The Ramsey Numbers of Paths Versus Kipases

A. N. M. Salman ${ }^{1}$ H. J. Broersma ${ }^{2}$
Department of Applied Mathematics
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

For two given graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer p such that for every graph F on p vertices the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we study the Ramsey numbers $R\left(P_{n}, \hat{K}_{m}\right)$, where P_{n} is a path on n vertices and \hat{K}_{m} is the graph obtained from the join of K_{1} and P_{m}. We determine the exact values of $R\left(P_{n}, \hat{K}_{m}\right)$ for the following values of n and $m: 1 \leq n \leq 5$ and $m \geq 3 ; n \geq 6$ and (m is odd, $3 \leq m \leq 2 n-1$) or (m is even, $4 \leq m \leq n+1$); $n=6$ or 7 and $m=2 n-2$ or $m \geq 2 n ; n \geq 8$ and $m=2 n-2$ or $m=2 n$ or $(q \cdot n-2 q+1 \leq m \leq q \cdot n-q+2$ with $3 \leq q \leq n-5$) or $m \geq(n-3)^{2}$; odd $n \geq 9$ and $(q \cdot n-3 q+1 \leq m \leq q \cdot n-2 q$ with $3 \leq q \leq(n-3) / 2)$ or $(q \cdot n-q-n+4 \leq m \leq q \cdot n-2 q$ with $(n-1) / 2 \leq q \leq n-4)$.

Keywords: kipas, path, Ramsey number
AMS Subject Classifications: 05C55, 05D10

1 Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a graph. The graph \bar{G} is the complement of G, i.e., the graph obtained from the complete graph on $|V(G)|$ vertices by deleting the edges of G. A kipas \hat{K}_{m} is the graph on $m+1$ vertices obtained from the join of K_{1} and P_{m}. The vertex corresponding to K_{1} is called the hub of the kipas. Given two graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest positive integer

[^0]p such that every graph F on p vertices satisfies the following condition: F contains G as a subgraph or \bar{F} contains H as a subgraph.

In 1967 Geréncser and Gyárfás [3] determined all Ramsey numbers for paths versus paths. After that, Ramsey numbers $R\left(P_{n}, H\right)$ for paths versus other graphs H have been investigated in several papers, for example in [5], [1], [6], [4], [2], [7] and [8]. We study Ramsey numbers for paths versus kipases.

2 Main results

We determine the Ramsey numbers $R\left(P_{n}, \hat{K}_{m}\right)$ for the following values of n and $m: 1 \leq n \leq 5$ and $m \geq 3 ; n \geq 6$ and (m is odd, $3 \leq m \leq 2 n-1$) or (m is even, $4 \leq m \leq n+1$); $n=6$ or 7 and $m=2 n-2$ or $m \geq 2 n ; n \geq 8$ and $m=2 n-2$ or $m=2 n$ or $(q \cdot n-2 q+1 \leq m \leq q \cdot n-q+2$ with $3 \leq q \leq n-5)$ or $m \geq(n-3)^{2}$; odd $n \geq 9$ and $(q \cdot n-3 q+1 \leq m \leq q \cdot n-2 q$ with $3 \leq q \leq(n-3) / 2)$ or $(q \cdot n-q-n+4 \leq m \leq q \cdot n-2 q$ with $(n-1) / 2 \leq q \leq n-4)$.

Theorem 2.1

$$
R\left(P_{n}, \hat{K}_{m}\right)= \begin{cases}1 \quad & \text { for } n=1 \text { and } m \geq 3 \\ m+1 & \text { for either }(n=2 \text { and } m \geq 3) \\ & \text { or }(n=3 \text { and even } m \geq 4) \\ m+2 & \text { for }(n=3 \text { and odd } m \geq 5) \\ 3 n-2 \text { for either }(n=3 \text { and } m=3) \\ & \text { or }(n \geq 4 \text { and } m \text { is odd, } 3 \leq m \leq 2 n-1) \\ 2 n-1 \text { for } n \geq 4 \text { and } m \text { is even, } 4 \leq m \leq n+1\end{cases}
$$

Theorem 2.1 can be obtained by indicating suitable graphs for providing sharp lower bounds, and using some result in [8] for getting the best upper bounds. We omit the details.

