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Abstract— Passive assistive devices that compensate gravity
can reduce human effort during transportation of heavy objects.
The additional reduction of inertial forces, which are still
present during deceleration when using gravity compensation,
could further increase movement performance in terms of
accuracy and duration. This study investigated whether position
dependent damping forces (PDD) around targets could assist
during planar reaching movements. The PDD damping coeffi-
cient value increased linearly from 0 Ns/m to 200 Ns/m over 18
cm (long PDD) or 9 cm (short PDD). Movement performance of
reaching with both PDDs was compared against damping free
baseline conditions and against constant damping (40 Ns/m).
Using a Fitts’ like experiment design 18 subjects performed a
series of reaching movements with index of difficulty: 3.5, 4.5
and 5.5 bits, and distances 18, 23 and 28 cm for all conditions.
Results show that PPD reduced (compared to baseline and
constant damping) movement times by more than 30% and
reduced the number of target reentries, i.e. increasing reaching
accuracy, by a factor of 4. Results were inconclusive about
whether the long or short PDD conditions achieved better
task performance, although mean human acceleration forces
were higher for the short PDD, hinting at marginally faster
movements. Overall, PDD is a useful haptic force to get humans
to decrease their reaching movement times while increasing
their targeting accuracy.

I. INTRODUCTION

Understanding physical interaction between humans and
mechatronic devices can be useful in the field of tele-
operation, rehabilitation and power augmentation robotics.
Shaping the interface dynamics and reflected forces when
interacting with (virtual) objects (i.e. haptics) allows for task
performance optimization. For example, gravity and inertia
compensation can reduce physical effort during lifting tasks,
and haptic shared control can increase situational awareness
and task accuracy in remote transportation tasks [1]. Al-
though interactive robotic manipulators are extremely ver-
satile in their applications and functionality, such as the
admittance controlled devices used in industry [2], they pose
an inherent safety risk during physical interaction with users.
Passive systems, comprised of mechanically passive elements
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such as springs and dampers/brakes, could be preferred over
active systems for specific tasks. Advantages of passive
systems include the reduced design complexity, increased
inherent safety (although energy can be stored in springs),
reduced (maintenance) costs, and increased mobility due to
reduced weight and power demands. Examples of passive
systems are the mobile Lockheed Fortis [3] in industry, the
stationary rehabilitation exoskeleton Dampace [4], and the
ankle-foot exoskeleton by Collins et al. [5].

Compared to active systems, the types of forces that can
be generated with purely passive systems are limited. Such
limitation is partially overcome in Cobot systems by scal-
ing and changing passive dynamical properties accordingly
through continuous variable transformers [6], [7].

We propose a system inspired by the Cobot systems, but
for reaching-like tasks. Controlled damping forces around a
reaching target (position dependent damping, or PDD) will
be used to optimize a person’s motion during human-machine
cooperative tasks of picking and placing of heavy objects.
The term ‘controlled’ implies the use of a physical passive
element of which its dissipative properties are varied, e.g. by
controlled disk brakes or varying a moment arm of a dash-
pot damper. The term ‘optimize’ implies that movements
become faster and easier to perform with higher accuracy
and subjective likability. A potential industrial application of
PDD would be assisting cooperative transportation of heavy
objects with a passive gravity compensation mechanism to
a target location by a human operator, where the target is
determined by range finding sensors. The PDD could then
be used for faster and more accurate placement of heavy
objects by the human operator.

In this study we investigated how PDD changes the hu-
man’s reaching strategy and performance in terms of reach-
ing time, accuracy and applied force during Fitts-like [8], [9]
reaching tasks. Additionally, we evaluated whether Fitts’ law
still holds during reaching with PDD. We hypothesize that
humans optimize their motions to be energy efficient [10] and
will use the PDD to help them brake the reaching movement
and improve reaching accuracy and therefore movement
performance.

