# Twente spine model: A complete and coherent dataset for musculo-skeletal modeling of the lumbar region of the human spine 

Riza Bayoglu ${ }^{\text {a,* }}$, Leo Geeraedts ${ }^{\text {b }}$, Karlijn H.J. Groenen ${ }^{\text {c }}$, Nico Verdonschot ${ }^{\text {a,c }}$, Bart Koopman ${ }^{\text {a }}$, Jasper Homminga ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Department of Biomechanical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands<br>${ }^{\mathrm{b}}$ Radboud University Medical Center, Department of Anatomy, Nijmegen, The Netherlands<br>${ }^{\text {c Radboud University Medical Center, Radboud Institute for Health Sciences, Orthopaedic Research Laboratory, Nijmegen, The Netherlands }}$

## ARTICLE INFO

## Article history:

Accepted 5 January 2017

## Keywords:

Lumbar spine
Cadaver
Musculo-skeletal model
Muscles
Sarcomere length


#### Abstract

Musculo-skeletal modeling can greatly help in understanding normal and pathological functioning of the spine. For such models to produce reliable muscle and joint force estimations, an adequate set of musculo-skeletal data is necessary. In this study, we present a complete and coherent dataset for the lumbar spine, based on medical images and dissection measurements from one embalmed human cadaver. We divided muscles into muscle-tendon elements, digitized their attachments at the bones and measured morphological parameters. In total, we measured 11 muscles from one body side, using 96 elements. For every muscle element, we measured three-dimensional coordinates of its attachments, fiber length, tendon length, sarcomere length, optimal fiber length, pennation angle, mass, and physiological cross-sectional area together with the geometry of the lumbar spine. Results were consistent with other anatomical studies and included new data for the serratus posterior inferior muscle. The dataset presented in this paper enables a complete and coherent musculo-skeletal model for the lumbar spine and will improve the current state-of-the art in predicting spinal loading.


© 2017 Elsevier Ltd. All rights reserved.

## 1. Introduction

The combination of flexibility and rigidity that characterizes the spine makes it vulnerable to a range of mechanical and medical problems, and it is therefore an important area for biomechanical research. Most spine research has focused on the lumbar spine with a special focus on low back pain (McGill, 1992; Alireza et al., 2011; Zander et al., 2015; Putzer et al., 2016) and disc herniation (Wilke et al., 2016). Despite high quality research on the lumbar spine, our understanding of its in-vivo mechanical function remains limited due to its complex structure. Musculoskeletal models of the lumbar spine would enable clinical insights into its functioning, and allow answering what if questions (Blemker et al., 2007).

The capability of a muscle to produce torques at the joints is directly related to its moment arms, and thus to its origin and insertion, and to its strength (Vasavada et al., 1998). Therefore, representation of muscles in musculo-skeletal models demands special care to simulate true anatomy and realistic in-vivo muscle function. In the lower extremity, Carbone et al. (2012)

[^0]demonstrated that small differences in muscle attachments may markedly affect muscle moment arms, and, thus affect muscle force predictions considerably. Furthermore, morphological parameters such as optimal fiber length, tendon length and physiological cross-sectional area, are critical inputs into musculo-skeletal models (Kamibayashi and Richmond, 1998). In short, accuracy of modeling lines-of-action and morphological parameters determine muscle activation levels and have significant effects on the output of a musculo-skeletal model.

Currently there is no musculo-skeletal dataset which enables the development of a complete and coherent model for the lumbar spine. None of the previous studies quantified muscle attachments at the bones and measured complete morphological parameters for all muscles of the lumbar spine (Bogduk et al., 1992a, 1992b, 1998; Macintosh and Bogduk, 1991; Macintosh et al., 1986; Delp et al., 2001; Phillips et al., 2008). Instead, they typically focused on a smaller part of the lumbar spine and presented anatomical drawings to illustrate muscle attachments. Subsequently, current musculo-skeletal models require piecing together data from these studies and making assumptions when data does not exist. Consequently, such models will require complex scaling between the geometries and the muscle architectures of the cadaveric specimens (de Zee et al., 2007; Arjmand et al., 2009; Christophy et al., 2012; Ignasiak et al., 2016). This approach may then result in a
musculo-skeletal system that never really existed (Borst et al., 2011). Therefore, a musculo-skeletal model based on one complete and coherent dataset-obtained from one body-would further improve our understanding of the human spine and is, thus, a better approach for clinical use (Klein Horsman et al., 2007). The aim of our work is to obtain a complete and coherent anatomical dataset for the entire human spine, but in this paper we focus on the lumbar spine alone. This dataset includes segmented bone surfaces, three-dimensional coordinates of muscle attachment sites, bony wrapping surfaces and morphological muscle parameters from a single human cadaver.

