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Abstract

For two given graphs G and H, the Ramsey number R(G, H) is the smallest positive integer p
such that for every graph F on p vertices the following holds: either F contains G as a subgraph
or the complement of F contains H as a subgraph. In this paper, we study the Ramsey numbers

R(Pn, K̂m), where Pn is a path on n vertices and K̂m is the graph obtained from the join of K1 and

Pm. We determine the exact values of R(Pn, K̂m) for the following values of n and m: 1 ≤ n ≤ 5
and m ≥ 3; n ≥ 6 and (m is odd, 3 ≤ m ≤ 2n − 1) or (m is even, 4 ≤ m ≤ n + 1); n = 6 or 7 and
m = 2n − 2 or m ≥ 2n; n ≥ 8 and m = 2n − 2 or m = 2n or (q · n − 2q + 1 ≤ m ≤ q · n − q + 2
with 3 ≤ q ≤ n − 5) or m ≥ (n − 3)2; odd n ≥ 9 and (q · n − 3q + 1 ≤ m ≤ q · n − 2q with
3 ≤ q ≤ (n − 3)/2) or (q · n − q − n + 4 ≤ m ≤ q · n − 2q with (n − 1)/2 ≤ q ≤ n − 4).
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1 Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a
graph. The graph G is the complement of G, i.e., the graph obtained from
the complete graph on |V (G)| vertices by deleting the edges of G. A kipas
K̂m is the graph on m + 1 vertices obtained from the join of K1 and Pm. The
vertex corresponding to K1 is called the hub of the kipas. Given two graphs G
and H, the Ramsey number R(G,H) is defined as the smallest positive integer
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p such that every graph F on p vertices satisfies the following condition: F
contains G as a subgraph or F contains H as a subgraph.

In 1967 Geréncser and Gyárfás [3] determined all Ramsey numbers for
paths versus paths. After that, Ramsey numbers R(Pn, H) for paths versus
other graphs H have been investigated in several papers, for example in [5],
[1], [6], [4], [2], [7] and [8]. We study Ramsey numbers for paths versus kipases.

2 Main results

We determine the Ramsey numbers R(Pn, K̂m) for the following values of n
and m: 1 ≤ n ≤ 5 and m ≥ 3; n ≥ 6 and (m is odd, 3 ≤ m ≤ 2n − 1) or
(m is even, 4 ≤ m ≤ n + 1); n = 6 or 7 and m = 2n − 2 or m ≥ 2n; n ≥ 8
and m = 2n − 2 or m = 2n or (q · n − 2q + 1 ≤ m ≤ q · n − q + 2 with
3 ≤ q ≤ n− 5) or m ≥ (n− 3)2; odd n ≥ 9 and (q ·n− 3q +1 ≤ m ≤ q ·n− 2q
with 3 ≤ q ≤ (n − 3)/2) or (q · n − q − n + 4 ≤ m ≤ q · n − 2q with
(n − 1)/2 ≤ q ≤ n − 4).

Theorem 2.1

R(Pn, K̂m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for n = 1 and m ≥ 3

m + 1 for either (n = 2 and m ≥ 3)

or (n = 3 and even m ≥ 4)

m + 2 for (n = 3 and odd m ≥ 5)

3n − 2 for either (n = 3 and m = 3)

or (n ≥ 4 and m is odd, 3 ≤ m ≤ 2n − 1)

2n − 1 for n ≥ 4 and m is even, 4 ≤ m ≤ n + 1.

Theorem 2.1 can be obtained by indicating suitable graphs for providing
sharp lower bounds, and using some result in [8] for getting the best upper
bounds. We omit the details.

The next lemma plays a key role in our proofs of Lemma 2.3 and Lemma
2.5. The proof of this lemma has been given in [7].

