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Single and combined fault diagnosis of
reciprocating compressor valves using
a hybrid deep belief network
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Abstract

In this paper, a hybrid deep belief network is proposed to diagnose single and combined faults of suction and discharge

valves in a reciprocating compressor. This hybrid integrates the deep belief network structured by multiple stacked

restricted Boltzmann machines for pre-training and simplified fuzzy ARTMAP (SFAM) for fault classification. In the pre-

training procedure, an algorithm for selecting local receptive fields is used to group the most similar features into the

receptive fields of which top values are the units of each layer, and then restricted Boltzmann machine is applied to these

units to construct a network. Unsupervised learning is also carried out for each restricted Boltzmann machine layer in

this procedure to compute the network weights and biases. Finally, the network output is fed into SFAM to perform fault

classification. In order to diagnose the valve faults, three signal types of vibration, pressure, and current are acquired from a

two-stage reciprocating air compressor under different valve conditions such as suction leakages, discharge leakages, spring

deterioration, and their combination. These signals are subsequently processed so that the useful fault information from the

signals can be revealed; next, statistical features in the time and frequency domains are extracted from the signals and used as

the inputs for hybrid deep belief network. Performance of hybrid deep belief network in fault classification is compared with

that of the original deep belief network and the deep belief network combined with generalized discriminant analysis, where

softmax regression is used as a classifier for the latter two models. The results indicate that hybrid deep belief network is

more capable of improving the diagnosis accuracy and is feasible in industrial applications.
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Introduction

Reciprocating compressors (RCs) are of vital import-
ance in gas transmission pipelines, petrochemical
plants, refineries, and general industry processes.
Due to a high pressure ratio achievement, RCs are
approximately installed three times higher in compari-
son with the other types such as centrifugal compres-
sor in spite of its higher maintenance costs.1 In an RC,
several components operate in critical conditions such
as high temperature and high pressure that lead to
frequently failure occurrences. Components that
mostly cause forced outages and are closely linked
to the RC performance in terms of life and efficiency
are suction and discharge valves. In fact, as indicated
in the Leonard’s2 study, compressor valves can be the
most serious single cause of unscheduled RC shut-
downs (36%), and half of total repair cost is related
to the valve faults. In some cases, a compressor valve
failure can cause other mechanical-related problems.

This emphasizes the need to develop accurate and
reliable fault diagnostic methodologies for RC
valves to minimize the shutdowns and the mainten-
ance costs.

Several approaches using analytical or machine
learning techniques in association with conventional
signals, e.g. vibration, acoustic emission, and cylinder
pressure, have been proposed in the literature to
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diagnose the RC and its valve faults. The principle of
these approaches is based on applying advanced
signal processing methods to deal with the transient
phenomena and noise existing in the measured signals
so that the fault patterns can be easily extracted.
Then, data analyses or machine learning models
such as artificial neural networks (ANNs) and sup-
port vector machines (SVMs) are employed to iden-
tify the fault occurrences. In case of analytical
approaches, the analyses are carried out in various
domains to compare the current valve state with ref-
erence states so that the fault type is highlighted. For
instance, Pichler et al.3 transformed vibration sig-
nals into high-dimensional vector space by using
short-time Fourier transform and defined a metric
in this space. Then, the distance between the actual
compressor states and a reference state computed
based on the defined metric was used to indicate
the faults. Lin4 used ensemble empirical mode
decomposition to decompose the vibration signal
into different frequency intrinsic mode functions
and Hilbert spectrum to extract the different fault
frequencies, respectively. Elhaj et al.5 developed a
mathematical model for a two-stage RC to simulate
normal and different faulty conditions including
valve leakage and valve spring deterioration. These
faults were detected and identified by comparing the
simulated and measured waveforms of cylinder pres-
sure and crankshaft instantaneous angular speed
fluctuation. Principal component analysis (PCA)
was also applied for compressor fault diagnosis in
the studies by Ahmed et al.6 and Potočnik and
Govekar.7 These authors used PCA for dimension-
ality reduction of the statistical parameters extracted
from the vibration data, and then, the faults were
identified by T2 and Q statistics in the study by
Ahmed et al.6 or by discriminant analysis in the
study by Potočnik and Govekar.7 Other studies
using analytical approaches could be found in
literature.8–10 In general, fault diagnosis based on
analytical approaches seems to be a challenge to
practitioners when in-depth knowledge is required
to accurately categorize the fault occurrences.
Furthermore, they are inapplicable to automated
decision-support systems.