## 2. Materials and methods

### 2.1. Cadaveric specimen

An embalmed human cadaver body ( 79 years-old, male, height: 154 cm , mass: 51 kg ) was obtained with institutional approval from Radboud university medical center. The cause of death was Alzheimer. We noticed that the fifth lumbar vertebra was fused to the sacrum. In the cadaver, we distinguished 33 bones: twelve thoracic and four lumbar vertebrae, twelve ribs, sternum, humerus, femur, sacrum and pelvis.

### 2.2. Medical imaging

Prior to dissection, we acquired full body supine computed tomography (CT) images (Siemens SOMATOM Sensation 64, Siemens AG, Munich, Germany, voxel
size $0.977 \mathrm{~mm} \times 0.977 \mathrm{~mm} \times 1 \mathrm{~mm})$.

### 2.3. Cadaveric measurements

We measured muscles of the lumbar spine from the right side of the trunk, therefore we removed complete skin and subcutaneous fat on this side. Subsequently, we inserted reference tube-screw connectors (see Fig. 1a) in the bones under the guidance of a C-arm device (Phillips BV 29). These connectors were used to construct temporary local reference frames in the bones enabling the consistent alignment of the optical reference tool between position measurement sessions. To strengthen the fixation between the bones and the connectors, Polymethylmethacrylate (PMMA) was poured through the screw guide holes. The positions of muscle attachments in three-dimensions with respect to the corresponding reference frames of the bones were measured using the NDI Hybrid Polaris Spectra tracking system. Because it was not possible to insert the connectors in the ribs, muscles that had attachments to the ribs were measured with respect to other bones nearby (for example, an attachment site at the twelfth rib was measured with respect to the reference frame of the twelfth vertebra). A graphical user interface was developed in Matlab R2014b to communicate with the tracking system and was utilized to properly record the measurements. Prior to the experiment, we assessed the accuracy of using these connectors. We found a position error of $0.331 \pm 0.391 \mathrm{~mm}$ for measuring a single attachment point.

### 2.3.1. Muscle attachment sites

After identification of a target muscle, fat at the intramuscular connections was removed, and the muscle was divided into several muscle-tendon elements to represent its function more accurately in the musculo-skeletal model. The number of elements (functionally different parts of a muscle) was decided by using a previously described method (Breteler et al., 1999). The dissections were performed by an experienced anatomist. After locating the tendons at origin and insertion of the muscle elements, colored beads were used to mark the attachments of the


Fig. 1. (a) An instance during position measurements. (b) Locating attachments of Erector Spinae muscle group. (c) Laser diffraction set-up used for sarcomere length measurements.
elements (see Fig. 1b). Subsequently, we resected muscle elements and measured positions of their attachments at origin and insertion. We also measured the positions of via points (locations where a muscle is constrained to move) for elements with a curved lines-of-action. Depending on the size and shape of the muscles, we measured the attachments in one of the three geometrical forms, point, line or surface (see Fig. 2). Finally, we labeled the muscle elements and stored them in $2 \%$ formaldehyde solution until the measurement of morphological parameters.

The resection procedure differed slightly for iliocostalis, longissimus, and multifidus muscles. Dividing these muscles into elements in-situ was not possible due to superficial and deep layers of muscle fibers. First, positions of attachments (where possible) at the bones were measured, and the entire muscle was resected afterwards. Later, they were micro-dissected and were divided into elements as done in previous anatomical studies (Macintosh et al., 1986; Macintosh and Bogduk, 1987). In addition, measuring the attachments of the psoas major muscle was impossible, as this muscle has its origins inside the abdominal cavity on the anterior side, which prevented the optical tools from being seen by the camera. We identified and noted its origins at the bones and later modeled their lines-of-action based on the study by Bogduk et al. (1992b).

### 2.3.2. Muscle morphological parameters

For every element, we measured the following morphological muscle parameters: fiber length, tendon length, sarcomere length, optimal fiber length, pennation angle, mass, and physiological cross-sectional area. Prior to measuring these parameters, remaining fat and connective tissue on the surface of the muscle elements were carefully removed.