The next lemma plays a key role in our proofs of Lemma 2.3 and Lemma 2.5. The proof of this lemma has been given in [7].

Lemma 2.2 Let $n \geq 4$ and G be a graph on at least n vertices containing no P_{n}. Let the paths $P^{1}, P^{2}, \ldots, P^{k}$ in G be chosen in the following way: $\bigcup_{j=1}^{k} V\left(P^{j}\right)=V(G), P^{1}$ is a longest path in G, and, if $k>1, P^{i+1}$ is a longest path in $G-\bigcup_{j=1}^{i} V\left(P^{j}\right)$ for $1 \leq i \leq k-1$. Let z be an end vertex of P^{k}. Then:
(i) $\left|V\left(P^{1}\right)\right| \geq\left|V\left(P^{2}\right)\right| \geq \ldots \geq\left|V\left(P^{k}\right)\right|$;
(ii) If $\left|V\left(P^{k}\right)\right| \geq\lfloor n / 2\rfloor$, then $|N(z)| \leq\left|V\left(P^{k}\right)\right|-1$;
(iii) If $\left|V\left(P^{k}\right)\right|<\lfloor n / 2\rfloor$, then $|N(z)| \leq\lfloor n / 2\rfloor-1$.

Lemma 2.3 If $n \geq 4$ and $m=2 n-2$ or $m \geq 2 n$, then

$$
R\left(P_{n}, \hat{K}_{m}\right) \leq\left\{\begin{array}{l}
m+n-1 \text { for } m=1 \bmod (n-1) \\
m+n-2 \text { for other values of } m .
\end{array}\right.
$$

Proof. Let G be a graph that contains no P_{n} and has order

$$
|V(G)|=\left\{\begin{array}{l}
m+n-1 \text { for } m=1 \bmod (n-1) \tag{1}\\
m+n-2 \text { for other values of } m .
\end{array}\right.
$$

Choose the paths P^{1}, \ldots, P^{k} and the vertex z in G as in Lemma 2.2. Because of (1), not all P^{i} can have $n-1$ vertices, so $\left|V\left(P^{k}\right)\right| \leq n-2$. By Lemma 2.2, $|N(z)| \leq n-3$. We will use the following result that has been proved in [1]: $R\left(P_{t}, C_{s}\right)=s+\lfloor t / 2\rfloor-1$ for $s \geq\lfloor(3 t+1) / 2\rfloor$. We distinguish the following cases.

Case $1|N(z)| \leq\lfloor n / 2\rfloor-2$ or n is odd and $|N(\underline{z})|=\lfloor n / 2\rfloor-1$.
Since $|V(G) \backslash N[z]| \geqq m+\lfloor n / 2\rfloor-1$, we find that $\overline{G-N[z]}$ contains a C_{m}. So, there is a \hat{K}_{m} in $\overline{\bar{G}}$ with z as a hub.

Case $2 n$ is even and $|N(z)|=n / 2-1$.
Since $|V(G) \backslash N[z]| \geq(m+n-2)-n / 2=m+n / 2-2$, we find that $\overline{G-N[z]}$ contains a C_{m-1}; denote its vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{m-1}$ in the order of appearance on the cycle with a fixed orientation. There are $n / 2-1$ vertices in $U=V(G) \backslash\left(V\left(C_{m-1}\right) \cup N[z]\right)$, say $u_{1}, u_{2}, \ldots, u_{n / 2-1}$. If some vertex $v_{i}(i=1, \ldots, m-1)$ is no neighbor of some vertex $u_{j}(j=1, \ldots, n / 2-1)$, w.l.o.g. assume $v_{m-1} u_{1} \notin E(G)$. Then \bar{G} contains a \hat{K}_{m} with hub z and its other vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{m-2}, v_{m-1}, u_{1}$. Now let us assume each of the v_{i} is adjacent to all u_{j} in G. For every choice of a subset of $n / 2$ vertices from $V\left(C_{m-1}\right)$, there is a path on $n-1$ vertices in G alternating between the vertices of this subset and the vertices of U, starting and terminating in two arbitrary vertices from the subset. Since G contains no P_{n}, there are no edges $v_{i} v_{j} \in E(G)(i, j \in\{1, \ldots, m-1\})$. This implies that $V\left(C_{m-1}\right) \cup\{z\}$ induces a K_{m} in \bar{G}. Since G contains no P_{n}, no v_{i} is adjacent to a vertex of $N(z)$. This implies that \bar{G} contains a $K_{m+1}-e$ for some edge $z w$ with $w \in N(z)$, and hence \bar{G} contains a \hat{K}_{m} with one of the v_{i} as a hub.