In comparison to analysis-based fault diagnosis,
machine learning-based fault diagnosis has been
increasingly attracting attention from researchers.
The main reason is that the fault diagnostic models
can be flexibly generated from data without any prior
knowledge or human experts about faulty character-
istics of RC valves. Numerous outstanding research
studies on valve fault diagnosis using machine learn-
ing techniques have been published in literature. Yang
et al.11 employed discrete wavelet transform (WT)
with Daubeches-10 as a basic function to decompose
the vibration and acoustic signals into different fre-
quency sub-bands. Then, statistical measures were
extracted from the first four levels, and ANNs

together with SVMs were utilized as classifiers to iden-
tify the faults of small RCs used in refrigerators. Lin
et al.12 processed the vibration signals by various
time–frequency analysis techniques to describe the
dynamic characteristics of an RC, extracted the char-
acteristics of the distribution map, and applied ANN
for classification. Some researchers proposed alterna-
tive approaches to reveal the fault patterns in the
measured signals instead of using signal processing
techniques that could lead to costly computation or
complexity. Cui et al.13 extracted different informa-
tion entropy features from vibration signals, e.g.
singular spectrum entropy, spectrum entropy, prob-
ability density entropy, wavelet packet entropy, etc.,
and used these entropies as inputs of SVM classifier to
diagnose the valve faults. In the study by Qin et al.,14

SVM was also applied to recognize the valve fault
types where its inputs were the parameterized wave-
form, decayed characteristics, and damped natural
frequency extracted by the wave-matching method.
Alternatively, a combination of machine learning
models and PV diagram has received much consider-
ation in the field of RC valve fault diagnosis due to
the accurate reflection of the PV diagram on the valve
conditions. Once any fault occurs, the shape of the PV
diagram would change accordingly and the fault types
can be recognized by learned models. Thus, instead of
processing pressure signals, approaches based on the
PV diagram have to deal with images to extract the
useful fault patterns. For example, Feng et al.15 used
SVM and features extracted from digital images of the
PV diagram by curvelet transform to classify five
faulty types of an RC. Similarly, Wang et al.16 com-
bined image processing techniques to obtain invariant
moments from the PV diagram with SVM in a frame-
work to identify the faults of RC valves. Another
study investigating the PV diagram for this research
field can be found in the studies by Wang et al.17 and
Pichler et al.18

Although the combination of machine learning
models with signal/image processing techniques pro-
vides potential and successful applications for fault
diagnosis of RC valves, they still have deficiencies19:
(a) the accurate results heavily depend on signal/
image processing techniques, quality of features
extracted from measured signals, and applied
dimensionality reduction methods such as principle
component analysis or independent component ana-
lysis; (b) machine learning models have shallow archi-
tecture where only one hidden layer is included. Such
architectures limit the capacity of models to learn the
complex nonlinear relationships in fault diagnosis.
Recently, deep learning has gained much consider-
ation in the machine learning area due to its ability
to overcome the shortcomings of traditional learning
models. One of the most attractive advantages of deep
learning methods is that they can adaptively capture
the representative information from raw data through
multiple nonlinear transformations and approximate
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complex nonlinear functions with a small error.19–21

Different deep learning methods have currently been
presented in the literature such as deep belief network
(DBN),22 deep Boltzmann machines (DBMs),23 and
deep convolutional neural networks.24 They have
been engaged in fault diagnosis of bearings,20,25–27

industrial chemical processes,28 RC and RC
valves,29,30 and rotors.31 For further improving the
accuracy of fault diagnosis, several approaches that
hybridize the original deep learning with other methods
have been proposed for text classification or speech
recognition. However, a few approaches have been
found in the fault diagnosis field. For instance, Li
et al.32,33 focused on spur and helical gearbox diagno-
sis. They either extracted the statistical parameters or
separated the different modalities from the measured
signals, and then DBM was employed to learn the pat-
tern information in each parameter/modality. Finally,
SVM or random forest was used to fuse the results.