Pennation angle was measured by using a protractor (we neglected to measure the angles below $10^{\circ}$ ). Subsequently, the muscle element was placed on a flat table, and its musculo-tendon length (tendon-muscle-tendon length) between most proximal and distal ends was measured by using a ruler with a resolution of 0.5 mm . Depending on the size of an element, we measured the lengths of up to six representative fibers to calculate an average fiber length for that element. Next, tendons were cut at both ends, and an average tendon length was calculated by subtracting average fiber length, multiplied by the cosine of the pennation angle, from measured musculo-tendon length. Then, we weighed the muscle elements (muscle fibers) by using a scale which had a resolution of 0.01 g . Elements were wiped with tissue to remove excess fluid before weighing. Due to the complex tendinous connections of the abdomen muscles, obliquus externus abdominis and obliquus internus abdominis, we measured their tendon lengths while the muscles were still intact.

Average sarcomere length for every muscle was calculated by using the laser diffraction method (Cross et al., 1981). For this, a vertical laser set-up which employed a Helium-Neon laser with a beam diameter of 2 mm and a wavelength of 632.8 nm was used (see Fig. 1c). A constant distance ( $D=55 \mathrm{~mm}$ ) was maintained between the samples and reading screen throughout the measurements. We measured the distance between the first diffraction bands ( 2 T in Fig. 1c) with a digital caliper (with a resolution of 0.01 mm ) and calculated sarcomere length (SL, in $\mu \mathrm{m}$ ) from this distance by using Eq. (1):
$\mathrm{SL}=\frac{632.8 \times 10^{-3} \times D \times \sqrt{\left(\frac{T}{D}\right)^{2}+1}}{T}$
Six to ten samples-consisting of one to five muscle fibers-were peeled from the representative element under an operation microscope and were used for the measurements. Samples were prepared from proximal end, distal end, and middle of the element. If the standard deviation of six samples exceeded $0.25 \mu \mathrm{~m}$, we included up to four more samples taken between the proximal end and middle, and distal end and middle of the element. For each sample, we performed three sarcomere length measurements (at either ends and middle of the sample) and calculated the mean of three measurements. Subsequently, the average sarcomere length of a muscle was calculated from all the samples.

The optimal fiber length of an element (in mm) was calculated by using Eq. (2),
$\ell_{o}^{f}=\frac{e^{f}}{e^{s}} \times 2.7$
where $\ell^{f}$ is the average fiber length and $\ell^{s}$ is the average sarcomere length of the muscle. We assumed an optimal sarcomere length of $2.7 \mu \mathrm{~m}$ for skeletal muscles (Breteler et al., 1999).

The volume of muscle elements was calculated by assuming a density of $1.0576 \mathrm{~g} / \mathrm{cm}^{3}$ for muscle tissue (Breteler et al., 1999). Moreover, physiological crosssectional area (PCSA, in $\mathrm{cm}^{2}$ ) was calculated according to Eq. (3),

PCSA $=\frac{\operatorname{mass} \times \cos (\alpha)}{\rho \times \ell_{0}^{f}}$
where $\alpha$ is the pennation angle, $\rho$ is the muscle density, mass is the mass of the element, and $t_{0}^{f}$ is the optimal fiber length. In line with Brown et al. (2011), for the rectus abdominis PCSA was calculated as the largest measured regional PCSA and was distributed among its elements with respect to their masses. Fiber lengths were summed for all regions.

### 2.4. Processing of muscle attachments

We manually segmented CT images into stereolithography (STL) geometry files (Mimics 18.0 Materialise N.V., Leuven, Belgium). The iterative closest point algorithm was used to register point clouds (scanned over the bone surfaces) with the STL files (Besl and McKay, February 1992). See Appendix A. 1 for more details. After registration, muscle attachments (measured with respect to the temporary local reference frames of the bones) were transformed to the global reference frame defined by the CT scanner. In the global reference frame, $x$-, $y$-, and $z$-axes point cranially, posteriorly, and laterally (to the left), respectively.