Case 3 Suppose that there is no choice for P^{k} and z such that one of the former cases applies. Then $|N(w)| \geq\lfloor n / 2\rfloor$ for any end vertex w of a path on $\left|V\left(P^{k}\right)\right|$ vertices in $G-\bigcup_{j=1}^{k-1} V\left(P^{j}\right)$. This implies all neighbors of such w are in $V\left(P^{k}\right)$ and $\left|V\left(P^{k}\right)\right| \geq\lfloor n / 2\rfloor+1$. So for the two end vertices z_{1} and z_{2} of P^{k}
we have that $\left|N\left(z_{i}\right) \cap V\left(P^{k}\right)\right| \geq\lfloor n / 2\rfloor \geq\left|V\left(P^{k}\right)\right| / 2$. By standard arguments in hamiltonian graph theory we obtain a cycle on $\left|V\left(P^{k}\right)\right|$ vertices in G. This implies that any vertex of $V\left(P^{k}\right)$ could serve as w. By the assumption of this last case, we conclude that there are no edges in G between $V\left(P^{k}\right)$ and the other vertices. This also implies that all vertices of P^{k} have degree in \bar{G} at least

$$
\left\{\begin{aligned}
m+1 \text { if }|V(G)| & =m+n-1 \\
m \quad \text { if }|V(G)| & =m+n-2
\end{aligned}\right.
$$

We now turn to P^{k-1} and consider one of its end vertices w. Since $\left|V\left(P^{k-1}\right)\right| \geq\left|V\left(P^{k}\right)\right| \geq\lfloor n / 2\rfloor+1$, similar arguments as in the proof of Lemma 2.2 show that all neighbors of w are on P^{k-1}. If $|N(w)|<\lfloor n / 2\rfloor$, we get a \hat{K}_{m} in \bar{G} as in Case 1 and 2. So we may assume $\left|N\left(w_{i}\right) \cap V\left(P^{k-1}\right)\right| \geq\lfloor n / 2\rfloor \geq$ $\left|V\left(P^{k-1}\right)\right| / 2$ for both end vertices w_{1} and w_{2} of P^{k-1}. By standard arguments in hamiltonian graph theory we obtain a cycle on $\left|V\left(P^{k-1}\right)\right|$ vertices in G. This implies that any vertex of $V\left(P^{k-1}\right)$ could serve as w. By the assumption of this last case, we conclude that there are no edges in G between $V\left(P^{k-1}\right)$ and the other vertices. This also implies that all vertices of P^{k-1} have degree in \bar{G} at least

$$
\left\{\begin{array}{rl}
m \quad \text { if }|V(G)| & =m+n-1 \tag{2}\\
m-1 & \text { if }|V(G)|
\end{array}=m+n-2 . ~ \$\right.
$$

Repeating the above arguments for P^{k-2}, \ldots, P^{1} we eventually conclude that all vertices of G have degree in \bar{G} at least as (2).

Now let $\left|V\left(P^{k}\right)\right|=\ell$ and $H=\bar{G}-V\left(P^{k}\right)$. If $V(G)=m+n-1$, then in the graph H all vertices have degree at least $m-\ell \geq m / 2+(n-1)-\ell \geq$ $\frac{1}{2}(m+2 n-2-\ell-(n-2))=\frac{1}{2}(m+n-\ell)=\frac{1}{2}(|V(H)|+1)$. If $V(G)=m+n-2$, then in the graph H all vertices have degree at least $m-1-\ell \geq m / 2+(n-$ $1)-1-\ell \geq \frac{1}{2}(m+2 n-4-\ell-(n-2))=\frac{1}{2}(m+n-2-\ell)=\frac{1}{2}|V(H)|$. Hence, there exists a Hamilton cycle in H. Since $|V(H)| \geq m$ and z is a neighbor of all vertices in H, it is clear that \bar{G} contains a \hat{K}_{m} with z as a hub.

