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The primary measurement of EO data over water 

is the visible light leaving the water column 

In inland and coastal waters, 

this water leaving radiance is 

strongly affected by different 

materials, e.g. terrigenous 

particulate and dissolved 

materials, re-suspended 

sediment or highly concentrated 

phytoplankton bloom 



Remote sensing of inland and coastal waters is quite challenging due 

to the complicated signals from turbid water, substrate reflectance 

and adjacent land surfaces 
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Challenges 

What you see is not what you get! 



Consistent EO-estimates of water quality parameters in 

inland and coastal waters requires three components:  

 (i) a reliable atmospheric correction method;  

 (ii) an accurate retrieval algorithm and 

 (iii) an objective method to estimate the uncertainty budget 

based on their sources 

 

The objective : 

 Applying and adapting state of the art retrieval algorithms  

 Quantifying the uncertainties on the retrieved parameters and 

the relative contribution of each fluctuation to the total error 

budget 

 

Requirements and objective 



Data sets 

 In situ measurements Eagle2006 and (A. Dekker): Dutch Lakes  

 EO data: ASTER, MERIS, and AHS: Dutch Lakes  

 NOMAD-match-ups 

 Simulated data, IOCCG (Lee 2006) 
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Semi-analytical ocean color models 

Semi-analytical ocean color models are based on 

approximations that link remote sensing reflectance and 

the inherent optical properties. The general form of most 

of these models is that water remote sensing 

reflectance is proportional to the backscattering 

coefficient and inversely proportional to the absorption 

coefficient 

 

Example, the GSM model (Maritorena et al. 2002) 
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Uncertainties due to model inversion: standard 

 

Bates and Watts 1988, Salama 2003, Maritorna et al. 2005, Wang et al. 2005, Salama et al. 2009 



Uncertainties due to model inversion: standard 

 In this specific case all inversion- uncertainties seem to be related 

to water turbidity 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inversion-uncertainty of derived IOPs is proportional to water turbidity 
and is not representative of our confidence about the derived products 
from remote sensing data 
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 We can use Taylor expansion as 

 

 

 

 In our case Rrs is observed radiance, Rrs(n) is the nth partial 

derivative of R w.r.t each of the iop 

 iop is the real IOPs which are unknowns  

 iop0  is the derived IOPs from ocean color radiances 

 

 If we truncate Taylor series to leave the first term we will have 

 

Sensitivity of ocean color model 
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Radiometric errors are needed to estimate 

the uncertainties of derived IOPs 



Radiometric uncertainty estimation: proposed 

 Atmospheric fluctuations are estimated from the two 

bounding aerosol models: optical thickness and type 

(Gordon and Wang 1994). NIR water signal is 

accounted (Salama and Shen, 2010b) 

 

 Fluctuations due to sensor’s noise are derived form 

known data on sensor’s Noise Equivalent Radiance 

(NER), e.g. Doerffer 2008  for MERIS 

 

 Estimate the confidence interval around model 

predictions and sensor’s observation 
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Radiometric uncertainty estimation: proposed 



 Derive the plausible range of IOPs from 

the upper and lower spectral bounds 

Now we have three sets of IOPs: 

 u_IOP derived from upper bound 

 l_IOP : derived from the lower bound  

 m_IOP : derived from actual observation 

We call it IOP-triplet 

 The standardized variate  of a quantity x is 

simply 

 

 

 

 

Uncertainty estimation of IOPs; prior 
observation
model fit
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m_IOP l_IOP, u_IOP 

sought unknown 









x
x



Uncertainty estimation of IOPs; prior 

 Standardize variate  have:  

 zero mean and  

 unity standard deviation 

 We know that IOPs are most likely log-

normally distributed (Campbell 1995), or 

the log of IOPs is normally distributed 

 Generate normal numbers with zero 

mean and 1 standard deviation  

 

            Get red of       by taking the ratio 

 

m_IOP l_IOP, u_IOP 

sought unknown 
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In your generated numbers make sure that 
each ratio has a unique pair of variates 



Uncertainty estimation of IOPs; posterior  

 Form the IOP-triplet  compute the ratio and compare it to the 

already generated look up table of random numbers 

 Now we can estimate the standard deviation,  

 We call it prior standard deviation because  the lower and upper 

IOPs in the IOP-triplet may not represents the actual range of  

IOPs. 

 

 Use Bayesian-like updating to get a better estimate of sigma 

 

 It is an iterative process that  

   
minimizes our uncertainty about the uncertainty 



Uncertainty decomposition 

 The total uncertainty in derived IOPs is the sum of 

three error component: 

 atmosphere correction residuals 

 sensor noise 

 model inversion 

 

 

 

 

 The effect of this simplification 

    is tested for ICCOG data  

     (Lee 2006)  
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Validation with simulated data 

model                           noise                            atm 

Derived versus known 

errors (dot symbols) of 

the IOPs estimated 

from the IOCCG data 

set 

Nonlinear regression 

errors are also 

superimposed on 

derived model errors 

as plus symbols 



Validation with EO-in-situ match ups data 

Derived versus known 

errors (dots) of IOPs 

estimated from 

SeaWiFS spectra of 

the NOMAD data set 

Nonlinear regression 

results are also 

superimposed as plus 

symbols 

 



Application to measured data  

 Quantify and  partition the 
source of fluctuation: 

 Sensor noise 

 Model approximation 
and parameterization 

 Atmospheric correction 

 

We used stochastic 
modeling and Bayesian 
updating 

 

 The right panel shows the 
contribution of model 
approximations, imperfect 
atmospheric correction 
and sensor noise to the 
total error budget of the 
retrieved water quality 
indicators 

Salama and Stein,2009. Applied Optics, 48,26, 4947-4962. 



Model-sensor error table 

 For a specific “small” region with known range of IOPs ,model 

uncertainty can be estimated 

 

 Update NER table of EO sensor enables the evaluation of noise 

induced errors 

 

 From the above two quantities we can have an estimate of the 

atmospheric error:  assuming that it constant for this “small” region 



Conclusions 

 Inversion-uncertainty of derived IOPs is proportional to water 

turbidity and is not representative of our confidence about the 

derived products from remote sensing data 

 Errors due to atmospheric correction are the major source of errors 

in the derived IOPs. Imperfect atmospheric correction, due to the 

variability of aerosol optical thickness, is responsible for more than 

50% of the total error and up to 82%.  

 One fifth of the total errors on derived IOPs (except for the SPM 

scattering: one tenth) is attributed to noise error  

 Model error has the lowest contribution (≈7%) to the total error on 

derived SPM scattering, but it has a significant contribution (≈16%) to 

y, the spectral dependency of SPM scattering 

 A specific error table to the MERIS sensor is constructed. It shows 

that the main uncertainty is due to atmospheric and noise-induced 

errors for aph(440) and bspm(550), while model inversion is the main 

source of error to adg(440) in this data 
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