Lemma 2.2 Let n ≥ 4 and G be a graph on at least n vertices containing
no Pn. Let the paths P 1, P 2, . . . , P k in G be chosen in the following way:⋃k

j=1 V (P j) = V (G), P 1 is a longest path in G, and, if k > 1, P i+1 is a

longest path in G − ⋃i
j=1 V (P j) for 1 ≤ i ≤ k − 1. Let z be an end vertex of

P k. Then:

(i) |V (P 1)| ≥ |V (P 2)| ≥ . . . ≥ |V (P k)|;
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(ii) If |V (P k)| ≥ �n/2�, then |N(z)| ≤ |V (P k)| − 1;

(iii) If |V (P k)| < �n/2�, then |N(z)| ≤ �n/2� − 1.

Lemma 2.3 If n ≥ 4 and m = 2n − 2 or m ≥ 2n, then

R(Pn, K̂m) ≤
⎧⎨
⎩

m + n − 1 for m = 1 mod(n − 1)

m + n − 2 for other values of m.

Proof. Let G be a graph that contains no Pn and has order

|V (G)| =

⎧⎨
⎩

m + n − 1 for m = 1 mod(n − 1)

m + n − 2 for other values of m.
(1)

Choose the paths P 1, . . . , P k and the vertex z in G as in Lemma 2.2.
Because of (1), not all P i can have n − 1 vertices, so |V (P k)| ≤ n − 2. By
Lemma 2.2, |N(z)| ≤ n − 3. We will use the following result that has been
proved in [1]: R(Pt, Cs) = s + �t/2� − 1 for s ≥ �(3t + 1)/2�. We distinguish
the following cases.

Case 1 |N(z)| ≤ �n/2� − 2 or n is odd and |N(z)| = �n/2� − 1.
Since |V (G) \ N [z] | ≥ m + �n/2� − 1, we find that G − N [z] contains a Cm.
So, there is a K̂m in G with z as a hub.

Case 2 n is even and |N(z)| = n/2 − 1.
Since |V (G) \ N [z] | ≥ (m + n − 2) − n/2 = m + n/2 − 2, we find that
G − N [z] contains a Cm−1; denote its vertices by v1, v2, v3, . . . , vm−1 in the
order of appearance on the cycle with a fixed orientation. There are n/2 − 1
vertices in U = V (G)\(V (Cm−1)∪N [z]), say u1, u2, . . . , un/2−1. If some vertex
vi (i = 1, . . . ,m − 1) is no neighbor of some vertex uj (j = 1, . . . , n/2 − 1),

w.l.o.g. assume vm−1u1 �∈ E(G). Then G contains a K̂m with hub z and
its other vertices v1, v2, v3, . . . , vm−2, vm−1, u1. Now let us assume each of the
vi is adjacent to all uj in G. For every choice of a subset of n/2 vertices
from V (Cm−1), there is a path on n− 1 vertices in G alternating between the
vertices of this subset and the vertices of U , starting and terminating in two
arbitrary vertices from the subset. Since G contains no Pn, there are no edges
vivj ∈ E(G) (i, j ∈ {1, . . . ,m− 1}). This implies that V (Cm−1)∪ {z} induces
a Km in G. Since G contains no Pn, no vi is adjacent to a vertex of N(z).
This implies that G contains a Km+1 − e for some edge zw with w ∈ N(z),
and hence G contains a K̂m with one of the vi as a hub.

Case 3 Suppose that there is no choice for P k and z such that one of the
former cases applies. Then |N(w)| ≥ �n/2� for any end vertex w of a path on
|V (P k)| vertices in G − ⋃k−1

j=1 V (P j). This implies all neighbors of such w are

in V (P k) and |V (P k)| ≥ �n/2�+1. So for the two end vertices z1 and z2 of P k
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we have that |N(zi) ∩ V (P k)| ≥ �n/2� ≥ |V (P k)|/2. By standard arguments
in hamiltonian graph theory we obtain a cycle on |V (P k)| vertices in G. This
implies that any vertex of V (P k) could serve as w. By the assumption of this
last case, we conclude that there are no edges in G between V (P k) and the
other vertices. This also implies that all vertices of P k have degree in G at
least ⎧⎨

⎩
m + 1 if |V (G)| = m + n − 1

m if |V (G)| = m + n − 2.