II. BACKGROUND

Modeling human reaching is challenging due to nonlinear
arm and muscle dynamics, high muscle redundancy and
the required optimal integration of both visual and pro-
prioceptive information [11], [12]. Fitts proposed a simple
linear relationship that models speed-accuracy trade-offs in
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Fig. 1: Trial blocks presented to the subject. Numbers above the blocks
indicate number of trial repetitions. F: Familiarization; B1: Baseline1
condition (nondamping); C1, C2 and C3: Damping condition 1–3 with
specific PDD; W1, W2 and W3: Washout phase 1–3 without damping; B2:
Baseline2 condition (nondamping). Dashed outlines indicate these blocks
are not used for data analysis.

rapid, aimed two-way tapping [8] or one-way reaching [9]
movements:

MT = a+ b · ID. (1)

This relationship describes the movement time (MT ) as
a function of Index of Difficulty (ID) and two empirical
coefficients a and b, which are dependent on environment
properties. In [13] it is proposed to use the Shannon formu-
lation of the ID (in bits) as a function of reaching distance
D and target size/diameter W around that target:

ID = log2

(
D

W
+ 1

)
, (2)

which we will use in the remainder of this work.
Few studies investigated validity of Fitts’ law in dissipa-

tive environments. In [14], [15] it was shown that moving
underwater (a dissipative, but highly inertial environment)
can be described by Fitts’ law with minor modification. Fur-
ther studies [16]–[18] investigated the influence of constant
friction and damping on the movement times. They found
that for small masses (below 2 kg) a friction force could
reduce reaching times and increase accuracy in a Fitts type
targeting tasks.

In contrast to the aforementioned studies, we are interested
in moving heavy masses (12.5 kg, motivated by the indus-
trial application) and in position dependent damping forces
around the reaching target, instead of constant damping or
friction forces.

III. METHODS

A. Experimental Conditions

In this experiment we compared three damping conditions
(C1, C2 and C3) where subjects performed reaching tasks
with different damping forces. These conditions were also
compared to two baseline conditions (B1 and B2) without
any damping forces during the reaching task. These baselines
were used to observe possible overall performance improve-
ments during the complete experiment.

During reaching tasks in conditions C1, C2 and C3,
subjects would feel different viscous damping forces Fd (in
N):

Fd = −b(x)v, (3)

where b(x) (in Ns/m) is a damping coefficient (d.c.), possibly
dependent on position x (in m) for PDD, v (in m/s) is
the instantaneous velocity of the moved manipulandum. The
minus sign in (3) shows that this force opposes the motion
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Fig. 2: Damping coefficients for each condition. Conditions B1 and B2
have zero damping coefficient. Condition C1 has a constant coefficient of
40 Ns/m. Conditions C2 and C3 increase linearly towards the target point
from 0 Ns/m to 200 Ns/m.

TABLE I: Used distances (D in cm), and index of difficulty (ID in bits)
result in nine combinations of target size (W in cm) per frame.

ID [bits]
D [cm] 3.5 4.5 5.5

18 1.75 0.83 0.41
23 2.23 1.06 0.52
28 2.71 1.29 0.63

and makes the dynamical system passive. The d.c. was
dependent on conditions as shown in Fig. 2. Baselines B1
and B2 had zero d.c. Condition C1 had constant d.c. of 40
Ns/m. Conditions C2 and C3 had 0 Ns/m d.c. at the start
of the movement, ramping up linearly to 200 Ns/m over a
distance of 18 cm (C2) or 9 cm (C3) from the target at D.
The d.c. was never lower than 0 Ns/m, nor higher than 200
Ns/m. Familiarization (F) and washouts (W1, W2 and W3)
had zero d.c.