For line-shaped attachments, a polynomial of third degree was fit through the measured points. Subsequently, $n$ equidistant points ( $n$ is the number of elements that share an attachment site together) were calculated on the fitted polynomial curve as to represent the attachments of the elements (Pellikaan et al., 2014). The point-shaped attachments did not require further processing. For surface-shaped attachments, first a plane was fitted through the measured points. The measured points were projected onto the fitted plane, and a surface area was interpolated through the projected points. Later, the centroids of the $n$ equi-areal parts of the surface were calculated to represent the attachments for the elements (Pellikaan et al., 2014), referring to der Helm et al. (1992). Finally, all the calculated attachments were either projected on the surface of the STL files or left intact, depending on whether an element attached to only one bone or spanned between multiple bones, respectively.

Furthermore, we graphically estimated wrapping surfaces-from the geometry of the spine and measured point clouds over the structures that muscles wrap-in the AnyBody Modeling System ${ }^{\mathrm{TM}}$ version. 6.0.4 (AnyBody Technology A/S, Aalborg, Denmark). Depending on the shape of a surface, either a cylinder or an ellipsoid was estimated. See Appendix A. 2 for details.

## 3. Results

The complete list of measured muscle elements is given in Table 1. In total, we measured 11 muscles from one side of the body using 96 muscle elements. For every element, we obtained the coordinates of its attachments at origin and insertion together with the morphological parameters: fiber length, sarcomere length, optimal fiber length, tendon length, pennation angle, mass, and physiological cross-sectional area (PCSA). Individual PCSAs were relatively small, the largest being $2.74 \mathrm{~cm}^{2}$ for an element of the psoas major. Total muscle PCSAs ranged from $2.07 \mathrm{~cm}^{2}$ for the serratus posterior inferior to $18.50 \mathrm{~cm}^{2}$ for the longissimus thoracis. Mean sarcomere lengths ranged from $2.14 \mu \mathrm{~m}$ for the internal oblique to $3.57 \mu \mathrm{~m}$ for the longissimus thoracis. Fiber length ranged from 2.0 cm for an element of the transversus abdominis to 26.3 cm for an element of the rectus abdominis. Mean optimal fiber lengths ranged from 4.0 cm for multifidus to 25.1 cm for the rectus abdominis. Tendon lengths for the thoracic component of the longissimus thoracis were very long, ranging from 7.4 cm to 26.6 cm , while its lumbar component had relatively short tendon lengths. The definitions of wrapping surfaces can be found in Appendix A.2, and the coordinates of via points can be found in Appendix A. 3 both as digital appendices. All the bones with reconstructed muscle lines-of-action were visualized in the AnyBody Modeling System ${ }^{\text {TM }}$ ver. 6.0.4 (AnyBody Technology A/S, Aalborg, Denmark) and are depicted in Fig. 3.

## 4. Discussion

In this study we measured a musculo-skeletal dataset for the lumbar region of the trunk, consisting of the coordinates of muscle attachments, three-dimensional geometry of the bones (in the form of STL files), and morphological parameters of muscles. We noticed that most muscles had curved lines-of-action. Therefore, the coordinates of via points and the definitions of wrapping surfaces were provided in addition to their origins and insertions. For every muscle element, we provided morphological parameters: fiber length, tendon length, sarcomere length, optimal fiber length, pennation angle, mass, and PCSA. These parameters


Fig. 2. (a) Illustration of the geometrical forms used to classify line and surface-shaped muscle attachment sites. Rectus abdominis muscle is used for this illustration. (b) The insertions of this muscle was measured in line form. Black, green, and the blue dots represent the measured attachment points for the elements 1,2 , and 3 , respectively. Three red dots indicate calculated attachment points for these elements. Note that $n$ is equal to 1 in this case since the attachments of each element were measured separately. (c) Differently, the origin of the muscle was measured in surface form (black dots), and the red dot indicates the calculated attachment point (the centroid of the surface). Since this surface was considerably small, we opted to define one common origin for the all the elements ( $n=1$ ). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
facilitate better simulation of muscle mechanics and hence will improve these types of models (Zajac, 1989). As the dataset was obtained from a single cadaver, it is complete and coherent and omits the uncertainties associated with combining musculoskeletal data from different specimens and measurement methods (Dao and Tho, 2015; Carbone et al., 2015). Additionally, it includes new data for the serratus posterior inferior muscle. As such, the dataset enables construction of a complete and coherent musculo-skeletal model for the lumbar spine. With this dataset we aim to contribute to an improvement of the state-of-the art in predicting lumbar spinal loading. This dataset is freely available to be used for non-commercial purposes through https://www. utwente.nl/en/et/bw/research/projects/twentespinemodel, upon the acceptance of our research license agreement.

