relative, but practically inevitable, shortcoming in our study.
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Pairwise Derived Brain Symmetry Index

The pdBSI was recently introduced as a sensitive measure of
ischemic damage in patients with acute ischemic stroke. This index
is an extension of the (global hemispheric) Brain Symmetry Index,
introduced by van Putten et al. (2004), revised in 2007, and was
shown to correlate significantly with hemispheric damage in patients
with acute stroke (van Putten, 2007; van Putten and Tavy, 2004; van
Putten et al., 2004). In acute ischemic stroke, the change in EEG
brain symmetry during intravenous thrombolysis correlated signifi-
ca
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ntly with the change in the National Institute for Health Stroke

ale score (de Vos et al., 2008). The pdBSI displayed high intra-

cording, intrarater and interrater reproducibility, reliably discrimi-
nated between patients with stroke and TIA or control subjects and
correlated significantly with clinical status and volume of recent
ischemia among different levels of stroke probability (Sheorajpanday
et al., 2009). The pdBSI was an independent predictor of early
neurologic deterioration, mortality, and small-vessel stroke etiology
in acute anterior circulation syndrome of presumed ischemic origin
(Sheorajpanday et al., 2010). In lacunar and posterior circulation
syndromes of presumed ischemic origin, pdBSI emerged as an inde-
pendent predictor for radiologically confirmed stroke, even after res-
olution of symptoms at the time of EEG recording (Sheorajpanday
et al., 2011a). In patients with persistent neurologic deficits at EEG
recording, pdBSI was correlated with functional outcome and was
independently associated with disability 6 months after ischemic
stroke (Sheorajpanday et al., 20115).

In this study, the additional diagnostic value of pdBSI in silent
small-vessel stroke presenting as subcortical vascular impairment
without dementia was evaluated. We found a significant difference in
pdBSI between patients with vCIND and amdMCI and significant
correlations between pdBSI and immediate verbal memory, immediate
global memory, verbal recognition, and working memory in vCIND.
Our findings also demonstrate that pdBSI correlates with global
memory decline as defined by mean WMS-III z-score in vCIND.

EZOZ/'[T/SO uo

Concluding Remarks
This study performed in a cohort of 57 community-residing
residents with an uneventful neurologic history and first presentation
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of cognitive declince without dementia demonstrates that cortical
deafferentation by subcortical lesions in subcortical vCIND is
accompanied by changes in the EEG. Importantly, these changes
were shown to discriminate between disease states and parallel disease
severity as determined by clinical indicators of disease state and
severity.

White matter lesions in vascular cognitive impairment induce
a widespread increase of delta and theta power (D’Onofrio et al.,
1996; Moretti et al., 2004, 2007b; Szelies et al., 1999), whereas
cholinergic deafferentation and corticocortical disconnection induce
a significant reduction in alpha and beta power (Babiloni et al., 2009;
Baker et al., 2008; Kwak, 2006; Moretti et al., 2004; Wada et al.,
1997). In full concordance to this, DTABR was an independent
predictor of disease state in this cohort of cognitively impaired non-
demented patients.

The pdBSI was significantly higher in subcortical vCIND
compared with amdMCI but did not show independent predictive
value for disease state. The lack of discriminatory power can be
explained by its very nature: pdBSI as a symmetry-based marker
evaluates power spectral density asymmetries along homologous
channel pairs in the 1 to 25 Hz frequency range without weighing the
relative contributions of slow over fast EEG power characterizing the
disease states as mentioned above. The pdBSI did correlate highly
and significantly with memory indices, especially with verbal
memory, in vCIND. Because memory impairment is not an exclusive
feature of any of the two disease states under investigation (Jokinen
et al., 2006; Looi and Sachdev, 1999; Price et al., 2005; Reed et al.,
2007), a parameter reflecting the severity of memory impairment
cannot differentiate between the two states. The highly significant
and strong correlation observed between pdBSI and global memory
impairment, however, may allow a sensitive and cost-effective
follow-up of patients with subcortical vCIND to monitor preventive
and symptomatic treatment response.

In many memory clinics, EEG is part of the diagnostic
workup as memory disturbances, confusion, and even dementia may
be the sole clinical manifestation of a complex focal status or
a protracted postictal state in elderly patients (Sheorajpanday and De
Deyn, 2007).

Our findings extend the applicability of EEG in memory care,
as it may allow an easy, inexpensive, and reliable evaluation of
cognitive dysfunction. The results from this exploratory study should
be confirmed in a larger population.
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