B. Experimental Protocol

After a detailed explanation of the purpose and procedure
of the experiment, subjects performed a total of 378 reaching
movements (i.e. trials) with a haptic manipulandum (see
Sec. III-E). Of these trials, 315 were grouped over the 5
conditions, and 63 trials were used for familiarization or
washout. First, 18 familiarization trials (F) were performed.
Subsequently, all subjects performed the baseline1 (B1) of
63 trials without any damping forces. After B1, subjects
performed, in random order, three conditions C1, C2 and

Fig. 3: A subject uses the Moog HapticMaster to move a cursor to a target
shown on screen, while experiencing different kinds of damping forces.
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C3, each of 63 trials. Between each condition, 18 washout
trials (W1, W2 and W3) were performed to reduce learning
carryover from one condition to the next. After W3, subjects
performed a second baseline (B2) of 63 trials.

Target reaching distance D was chosen to lie within
the reachable workspace of the human arm and the used
manipulandum, and to have a large spread, with reasonable
target sizes. The chosen ID values were based on the fact
that below ID=3.5 movements are ballistic and possibly
without visual feedback, although literature disagrees on
whether this happens at this ID value. Above ID=5.5 the
ID makes the targets too small to assume Fitts’ law is valid
for this experiment when showing the target on screen [19],
[20]. We chose three different ID values (3.5, 4.5 and 5.5
bits) to be able to better observe linearity when fitting the
data with (1).

Combinations of three values for D and three values for
ID give nine values for W according to (2), as shown in
Table I. These nine combinations, which together we call
a ‘frame’, were presented in random order. Washout and
familiarization blocks consisted of two frames, while the five
conditions consisted of seven frames.

C. Subject Instruction

Subjects were instructed to move a cursor (which was
set to emulate 12.5 kg, unknown to the subject) from a
starting position to a target position in front of them using
a manipulandum (see Sec. III-E). This reaching motion was
done at shoulder height, in front of the sternum while moving
straight forward.

The cursor and target were represented as a yellow and
magenta circle respectively on a computer screen. The sub-
jects had to perform the task as fast and accurately as possible
and stay for 500 ms (dwell time) inside the target. Subjects
were motivated to improve their reaching time by an on-
screen score that was calculated from the movement time
and ID.

At the start of a trial, the text ‘Go!’ would appear on screen
after a random amount of time. This strategy was chosen to
avoid anticipation of this starting event. After seeing this
phrase, the subject would be able to move the handle to
the target on screen. If the subject would push the handle
before the starting event, the screen would turn red, the
manipulandum would not move, and the random count-down
would restart. After the subject stayed in the target for the
required dwell time, the manipulandum would automatically
move back to a fixed ‘home’ position and stay there until
the start of the next trial.

Subjects were told when a wash-out or change of condition
would happen, and they could take breaks before washouts
and after B1.

D. Participants

A total of 18 age matched healthy right-handed male sub-
jects aged 24.4±2.8 (mean±sd) years of age participated in
this study. They were unaware of the aim of the experiment.

The Ethics Committee of the Vrije Universiteit of Ams-
terdam approved the study design, protocols and procedures,
and informed consent was obtained from each subject.

E. Set-up

The used experimental set-up is shown in Fig. 3. Subjects
were fixated in a chair by velcro straps to avoid compen-
satory trunk and shoulder movements. The one dimensional
reaching movements are made on a Moog HapticMaster:
an admittance controlled haptic device to emulate inertia
and damping forces [21]. A computer monitor at a distance
of approximately 1.5 meters from the subject showed the
cursor, a target and instructive or motivational text (e.g.
‘Please Wait’). The image size on screen was scaled to match
the real-world movement distances and target sizes. The
HapticMaster communicated with a Windows 10 operated
laptop, over TCP/IP at a sample frequency between 800 Hz
and 1000 Hz. This communication was used to set damper
parameters and log relevant data. This software, which
included the visualization, was created in Visual Studio C#

2013 Community (Microsoft, 2013).
The positioning of the subject was defined such that for

the largest D, the elbow extension was at most 140◦. This
avoided the use of the singularity of the arm to stop the
reaching motion.