To date, the hybrid deep learning approaches,
especially hybrid deep belief network (HDBN), for
fault diagnosis of RC valves have not been considered
in the published literature. Furthermore, most of the
fault diagnosis studies on RC in general and its valves
in particular deal with single isolated faults. In real
industrial operations, multi faults can occur at the
same time causing the fault identification challenging
due to the combined effect. Therefore, in this study,
an HDBN based on local receptive fields,34 DBN, and
simplified fuzzy ARTMAP (SFAM)35 are originally
proposed not only to handle diagnosis of combined
faults but also to enhance the diagnostic performance
of RC valve faults. In addition, a comparative study
of accuracy obtained from the HDBN, original DBN,
and original DBN combined with generalized discrim-
inant analysis (GDA),36 for which softmax regression
is used as a classifier for the latter two models, is
carried out to appraise the improvement of HDBN.

Background

Deep belief networks

Architecture of RBMs. Restricted Boltzmann machine
(RBM), whose architecture is shown in Figure 1, is
a special type of Markov random field and is struc-
tured by one layer of binary stochastic hidden units

h 2 f0, 1gH and one layer of binary stochastic visible
units v 2 f0, 1gV. RBM can be represented as a bipart-
ite undirected graphical model where all visible units
are connected to all hidden units, but there are no
visible-visible or hidden-hidden connections. The
weights between the visible layer and the hidden
layer are undirected and are denoted by w. The visible
and hidden units have their biases represented by vec-
tors b and a, respectively.

In binary RBM, the weights of the connections and
the biases of the individual units define a probability
distribution over the joint states of the visible and
hidden units via an energy function. This energy is
given37,38
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where vi and hj are the binary states of visible unit i
and hidden unit j;� ¼fw, b, ag is the model parameter;
wij is the weight between visible unit i and hidden unit
j; bj and ai are their biases; and V and H are the
number of visible and hidden units. The joint distri-
bution over the visible and hidden units is defined via
the energy function as follows.
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The probability that the model assigns to a visible
vector v is given by summing over all possible hidden
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Due to the special bipartite structure of the RBMs,
the hidden units can be explicitly marginalized out
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The conditional probability of hidden units h and
visible vector v can be given
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Figure 1. Architecture of the restricted Boltzmann machine.
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It is similar for the probability assigning to a
hidden vector h and the conditional probability of
visible units v
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Because there are no hidden-hidden or visible-visi-
ble connections, the conditional probabilities pðvjhÞ
and pðhjvÞ are factorial and are given by
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where � ¼ 1= 1þ expð�xÞð Þis the logistic function.

Gaussian–Bernoulli RBM. Originally, RBM was devel-
oped by using binary stochastic units for both the
visible and hidden layers. However, such binary
RBM is very inconvenient and only provides poor
representation for modeling real-value data. To deal
with this issue, Gaussian–Bernouli RBM (GBRBM) is
considered in this study, and the visible units are
replaced by linear units with independent Gaussian
noise. The energy function of GBRBM becomes38,39
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where �i is standard deviation of visible unit vi.
The probability function can be driven as follows.
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The probability that the model assigns to a visible
vector v in this case becomes
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Also, the conditional probabilities are expressed.
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where g is the logistic function and x is a real number.

DBN architecture. DBN is a probabilistic generative
model that is formed by stacking layer-by-layer a
number of RBMs as shown in Figure 2. The learning
scheme of DBN consists of pre-training and fine-
tuning procedures. In the pre-training procedure,
DBN is trained through bottom-up unsupervised
fashion in a sequence of RBMs by CD algorithm:

v

h1

h2

hn

hn-1

Figure 2. Architecture of deep belief network.
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each RBM layer is trained by using the activation
probabilities of the lower layer RBM as the input fea-
tures and its output will be the input for the next
RBM layer up. Note that the DBN architecture is
structured by GBRBM at the first RBM layer and
binary or Bernoulli-Bernoulli RBMs at the others
for real-valued data input. The pre-training is fol-
lowed by the fine-tuning procedure that is top-down
supervised leaning using the back propagation
algorithm. The classification task in this procedure
is performed by softmax regression, which is a gener-
alization of logistic regression model for multiple
classes, at the top layer of the network. As a result,
the back-propagation algorithm can adjust the
network weights in the same way as the standard
feed-forward neural network to improve the
performance.