Corollary 2.4 If $(4 \leq n \leq 6$ and $m=2 n-2$ or $m \geq 2 n)$ or $(n \geq 7$ and $m=2 n-2$ or $m=2 n$ or $\left.m \geq(n-3)^{2}\right)$ or $(n \geq 8$ and $q \cdot n-2 q+1 \leq m \leq$ $q \cdot n-q+2$ for $3 \leq q \leq n-5)$, then

$$
R\left(P_{n}, \hat{K}_{m}\right)=\left\{\begin{array}{l}
m+n-1 \text { for } m=1 \bmod (n-1) \\
m+n-2 \text { for other values of } m
\end{array}\right.
$$

Corollary 2.4 can be obtained by indicating suitable graphs for providing sharp lower bounds, and combining them with the upper bounds from Lemma

2.3. We omit the details.

Lemma 2.5 If odd $n \geq 7$ and $q \cdot n-q+3 \leq m \leq q \cdot n-2 q+n-2$ with $2 \leq q \leq n-5$, then $R\left(P_{n}, \hat{K}_{m}\right) \leq m+n-3$.

The proof of Lemma 2.5 is modeled along the lines of the proof of Lemma 2.3. We omit the details.

Corollary 2.6 If $(n=7$ and $m=15)$ or (odd $n \geq 9$ and $(q \cdot n-3 q+1 \leq$ $m \leq q \cdot n-2 q$ with $3 \leq q \leq(n-3) / 2)$ or $(q \cdot n-q-n+4 \leq m \leq q \cdot n-2 q$ with $(n-1) / 2 \leq q \leq n-4)$, then $R\left(P_{n}, \hat{K}_{m}\right)=m+n-3$.

Proof. For $n=7$ and $m=15$, the graph $3 K_{6}$ and for odd $n \geq 9$ and $m=$ $q \cdot n-2 q-j$ with either $(3 \leq q \leq(n-3) / 2$ and $0 \leq j \leq q-1)$ or $((n-1) / 2 \leq$ $q \leq n-5$ and $0 \leq j \leq n-q-4)$, the graph $(q-j-1) K_{n-2} \cup(j+2) K_{n-3}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>m+n-4$. Using Lemma 2.5, we obtain that $R\left(P_{n}, \hat{K}_{m}\right)=$ $m+n-3$.

References

[1] R.J. Faudree, S.L. Lawrence,T.D. Parsons and R.H. Schelp, Path-cycle Ramsey numbers, Discrete Mathematics, 10 (1974), 269-277.
[2] R.J. Faudree, R.H. Schelp and M. Simonovits, On some Ramsey type problems connected with paths, cycles and trees, Ars Combinatoria, 29A (1990), 97-106.
[3] L. Geréncser and A. Gyárfás, On Ramsey-type problems, Annales Universitatis Scientiarum Budapestinensis, Eötvös Sect. Math., 10 (1967), 167-170.
[4] R. Häggkvist, On the path-complete bipartite Ramsey numbers, Discrete Mathematics, 75 (1989), 243-245.
[5] T.D. Parsons, The Ramsey numbers $r\left(P_{m}, K_{n}\right)$, Discrete Mathematics, 6 (1973), 159-162.
[6] T.D. Parsons, Path-star Ramsey numbers, Journal of Combinatorial Theory, Series B, $\mathbf{1 7}$ (1974), 51-58.
[7] A.N.M. Salman and H.J. Broersma, Path-fan Ramsey numbers, Submitted to Discrete Applied Mathematics, (2003).
[8] A.N.M. Salman and H.J. Broersma, On Ramsey numbers for paths versus wheels, Accepted for Discrete Mathematics, (2004).

[^0]: ${ }^{1}$ Email: a.n.m.salman@math.utwente.nl
 ${ }^{2}$ Email: h.j.broersma@math.utwente.nl