Safety of the subjects was guaranteed by proper posi-
tioning of the device such that they could never be hit or
obstructed by it. Subjects could let go off the handle at
any time. The device was equipped with an emergency stop
button that could be pressed by either the researcher or the
subject.

F. Performance Metrics and Data Analysis

Movement performance was evaluated in terms of move-
ment time (MT ), mean human acceleration force during
a trial, mean human deceleration force during a trial, and
mean damper force during a trial. The MT was determined
a posteriori by 1) taking as the start of the movement the
time instant when the subject would move faster than 2%
of his maximal velocity during that trial (to remove reaction
time offset) [22], [23], 2) removing the dwell time of 500
ms at the end of the movement time [24], [25].

Task accuracy was determined by counting the number
of times the cursor reentered the target before the trial was
accepted. A value higher than zero indicated that the cursor
had exited the target and had to be moved back.

Since we are interested in steady-state performance only,
we analyzed the last 27 trials (the last three frames) per
condition. We ignore the first 36 trials, and assumed it
would take that long to reach a performance plateau. This
assumption was based on a pilot study performed with 12
subjects. Additionally, this assumption has been validated in
the current study, as shown in Fig. 7.

Statistical analyses were performed between conditions,
for each ID, and to determine whether a performance plateau
was reached. Measurement data was fitted to Fitts’ law (1)
and (2) for each condition, using a linear least squares
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Fig. 4: Typical reaching movements from a single subject, moving to a target
at D=18 cm, with ID=5.5 bits, within the last frame of all conditions. a)
Position b) Velocity c) Force data from the human (solid) and the damper
(dashed).

method. Familiarization and washout blocks were not an-
alyzed.

As the data for all metrics was not normally distributed,
the most appropriate statistical test was a Friedman test
with a post-hoc Wilcoxon signed-rank test with Bonferroni
correction on the significance threshold for 10 pair-wise
comparisons.

IV. RESULTS

A. Typical Movement Profiles

Figure 4 shows typical reaching movements from a single
subject, moving to a target at D=18 cm, with ID=5.5 bits,
within the last frame of all conditions. It is noted that
all damping conditions (C1, C2 and C3) have a steeper
slope (i.e. higher velocity) than the baselines (B1 and B2).
Furthermore, for baseline movements the human force profile
is very symmetrical, although this is not the case for the
damping conditions (especially not for C2).

TABLE II: Regression parameters. Coefficient rm is the regression coef-
ficient for taking the mean MT per subject for that ID and condition.
Coefficient ra is the regression coefficient for taking all MT from a subject
for that ID and condition.

a [s] b [s/bits] rm ra
B1 -0.3180 0.2686 0.8882 0.6218
C1 -0.0952 0.1858 0.8644 0.5979
C2 -0.1938 0.1730 0.8636 0.6299
C3 -0.1881 0.1599 0.8753 0.5460
B2 -0.3498 0.2568 0.8961 0.6304

B. Relationship between ID and MT

The ID and MT showed a linear relationship for all
conditions (see Table II and Fig. 5). Using only the mean
value per subject (averaging 9 movements per ID per
condition into 1 value) resulted in regression coefficient rm
around 0.875. Taking all 9 values per subject, per ID, per
condition lead to the same intercept and slope (a and b in
(1)) but lower regression coefficient ra around 0.55.

C. Within Subject Comparisons

1) Movement Times: For all ID values, there was a
significant change in movement time between condition,
(p < 0.0005, nDOF=4, χ2

ID=3.5 = 48.44, χ2
ID=4.5 = 50.04,

χ2
ID=5.5 = 57.47). Post-hoc analysis (see Fig. 6a–c) showed

that for ID=3.5 the mean MT was significantly different
for all conditions except for B1-B2, B1-C1 and C1-B2. For
ID=4.5 the mean MT was significantly different for all
conditions except for B1-B2, C2-C3 and C1-B2. For ID=5.5
the mean MT was significantly different for all conditions,
except B1-B2 and C2-C3.