Let h, w, and N, respectively, be the activation of
the penultimate layer units, the weight connecting the
penultimate layer to the softmax layer, and the
number of classes, the total input into a softmax
layer a can be given as

ai ¼
X
k

hkwki ð17Þ

The discrete probability of each softmax layer unit
is computed as

pi ¼
expðaiÞPN
j expðaj Þ

and
XN
i

pi ¼ 1 ð18Þ

The classified class î would be

î ¼ argmax
i

pi ¼ argmax
i

ai ð19Þ

Local receptive fields

The drawback in such DBN architecture is how the
hidden units in each layer connect to the ones in the
layers beneath. To overcome this problem, Coates
and Ng34 proposed an algorithm for selecting local
receptive fields (SLRF) to limit the fan-in of each
unit by connecting its extractor to a small receptive
field of inputs. Each receptive field is constructed by
using a greedy selection scheme to group together the
most similar low-level features to each other accord-
ing to a pairwise similarity metric. This method has
been successfully applied to image recognition34 and
financial distress prediction.40

As structured, each RBM in DBN contains a vis-
ible and a hidden layer. The units of the former are
usually known and represent the lower level features,
whilst the units of the latter represent features learned
from the former. In order to build the units of the
hidden layer, the SLRF algorithm groups the similar
feature of the visible layer into a receptive field that is

also a unit of the hidden layer. Let X denote the data
set of feature vectors xðiÞ, i 2 f1, . . . ,mg with element
x
ðiÞ
j . If the data set X consists of linearly uncorrelated

features, then a measure of the higher order depend-
ence between the two features can be obtained by
looking at the correlation of their energies (squared
responses). In particular, if E½X� ¼ 0 and E½XXT� ¼ I,
then the similarity between the feature xj and xk is
defined by squared responses34
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The pairwise similarity between all of the features
is given as
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After obtaining the matrix of pairwise similarities
between features Sj,k, the receptive fields are con-
structed by the greedy procedure: one feature is ran-
domly chosen as a seed, then it is grouped with its
nearest neighbors according to the similarity Sj,k. In
detail, N rows of matrix S that corresponds to a
random seed xjn are randomly selected. Then, a recep-
tive field is constructed that contains the features xk
corresponding to the top values of Sjnk. This proced-
ure is repeated for every seed.

SFAM network

SFAM is a simplified version of fuzzy ARTMAP41 by
reducing the complicated and redundant architec-
tures, which is the main drawback of the original
model for classification task. As a result, the SFAM
is faster than fuzzy ARTMAP and easier to under-
stand. The details of this network could be found in
the study by Kasuba.35

HDBN architecture

The architecture of HDBN is similar to the original
DBN where RBM is used at each layer. Despite
having the same architecture, HDBN is different in
constructing the network and the learning scheme,
thanks to the SLRF algorithm: (a) the SLRF algo-
rithm plays a role as feature selector in defining the
hidden units for each layer; (b) Only the unsupervised
learning (the pre-training procedure) of RBN is used
and the fine-tuning procedure is entirely eliminated.
This elimination enables not only reducing the train-
ing time of the fault diagnosis system but also free

Tran et al. 5



usage of any classifier at the top of the HDBN to
perform the classification task.

The process of building and training HDBN net-
work is summarized as follows:

1. At the last bottom RBM layer, the inputted fea-
tures or raw data are grouped into the receptive
fields by SLRF. The receptive fields that have the
highest values of correlation are collected to be the
top candidates. These candidates present the units
of the hidden layer.

2. RBM is built based on the input and the hidden
units. Then, the RBM pre-training procedure is
executed over these units to compute the weights
and biases. The output of the current RBM is the
input for the next RBM layer up.

3. The steps from 1 to 2 are iteratively carried out until
the hidden units of the last RBM layer are reached.

4. SFAM classifier is connected to the last layer to
perform the diagnosis results.

Proposed framework for fault diagnosis

The proposed framework for diagnosing single and
combined valve faults of two-stage RC is shown in
Figure 3. The vibration and pressure signals are
acquired from the two stages, while the current signal
is collected from a phase of a driving induction motor.
For the vibration signals, the transient impact always
exists due to the multitude of component moving in
both rotary and linear directions. To handle these tran-
sient phenomena, the Teager-Kaiser energy operator
(TKEO)42,43 with DESA-1 algorithm44 is used,
thanks to its high time resolution and good adaptabil-
ity to the instantaneous energy changes of signals. As a
result, TKEO transforms the vibration signals into
Teager-Kaiser energies (TKEs). For the pressure and
current signals, the random noise contained in these

signals are eliminated by the WT denoising method.
Next, the statistical measures in the time domain and
the frequency domain are extracted from the amplitude
envelope of TKEs as well as the denoised pressure and
current signals to represent the characteristics of the
valve conditions.