During measurements we observed some interesting differences compared to previous studies. Firstly, we did not encounter the lumbar fascicles of iliocostalis lumborum as seen by Macintosh and Bogduk (1987), but encountered the lumbar fascicles of longissimus thoracis. Our findings were thus more in line with those of Bustami (1986) who did not find any attachment of the iliocostalis to the lumbar transverse processes. Secondly, the thoracic component of the longissimus thoracis only had
attachments at ribs 5-9, whereas Macintosh and Bogduk (1987) found connections at ribs 6-12. Thirdly, we did not find any bundles of psoas major originating from the L1L2 disc nor from the L4L5 disc, but we observed bundles originating from the L2 and L3 vertebrae. Small variations were also found for other muscles. These disparities are most likely explained by the variations in the anatomy of the specimens and the differences in the techniques.

This research had several limitations. Firstly, we noticed a slight scoliosis around the cadaver's neck, and after dissection of the muscles we discovered that L5 vertebra was fused to the sacrum (Mahato, 2013). One would not expect an effect on the muscle architecture in the lumbar region due to the scoliosis, however the same may not be true due to the sacralization. The muscles between the L5 and sacrum are thus most likely different in this cadaver. Secondly, we dissected only on the right side of the specimen. When a model is built upon this dataset, this requires assumptions about the skeletal geometry and the muscle architecture on the left side. Although it is simply convenient to build a left-right symmetrical model, no one ever has a perfectly symmetrical musculo-skeletal system. Thirdly, measured morphological parameters may not represent in-vivo function accurately. Cutts (1988) reported no significant decrease in muscle fiber

Table 1
 and insertion with respect to the global reference frame defined by the CT scanner ${ }^{1,2,3}$.