To investigate learning effects, we also took the mean
MT per frame, resulting in 7 values per condition, and
averaged over these means for 18 subjects. This gave an
overall ‘learning curve’, as shown in Fig. 7. For all conditions
the MT did not change significantly in the last three frames.
This result validates the assumption that a performance
plateau was reached in the last 27 trials.

2) Forces: Mean human acceleration forces, and human
and device deceleration forces are shown in Fig. 6d–f. For
all ID values, there was a significant change in mean human
acceleration force from the subject between conditions, (p <
0.0005, nDOF=4, χ2

ID=3.5 = 48.22, χ2
ID=4.5 = 53.29,

χ2
ID=5.5 = 55.47). Mean human acceleration force was

not significantly different (n.s.d) between C1-C3 and C2-
C3 for all IDs, and n.s.d. for C1-C2 for ID=3.5 bits.
For all ID values, there was a significant change in mean
human deceleration force from the subject versus condition,
(p < 0.0005, nDOF=4, χ2

ID=3.5 = 61.387, χ2
ID=4.5 =

56.22, χ2
ID=5.5 = 55.42). Mean human deceleration force

was n.s.d. for B1-C3 and C1-C3 for all IDs, and n.s.d.
for B1-C1 for ID=4.5 and 5.5 bits. For all ID values,
there was a significant change in maximal deceleration force
form the device versus condition, (p < 0.0005, nDOF=4,
χ2
ID=3.5 = 28.78, χ2

ID=4.5 = 29.78, χ2
ID=5.5 = 32.44).

Post-hoc analysis showed that all damping conditions had
significantly different mean damping forces.

3) Reaching Accuracy: For all ID values, there was a
significant change in reaching accuracy between conditions,
(p < 0.0005, nDOF=4, χ2

ID=3.5 = 51, χ2
ID=4.5 = 55.52,

χ2
ID=5.5 = 57.47). Post-hoc analysis showed that for all
IDs there was no significant difference (n.s.d.) between C2-
C3 and between B1-B2. For ID=4.5 there was n.s.d. between
C1-C3 and for ID=3.5 there was n.s.d. between C1-B2. For
ID=3.5 and ID=4.5 there was n.s.d. between B1-C2. All
other pairwise comparisons were significantly different, p ≤
0.001.
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C3, compared to the other conditions.
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For ID=3.5 the PDD C2 and C3 had an average of 0.04
target reentries, versus 0.40 for B1 and B2 and 0.29 for C1.
For ID=4.5 the PDD C2 and C3 had an average of 0.19
target reentries, versus 0.69 for B1 and B2 and 0.48 for C1.
For ID=5.5 the PDD C2 and C3 had an average of 0.42
extra target reentries, versus 1.3 for B1 and B2 and 0.9 for
C1.

V. DISCUSSION

A. Metric Comparisons

Using PDD to move 12.5 kg objects reduced move-
ment times for almost all IDs by almost 40%, compared
to nondamping baselines. Constant damping also reduced
reaching times, as expected from results presented in [16]–
[18], albeit not as much as PDD did. PDD also improved
reaching accuracy. Subjects required fewer target reentries
during PDD conditions than during baseline and constant
damping conditions, with a reduction factor of almost 4.
PDD also resulted in a lower spread in movement times,
compared to baselines and constant damping, resulting in a
more consistent motion. Acceleration forces are higher for
PDD than for constant damping and nondamping baselines,
although human deceleration forces become lower.

B. Movement Strategies

Movement profiles for baseline movements mostly re-
semble minimum-jerk trajectories with bell-shaped velocity
profiles. These reaching movement trajectories have smooth
accelerations and decelerations minimize endpoint error in
the presence of signal-dependent noise [26]. The addition of
PDD makes the velocity profile asymmetrical, with higher
average human acceleration forces (increase of almost 100%)
in the acceleration phase of the movement, compared to
baselines.