In order to classify the faults of the RC valves,
the extracted features are inputted into HDBN
where the process of forming the DBN’s structure,
pre-training, and classification are carried out. As
mentioned, the SLRF algorithm and the pre-training
procedure are respectively executed to group the simi-
lar features layer by layer into receptive fields from the
bottom to the top layer and train the network. Then,
the output of the last hidden units is randomly split
into a training set to build SFAM classifier and a test
set to validate the accuracy of classification.

Valve fault experiments

To evaluate the proposed framework, our experi-
ments were carried out on a Broom & Wade RC
(model TS9) designed to compress air between 0.55
and 0.8MPa to the receiver working at maximum
pressure of 1.38MPa. This compressor consists of
two stages where the air pressed at the first stage
(low pressure) is passed to the second stage (high pres-
sure) via an air-cooled intercooler and then is stored
in the air receiver. The crankshaft operated at a speed
of 440 r/min and was driven through two V-belts by a
three-phase induction motor running at speed of
1420 r/min. The layout of this RC including sensor
locations, experimental system, and other specifica-
tions are respectively shown in Figure 4 and Table 1.

Different conditions of suction and discharge
valves in the two stages working under different
loads were used to generate the experimental data.
One of these was a normal condition, whilst the
others were suction leakages, discharge leakages,

Vibration

Pressure2nd stage

1st stage

Induction
motor

Current

TKEO

WT based
denoising

Feature
extraction

Classification
results

RBM layers:
- Structured by SLRF
- Pre-training

Training set Test set

SFAM

HDBN

Figure 3. Proposed framework for reciprocating compressor valve fault diagnosis.

RBM: restricted Boltzmann machine; SFAM: simplified fuzzy ARTMAP; SLRF: selecting local receptive field; TKEO: Teager-Kaiser

energy operator; WT: wavelet transform.
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and spring deterioration. The valve leakages were arti-
ficially made by drilling a 1- and 3-mm diameter holes
on the valve plates for small and large leakages,
respectively. Totally apart from the normal condition,
eight faulty conditions involving small discharge leak-
age in the first stage, small discharge leakage in the
second stage, large discharge leakage in the second
stage, discharge spring fault in the second stage,
small suction leakage in the second stage, large suc-
tion leakage in the second stage, suction spring fault
in the second stage, and a combined fault that is small

1st stage2nd stage

Air intake

Accelerometer

Pressure sensor

Belt

Induction
motor

Suction valve

Discharge valve

Static pressure
sensor

Air intake

Accelerometer

Belt

Induc
mot

Suction valve

Static p
sen

(a)

(b)

Figure 4. Reciprocating air compressor: (a) Layout and (b) Experimental system.

Table 1. The specifications of a two-stage reciprocating

compressor.

Compressor Induction motor

Max working pressure 1.38 MPa Power 2.5 kW

Number of cylinders 2 Voltage 380 V

Piston stroke 76.2 mm Phase 3

Crank speed 440 r/min Speed 1420 r/min

Tank description Horizontal Current 4.1 A

Tran et al. 7



discharge leakage in the first stage and small suction
leakage in the second stage were created.