We now turn to P k−1 and consider one of its end vertices w. Since
|V (P k−1)| ≥ |V (P k)| ≥ �n/2�+1, similar arguments as in the proof of Lemma
2.2 show that all neighbors of w are on P k−1. If |N(w)| < �n/2�, we get a K̂m

in G as in Case 1 and 2. So we may assume |N(wi) ∩ V (P k−1)| ≥ �n/2� ≥
|V (P k−1)|/2 for both end vertices w1 and w2 of P k−1. By standard arguments
in hamiltonian graph theory we obtain a cycle on |V (P k−1)| vertices in G.
This implies that any vertex of V (P k−1) could serve as w. By the assumption
of this last case, we conclude that there are no edges in G between V (P k−1)
and the other vertices. This also implies that all vertices of P k−1 have degree
in G at least ⎧⎨

⎩
m if |V (G)| = m + n − 1

m − 1 if |V (G)| = m + n − 2.
(2)

Repeating the above arguments for P k−2, . . . , P 1 we eventually conclude
that all vertices of G have degree in G at least as (2).

Now let |V (P k)| = � and H = G − V (P k). If V (G) = m + n − 1, then in
the graph H all vertices have degree at least m − � ≥ m/2 + (n − 1) − � ≥
1
2
(m+2n−2−�−(n−2)) = 1

2
(m+n−�) = 1

2
(|V (H)|+1). If V (G) = m+n−2,

then in the graph H all vertices have degree at least m− 1− � ≥ m/2 + (n−
1)−1− � ≥ 1

2
(m+2n−4− �− (n−2)) = 1

2
(m+n−2− �) = 1

2
|V (H)|. Hence,

there exists a Hamilton cycle in H. Since |V (H)| ≥ m and z is a neighbor of
all vertices in H, it is clear that G contains a K̂m with z as a hub. �

Corollary 2.4 If (4 ≤ n ≤ 6 and m = 2n − 2 or m ≥ 2n) or (n ≥ 7 and
m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (n ≥ 8 and q · n − 2q + 1 ≤ m ≤
q · n − q + 2 for 3 ≤ q ≤ n − 5), then

R(Pn, K̂m) =

⎧⎨
⎩

m + n − 1 for m = 1 mod(n − 1)

m + n − 2 for other values of m.

Corollary 2.4 can be obtained by indicating suitable graphs for providing
sharp lower bounds, and combining them with the upper bounds from Lemma
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2.3. We omit the details.

Lemma 2.5 If odd n ≥ 7 and q · n − q + 3 ≤ m ≤ q · n − 2q + n − 2 with
2 ≤ q ≤ n − 5, then R(Pn, K̂m) ≤ m + n − 3.

The proof of Lemma 2.5 is modeled along the lines of the proof of Lemma
2.3. We omit the details.

Corollary 2.6 If (n = 7 and m = 15) or (odd n ≥ 9 and (q · n − 3q + 1 ≤
m ≤ q · n − 2q with 3 ≤ q ≤ (n − 3)/2) or (q · n − q − n + 4 ≤ m ≤ q · n − 2q
with (n − 1)/2 ≤ q ≤ n − 4)), then R(Pn, K̂m) = m + n − 3.

Proof. For n = 7 and m = 15, the graph 3K6 and for odd n ≥ 9 and m =
q ·n−2q− j with either (3 ≤ q ≤ (n−3)/2 and 0 ≤ j ≤ q−1) or ((n−1)/2 ≤
q ≤ n−5 and 0 ≤ j ≤ n−q−4), the graph (q−j−1)Kn−2∪(j+2)Kn−3 shows
that R(Pn, K̂m) > m + n− 4. Using Lemma 2.5, we obtain that R(Pn, K̂m) =
m + n − 3. �
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