Human information processing proceeds by a series of
essentially independent steps. In [27] it is suggested that two
separate controlling processes are involved during reaching;
first an acceleration phase and afterwards a fine-tuning phase.
This could explain why PDD is successful in increasing accu-
racy (or for the same accuracy in reducing movement time),

since it assists during the fine-tuning phase. This could also
explain that constant damping hinders the acceleration phase,
making C1 reaching times almost 30% slower than C2 and
C3. For increasing ID, both acceleration and deceleration
forces seem to decrease for all conditions. Possibly, a more
cautious strategy is adopted when targets appear far away or
are of smaller sizes.

To reduce reaching times with a passive system, higher
forces are required for faster accelerations and decelerations.
Since faster movements will have a higher mean and peak
velocity, the expended net energy by the subject to perform
this movement has increased. Condition C2 has the high-
est average acceleration forces (energy added) and lowest
deceleration forces (energy extracted) by the subjects, out
of all conditions. The energy added during condition C3
seems lower than for C2, and more energy is extracted by
the subject. However, movement times were not significantly
different between C2 and C3 for higher IDs.

C. Fitts’ Law

Fitts’ law seems to hold for PDD, when comparing
regression coefficients with baseline. The found regression
coefficients are slightly lower when compared to literature
(0.875 versus 0.95). In literature, different methods for
determining the movement time in Fitts-like experiments are
used; button pushes, tapping, the application of pressure on
a surface or the usage of dwell time are common options.
Compared to tapping and pressing, the usage of dwell time
might have increased the timing spread, and therefore might
have reduced the regression coefficient.

PDD and constant damping have faster movement times
than no-damping baselines. The decrease in MT between
B1 and B2 conditions was minimal and not significant,
from which we conclude no overall significant effect of
learning over the complete experiment. For baseline and
damper conditions the regression only differs in intercept
a (in s) and not in slope. The slope (b in s/bits) of Fitts’
law is reciprocally related to the index of performance, or
information transmission rate, during the reaching motion.
For both baselines (B1 and B2) the slope is the same. The
slope is also the same for all three damping conditions (C1,
C2 and C3), but lower than baseline. From an information
theoretical perspective, it is tempting to state that with any
damping force more information was transferred per unit
time to the subject to perform the motion. As discussed
in [13], the fundamental interpretation of this information
channel is not straightforward for human reaching. Future
work will focus on investigating why this grouping in slope
occurs.

D. Position Dependency of the Damping Coefficient

In this experiment, the d.c. was either constant (C1), or
linearly increasing from different distances (C2 and C3).
We picked the linearly increasing d.c., starting at different
locations, to be able to control the influence of starting
location (onset).
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Different ‘shapes’ other than linear could have been used
with later onset, monotonically increasing nonlinear, steeper
and possibly exponential increase. If we would have used
an exponentially increasing d.c., we cannot investigate the
influence of onset versus shape; since it behaves like a d.c.
that is zero over a long range and suddenly increases rapidly.
Furthermore, a linearly increasing d.c. answers the current
research questions properly.

From experience we know that rapidly increasing d.c.
shapes work well, but too high gradient and too high value
(e.g. a brick wall effect) reduces subjective likability. Opti-
mizing the shape of the d.c. is an aspect we will look into
in future work.

VI. CONCLUSION

Results show that PPD reduced (compared to baseline and
constant damping) movement times by more than 30% and
reduced the number of target reentries, i.e. increasing reach-
ing accuracy, by a factor of 4. The results are inconclusive
about whether the 18 cm ramp (C2) or 9 cm ramp (C3)
in damping coefficient performs better in terms of accuracy
and movement time. Force profiles hint at a marginally lower
energy expenditure from the subjects in condition C2 than in
C3. Both strategies exploit high accelerations during the ac-
celeration phase, and assisted deceleration of the movement
to reduce overall reaching time. Results indicate that PDD is
a useful haptic force to get humans to decrease their reaching
movement times, while increasing their targeting accuracy.
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