| Muscle | \# | $\ell^{f}(\mathrm{~mm})$ | $\ell^{s}(\mu \mathrm{~m})$ | $\ell_{0}^{f}(\mathrm{~mm})$ | $\ell^{t}(\mathrm{~mm})$ | $\alpha(\mathrm{deg})$ | Mass (g) | $\operatorname{PCSA}\left(\mathrm{cm}^{2}\right)$ | Origin (bone) | Form | Position (m) |  |  | Insertion (bone) | Form | Position (m) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | $x$ | $y$ | $z$ |  |  | $x$ | $y$ | $z$ |
| Obliquus externus abdominis | 1 | 71.1 | 2.82 | 68.2 | 35.9 | 0 | 8.18 | 1.13 | Pelvis | Line | -0.1262 | -0.1046 | 0.7301 | R11 | Line | -0.1167 | -0.0965 | 0.7811 |
| Obliquus externus abdominis | 2 | 103.8 | 2.82 | 99.6 | 95.2 | 0 | 19.04 | 1.81 | Pelvis | Line | -0.1365 | -0.1401 | 0.7092 | R10 | Surface | -0.1253 | -0.1010 | 0.8197 |
| Obliquus externus abdominis | 3 | 125.6 | 2.82 | 120.4 | 172.4 | 0 | 20.29 | 1.59 | Pelvis | Line | -0.1233 | -0.1700 | 0.6836 | R9 | Surface | -0.1312 | -0.1159 | 0.8462 |
| Obliquus externus abdominis | 4 | 131.7 | 2.82 | 126.2 | 153.4 | 0 | 16.59 | 1.24 | Linea alba | Line | 0.0000 | -0.2142 | 0.6541 | R8 | Surface | -0.1368 | -0.1413 | 0.8652 |
| Obliquus externus abdominis | 5 | 96.7 | 2.82 | 92.7 | 120.7 | 0 | 12.76 | 1.30 | Linea alba | Line | 0.0000 | -0.2240 | 0.7226 | R7 | Line | -0.1324 | -0.1707 | 0.8752 |
| Obliquus externus abdominis | 6 | 58.5 | 2.82 | 56.1 | 137.7 | 0 | 9.51 | 1.60 | Linea alba | Line | 0.0000 | -0.2316 | 0.7841 | R6 | Line | -0.1208 | -0.1893 | 0.8982 |
| Obliquus externus abdominis | 7 | 56.2 | 2.82 | 53.9 | 83.7 | 0 | 1.53 | 0.27 | Linea alba | Line | 0.0000 | -0.2407 | 0.8538 | R5 | Line | -0.1109 | -0.1952 | 0.9254 |
| Iliocostalis lumborum | 1 | 81.5 | 2.81 | 78.3 | 23.5 | 0 | 15.54 | 1.88 | Pelvis | Surface | -0.0601 | -0.0522 | 0.7270 | R11 | Point | -0.0776 | -0.0601 | 0.8403 |
| Iliocostalis lumborum | 2 | 100.4 | 2.81 | 96.4 | 59.6 | 0 | 18.99 | 1.86 | Pelvis | Surface | $-0.0551$ | -0.0475 | 0.7198 | R10 | Point | -0.0766 | -0.0504 | 0.8878 |
| Iliocostalis lumborum | 3 | 106.7 | 2.81 | 102.4 | 108.3 | 0 | 7.87 | 0.73 | Pelvis | Surface | -0.0503 | -0.0437 | 0.7122 | R9 | Point | -0.0741 | -0.0495 | 0.9221 |
| Iliocostalis lumborum | 4 | 98.0 | 2.81 | 94.1 | 172.0 | 0 | 5.95 | 0.60 | Pelvis | Surface | -0.0466 | -0.0406 | 0.7057 | R8 | Point | -0.0800 | -0.0513 | 0.9646 |
| Iliocostalis lumborum | 5 | 114.7 | 2.81 | 110.1 | 202.3 | 0 | 5.84 | 0.50 | Pelvis | Surface | -0.0440 | -0.0387 | 0.6989 | R7 | Point | -0.0798 | -0.0556 | 0.9789 |
| Iliocostalis lumborum | 6 | 114.7 | 2.81 | 110.1 | 235.3 | 0 | 5.84 | 0.50 | Pelvis | Surface | $-0.0420$ | -0.0370 | 0.6941 | R6 | Point | -0.0709 | -0.0610 | 1.0160 |
| Obliquus internus abdominis | 1 | 36.8 | 2.14 | 46.4 | 19.8 | 0 | 8.08 | 1.65 | Pelvis | Line | -0.0923 | -0.0777 | 0.7381 | R11 | Line | -0.1170 | -0.1012 | 0.7781 |
| Obliquus internus abdominis | 2 | 55.5 | 2.14 | 70.1 | 29.5 | 0 | 13.23 | 1.78 | Pelvis | Line | -0.1194 | -0.0997 | 0.7329 | R10 | Line | -0.1216 | -0.1643 | 0.7738 |
| Obliquus internus abdominis | 3 | 88.5 | 2.14 | 111.8 | 135.0 | 0 | 27.09 | 2.29 | Pelvis | Line | -0.1345 | -0.1294 | 0.7208 | Linea alba | Line | 0.0000 | -0.2365 | 0.8387 |
| Obliquus internus abdominis | 4 | 57.9 | 2.14 | 73.1 | 117.1 | 0 | 8.92 | 1.15 | Pelvis | Line | -0.1275 | -0.1628 | 0.6931 | Linea alba | Line | 0.0000 | -0.2320 | 0.7729 |
| Obliquus internus abdominis | 5 | 51.5 | 2.14 | 65.0 | 87.7 | 0 | 5.41 | 0.79 | Pelvis | Line | -0.1135 | -0.1783 | 0.6720 | Linea alba | Line | 0.0000 | -0.2237 | 0.7100 |
| Obliquus internus abdominis | 6 | 56.5 | 2.14 | 71.4 | 64.5 | 0 | 4.83 | 0.64 | Pelvis | Line | -0.0973 | -0.1797 | 0.6399 | Linea alba | Line | 0.0000 | -0.2146 | 0.6513 |
| Latissimus dorsi | 1 | 229.7 | 2.26 | 274.6 | 123.8 | 0 | 70.14 | 2.42 | Pelvis | Line | -0.0775 | -0.0647 | 0.7360 | Humerus | Line | -0.1382 | -0.1698 | 1.0543 |