To collect the vibration and pressure signals from
the two stages, accelerometers and pressure sensors
were vertically installed at the top of the stages. In
detail, two accelerometers, model YD-5-2 with the
frequency range 0–15 kHz and sensitivity 45 mv/
ms�2, were mounted on the valve coverings. The pres-
sure sensors that were GEMS-22CSs with the range
up to 4MPa (600 psi) were installed in a thread hole
made into the head of each cylinder. For the current
signal acquisition, a Hall-effect-based current trans-
ducer having a frequency response from DC to
1.5 kHz was mounted on the phase A of the induction
motor. Another static pressure sensor,
SensorTechnics-PS2000 covering from 0 to 1.35MPa
(200 psi) was also installed to continuously monitor
the pressure (load) in the air receiver during the
experiments. This sensor was used not only to
switch off the driving induction motor but also to
trigger data collection at predefined pressures which
began from 0.0689MPa (10 psi) to 0.827MPa
(120 psi) with 0.0689MPa (10 psi) intervals.
Generally, the pressures at every moment were
increasingly changed during the experiments.
However, the data collection process was short
enough that the increase of the pressure in the air
receiver was insignificant in this period. Therefore,
the pressures could be considered as constants at
this acquisition. Once each of the predefined pressures
were reached, data were acquired by a 16-bit

resolution ADC system (model CED Power1401)
with the sampling rate of 57,142Hz. The software
for the data acquisition was built based on
LabWindows/CVI, National Instruments, that pro-
vides powerful function libraries and a comprehensive
set of software tools for data acquisition, analysis,
and presentation. The data set for each predetermined
pressure consisted of four segments in which each seg-
ment contained 118,833 samples and covered approxi-
mately 15 working compressor cycles. Thus, 12 data
sets according to 12 predefined pressure values in total
were collected for each condition and then stored to
the PC for analysis and classification.

Results and discussion

TKEO implementation and feature extraction

Due to transients, the features extracted from raw
time-waveforms of the vibration signals or their fast
fourier transform (FFT) spectra are not able to pro-
vide proper information for fault diagnosis. For
instance, approximately a quarter-segment of the
time-waveform vibrations at the second stage of the
large discharge leakage (3mm), the small discharge
leakage (1mm), the discharge spring fault, and the
normal conditions at the load of 0.276MPa are
respectively shown in Figure 5(a). It can be seen
that various transient impacts and noise by the
motion of RC are observable. These time-waveforms
further show that they seem to be indistinguishable.

(a) (b)

Figure 5. Vibration signals at the second stage of different conditions: (a) Time-waveform and (b) Frequency spectra.
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When the load increases, more impacts and noise arise
in the vibration signals leading them to be indistinct-
ive. In the frequency spectra which are shown in
Figure 5(b), the main frequency (7.3 Hz) cannot be
revealed by FFT for all the vibration signals of the
conditions. Therefore, TKEO is applied to transform
the vibration signals into the TKEs. As observed in
Figure 6(a) where the TKE time-waveforms of the
same conditions above are depicted, the characteristic
impacts are highlighted, and the noise is almost elimi-
nated. Moreover, the main frequency 7.3 Hz and its
harmonics are clearly discriminated in the frequency
spectra, depicted in Figure 6(b). Obviously, TKEO
can effectively uncover the characteristics of the vibra-
tion signal and remove the noise without using any
filtering techniques. The advantages of TKEO appli-
cation to the vibration signals can be realized as fol-
lows: (a) band-pass filter is unnecessary, so the
appropriate estimation of the central frequency and
the bandwidth of the band-pass filter is avoided; (b)
the implementation of TKEO is quite simple and
computationally efficient due to the fact that only
two sample differences are used to compute in
DESA-1 algorithm.

Some preprocessing steps are carried out for the
experimental data before extracting the statistical fea-
tures. As mentioned in the experimental section, for
each predefined pressure level, the data contain four
segments and each segment has 118,833 data points.
The data set of each condition is partitioned into four
subsets, thus 48 data samples (12 predefined

pressures� 4) are obtained. Next, TKEO is applied to
subsets of the vibration signal to convert them into
TKEs. For the pressure and current signals, the
random noise in the signals from the measurement pro-
cess is removed by using the discrete WT-based denois-
ing technique. The parameters for this denoising
technique in this study consist of soft thresholding,
Daubechies’ least asymmetric as basic wavelet function
(sym9), and three levels for the multiresolution decom-
position. Lastly, the statistic features consisting of ten
features in the time domain, three features in the fre-
quency domain, and eight features of regression estima-
tion are extracted from the amplitude envelopes of
TKEs, pressure, and current signals, respectively.
These features are correspondingly described from
Tables 2 to 4. Totally, in the case of the vibration and
pressure signals, we obtain a feature set containing 432
samples (9 valve conditions� 48 data samples) and 42
features (21 features� 2 compressor stages). In the case
of current, the feature set is of 432� 21.