| Latissimus dorsi | 2 | 228.8 | 2.26 | 273.5 | 196.6 | 35 | 37.88 | 1.07 | L2 | Line | -0.0034 | -0.0461 | 0.7770 | Humerus | Line | -0.1362 | -0.1652 | 1.0503 |
| Latissimus dorsi | 3 | 209.7 | 2.26 | 250.7 | 120.3 | 0 | 37.62 | 1.42 | T11 | Line | -0.0046 | -0.0373 | 0.8546 | Humerus | Line | -0.1365 | -0.1616 | 1.0470 |
| Latissimus dorsi | 4 | 190.5 | 2.26 | 227.7 | 112.0 | 0 | 19.27 | 0.80 | T9 | Line | -0.0055 | -0.0347 | 0.9029 | Humerus | Line | -0.1375 | -0.1588 | 1.0430 |
| Latissimus dorsi | 5 | 171.3 | 2.26 | 204.8 | 103.7 | 0 | 9.74 | 0.45 | T7 | Line | -0.0077 | -0.0364 | 0.9558 | Humerus | Line | -0.1385 | -0.1566 | 1.0400 |
| Longissimus thoracis | 1 | 93.0 | 3.57 | 70.3 | 225.3 | 0 | 6.49 | 0.87 | L4 | Line | -0.0070 | $-0.0475$ | 0.7327 | R5 | Point | -0.0425 | -0.0749 | 1.0410 |
| Longissimus thoracis | 2 | 80.7 | 3.57 | 61.0 | 215.8 | 0 | 0.77 | 0.12 | Sacrum | Line | -0.0073 | -0.0370 | 0.6866 | R8 | Point | -0.0403 | -0.0558 | 0.9749 |
| Longissimus thoracis | 3 | 85.0 | 3.57 | 64.3 | 203.7 | 0 | 2.31 | 0.34 | Sacrum | Line | -0.0073 | -0.0370 | 0.6866 | R8 | Point | -0.0454 | -0.0496 | 0.9657 |
| Longissimus thoracis | 4 | 105.3 | 3.57 | 79.6 | 217.7 | 0 | 2.51 | 0.30 | L5 | Line | -0.0081 | -0.0445 | 0.7140 | R6 | Point | -0.0492 | -0.0653 | 1.0247 |
| Longissimus thoracis | 5 | 87.0 | 3.57 | 65.8 | 204.5 | 0 | 1.94 | 0.28 | Sacrum | Line | -0.0040 | $-0.0270$ | 0.6551 | R9 | Point | -0.0456 | -0.0473 | 0.9380 |
| Longissimus thoracis | 6 | 77.0 | 3.57 | 58.2 | 240.4 | 0 | 1.05 | 0.17 | Sacrum | Line | -0.0073 | -0.0398 | 0.6919 | R7 | Point | -0.0513 | -0.0552 | 0.9990 |
| Longissimus thoracis | 7 | 27.0 | 3.57 | 20.4 | 12.0 | 0 | 4.86 | 2.25 | Sacrum | Line | -0.0391 | -0.0559 | 0.7002 | L5 | Point | -0.0367 | -0.0690 | 0.7240 |
| Longissimus thoracis | 8 | 42.0 | 3.57 | 31.8 | 18.0 | 0 | 5.69 | 1.69 | Pelvis | Line | -0.0406 | -0.0422 | 0.6979 | L4 | Point | -0.0338 | -0.0784 | 0.7398 |
| Longissimus thoracis | 9 | 64.0 | 3.57 | 48.4 | 20.0 | 0 | 7.90 | 1.54 | Pelvis | Line | -0.0412 | -0.0406 | 0.6962 | L3 | Point | -0.0263 | -0.0796 | 0.7652 |
| Longissimus thoracis | 10 | 91.7 | 3.57 | 69.3 | 33.3 | 0 | 12.57 | 1.71 | Pelvis | Line | -0.0412 | -0.0406 | 0.6962 | L2 | Point | -0.0247 | -0.0786 | 0.7876 |
| Longissimus thoracis | 11 | 109.3 | 3.57 | 82.7 | 55.7 | 0 | 22.89 | 2.62 | Pelvis | Line | -0.0412 | -0.0406 | 0.6962 | L1 | Point | -0.0240 | -0.0703 | 0.8157 |
| Longissimus thoracis | 12 | 135.3 | 3.57 | 102.4 | 73.8 | 0 | 15.52 | 1.43 | Sacrum | Line | -0.0445 | -0.0426 | 0.6467 | T12 | Point | -0.0220 | -0.0603 | 0.8448 |
| Longissimus thoracis | 13 | 87.7 | 3.57 | 66.3 | 150.2 | 0 | 11.41 | 1.63 | Sacrum | Line | -0.0398 | -0.0397 | 0.6417 | T11 | Point | -0.0268 | -0.0529 | 0.8732 |
| Longissimus thoracis | 14 | 102.8 | 3.57 | 77.7 | 168.6 | 0 | 4.08 | 0.50 | Sacrum | Line | -0.0253 | -0.0349 | 0.6400 | T10 | Point | -0.0295 | -0.0476 | 0.9072 |
| Longissimus thoracis | 15 | 63.5 | 3.57 | 48.0 | 216.3 | 0 | 1.43 | 0.28 | Sacrum | Line | -0.0040 | -0.0270 | 0.6551 | T9 | Point | -0.0299 | -0.0444 | 0.9292 |
| Longissimus thoracis | 16 | 68.3 | 3.57 | 51.6 | 210.4 | 0 | 1.80 | 0.33 | Sacrum | Line | -0.0073 | -0.0370 | 0.6866 | T8 | Point | -0.0314 | -0.0481 | 0.9605 |
| Longissimus thoracis | 17 | 57.8 | 3.57 | 43.7 | 241.2 | 0 | 1.18 | 0.26 | Sacrum | Line | -0.0073 | -0.0398 | 0.6919 | T7 | Point | -0.0316 | -0.0531 | 0.9853 |
| Longissimus thoracis | 18 | 82.3 | 3.57 | 62.3 | 224.7 | 0 | 2.43 | 0.37 | L5 | Line | -0.0081 | -0.0445 | 0.7140 | T6 | Point | -0.0320 | -0.0618 | 1.0133 |
| Longissimus thoracis | 19 | 76.3 | 3.57 | 57.7 | 237.6 | 0 | 2.54 | 0.42 | L4 | Line | -0.0070 | -0.0475 | 0.7327 | T5 | Point | -0.0336 | -0.0752 | 1.0346 |