Classification results and comparative studies

The feature sets obtained from the previous step are
fed into the HDBN where its number of hidden layers
is chosen as two. As introduced in the HDBN archi-
tecture section, the SLRF algorithm is firstly carried
out to define the hidden units, and then the pre-train-
ing is applied to compute the weights and biases as
well as the output of each layer. As a result, the
number of hidden units of the two layers for the

(a) (b)

Figure 6. Teager-Kaiser energies of different conditions: (a) Time-waveform and (b) Frequency spectra.
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features of the vibration, pressure, and current signals
is obtained as shown in Table 5. As observed, the
number of features is shrunk for each higher RBM
layer due to the feature similarity grouped by SLRF.

Next, the output of the last hidden layer is parti-
tioned into a training set and a test set by using the
holdout validation method, where the ratio between
these sets is chosen as 0.5. As a result, 216 samples are
randomly selected for the test set and the rest for the
training set. For the SFAM configuration, the learn-
ing rate �, conservative mode �, and number of
epochs are used as 1, 0.001, and 4, respectively. Due
to the randomized selection of samples for the train-
ing set and test set in the holdout validation method,
the process of partitioning features, training, and eval-
uating the diagnostic model was repeated five times.

In each replication, the training and testing process of
SFAM were repeated five times to account for the
stochastic nature, and then the results were averaged.
Finally, the results of five-time validation were com-
puted to show the accuracy of the models.

Table 5. The parameters of hybrid deep belief network.

Parameters

Values

Vibration Pressure Current

Number of hidden layers 2 2 2

Number of hidden

units in layer 1

33 31 15

Number of hidden

units in layer 2

27 24 11

Table 2. The statistical features in the time domain.

Features Expression Notes

Mean m ¼ 1
N

PN
i¼1 xi xi is the ith value of signal x, N is the

number of data points

RMS xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 x2

i

q
Shape factor SF ¼ xrms=

1
N

PN
i¼1 xij j

Skewness Sk ¼ 1
N

PN
i¼1 ðxi � mÞ3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðxi � mÞ2

q� �3

Kurtosis Kur ¼ 1
N

PN
i¼1 ðxi � mÞ4

�
1
N

PN
i¼1 ðxi � mÞ2

� �2

Crest factor CF ¼ maxðxÞ=xrms

Entropy error EeðxiÞ ¼
P

pðxiÞ ln pðxiÞ
2 p(xi) is the distribution on

the whole signal

Entropy estimation EsðxiÞ ¼ �
P

pðxiÞ ln pðxiÞ

Histogram lower hL ¼ maxðxiÞ �
�
2

� ¼ maxðxiÞ�minðxiÞ

N�1

Histogram upper hU ¼ maxðxiÞ þ
�
2

RMS: root mean square.

Table 3. The statistical features in the frequency domain.

Features Expression Notes

Frequency center FC ¼
PN

i¼2 _xixi=2�
PN

i¼1 x2
i _x ¼ ðxi � xi�1Þ=�

RMS variance frequency RMSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼2 _x2

i =4�
2
PN

i¼1 x2
i

q

Root variance frequency RVF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼2 _x2

i =4�
2
PN

i¼1 x2
i

� �
� FC2

r

RMS: root mean square.

Table 4. The statistical features of regression estimation.

Features Expression Notes

Auto-regression

coefficients: a1–a8

yt ¼
Pn

i¼1 aiyt�i þ "t yt is the signal under investigation, n is the

order of auto-regression model, and "t is

Gaussian white noise.
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Additionally, in order to appraise the improvement
of the proposed framework, a comparative study of
classification results are obtained from (a) this frame-
work, (b) the framework of our previous study30 that
combines GDA for increasing the separation among
the feature clusters and original DBN with softmax
classifier for classification (GDA-DBN), (c) the
framework that has only original DBN with softmax
classifier to use DBN’s ability in mining the fault
information through pre-training. In case of GDA-
DBN, the eigenvalue of the covariance matrix was
used to estimate the sufficient amount of necessary
features. As a result, the number of features in the
feature sets retained after mapping into a new space
was 35 for vibration, 25 for pressure, and 11 for the
current signals as shown in Figure 7. Moreover, apart
from the reused parameters of HDBN, e.g. the
number of hidden layers and hidden units as shown
in Table 5, other parameters for the fine-tuning pro-
cedure involving learning rate, number of training
epochs, and mini-batch size are respectively 0.001,
100, and 9 to configure the network of GDA-DBN
and original DBN.

The averaged classification results of five-time rep-
lications in the testing phase of DBN, GDA-DBN,
and HDBN applied for the vibration, pressure, and
current signals are shown in Table 6. Noting that the
accuracy of HDBN given in this table is the maximum
accuracy of which the vigilance parameter (VP) values
vary from 0 to 0.9 with 0.1 intervals. As seen, HDBN
provides better performance in comparison with
GDA-DBN and significantly higher accuracy than
the original DBN. In detail, HDBN achieves, respect-
ively, 97.96%, 97.11%, and 91.18% classification

accuracy for vibration, pressure, and current signals
whilst GDA-DBN accuracy is slightly lower (97.07%,
95.52%, and 72.39%). The accuracy of the original
DBN is the lowest, which is 85.41% for vibration
signal, 82.09% for pressure signal, and 68.07% for
current signal. Reasons for high performance of
HDBN in comparison with the others are as follows:
(a) SLRF and GDA are vastly superlative to DBN
itself in clustering fault features among different valve
conditions to increase the separation between them,
which improves the classification accuracy; (b) The dis-
crimination performed by SFAM used for HDBN
is superior to the softmax regression used for GDA-
DBN. The classification results presented in Table 6
also indicate that the current signal provides less accuracy
due to the similarity of current waveforms of different
valve conditions. This similarity leads to difficulty in
extracting the fault characteristics from these waveforms.
In other words, the current signal could insufficiently be
sensitivity to highlight the differences among the valve
conditions, especially in the case of multiple combined
faults occurring in the machine.

Figure 8 shows the details of HDBN performance
for the VP values from 0 to 0.9. As observed, the

0 5 10 15 20 25 30 35 40
0

0.2

0.4
(a)

0 5 10 15 20 25 30 35 40
0

0.5
(b)

eulavnegi
E

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

Number of features

(c)

Figure 7. Eigenvalue of covariance matrix of feature sets: (a) vibration, (b) pressure, and (c) current.

Table 6. Averaged classification results (%).

Model Vibration Pressure Current

DBN 85.41 82.09 68.07

GDA-DBN 97.07 95.52 72.39

HDBN 97.96 97.11 91.18

DBN: hybrid deep belief network; GDA: generalized discriminant ana-

lysis; HDBN: hybrid deep belief network.
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classification accuracy for the vibration signal stably
reaches to 97.96% for the VP values ranging from 0 to
0.8. Similarly, the classification achieves 97.11% and
91.18% of accuracy for pressure and current signals,
respectively. It is noted that the accuracy slightly
decreases in case of pressure (96.98%) or less increases
in case of vibration (97.98%) and current signal
(91.3%) where the VP is of 0.8; however, these vari-
ations are not significant. At the VP of 0.9, all the
accuracy is lessened. Obviously, the VP values do
not strongly affect the HDBN performance and
have a wide range from 0 to 0.8 for usage.

Summary and conclusions

This paper has presented HDBN in the fault diagnosis
framework for identifying single and combined faults
occurring in the suction and discharge valves of RC.
This HDBN integrates DBN for pre-training and
SFAM for classification. In the pre-training proced-
ure, the SLRF algorithm is used to structure each
RBM of DBN. Then, the pre-training procedure is
carried out to compute the network parameters.
Finally, the output of the last hidden layer is fed
into the SFAM classifier without the fine-tuning pro-
cedure as for the original DBN. In order to validate
the proposed approach, three signal types involving
vibration, pressure, and current of experiments under
eight single and one combined valve conditions are
acquired. These signals are preprocessed by suitable
methods and their statistical measures are extracted as
the inputs for HDBN.

From the results, HDBN achieves high classifica-
tion accuracy for the three signals (97.96% for vibra-
tion, 97.11% for pressure, and 91.18% for current). In
comparison with the others that are original DBN
and original DBN combined with GDA, HDBN has
shown a remarkable improvement in accuracy. This
confirms that HDBN in the proposed framework is
eminently applicable for real fault diagnosis of RC
valves.
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