| Muscle | \# | $\ell^{f}(\mathrm{~mm})$ | $\ell^{s}(\mu \mathrm{~m})$ | $\ell_{0}^{f}(\mathrm{~mm})$ | $\ell^{t}(\mathrm{~mm})$ | $\alpha$ (deg) | Mass (g) | $\operatorname{PCSA}\left(\mathrm{cm}^{2}\right)$ | Origin (bone) | Form | Position (m) |  |  | Insertion (bone) | Form | Position (m) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  | $x$ | $y$ | $z$ |  |  | $x$ | $y$ | $z$ |
| Longissimus thoracis | 20 | 67.0 | 3.57 | 50.7 | 266.3 | 0 | 1.40 | 0.26 | L4 | Line | -0.0076 | -0.0476 | 0.7410 | T4 | Point | -0.0279 | -0.0896 | 1.0562 |
| Longissimus thoracis | 21 | 119.8 | 3.57 | 90.6 | 223.3 | 0 | 3.83 | 0.40 | L3 | Line | -0.0086 | -0.0491 | 0.7572 | T3 | Point | -0.0239 | -0.1049 | 1.0750 |
| Longissimus thoracis | 22 | 126.0 | 3.57 | 95.3 | 223.6 | 0 | 6.06 | 0.60 | L2 | Line | -0.0072 | $-0.0481$ | 0.7772 | T2 | Point | -0.0209 | -0.1211 | 1.0978 |
| Longissimus thoracis | 23 | 87.0 | 3.57 | 65.8 | 265.5 | 0 | 0.91 | 0.13 | L1 | Line | -0.0063 | $-0.0463$ | 0.8014 | T1 | Point | -0.0222 | -0.1453 | 1.1100 |
| Multifidus | 1 | 55.0 | 3.35 | 44.4 | 12.0 | 0 | 0.33 | 0.07 | Sacrum | Surface | -0.0121 | -0.0279 | 0.6555 | L5 | Point | -0.0082 | -0.0457 | 0.7081 |
| Multifidus | 2 | 47.0 | 3.35 | 37.9 | 21.0 | 0 | 0.33 | 0.08 | Sacrum | Surface | $-0.0348$ | -0.0331 | 0.6513 | L5 | Point | -0.0100 | -0.0506 | 0.7048 |
| Multifidus | 3 | 51.7 | 3.35 | 41.7 | 55.7 | 0 | 2.83 | 0.64 | Sacrum | Surface | $-0.0368$ | -0.0387 | 0.6333 | L4 | Point | -0.0065 | -0.0485 | 0.7303 |
| Multifidus | 4 | 42.7 | 3.35 | 34.5 | 41.7 | 0 | 1.95 | 0.54 | Sacrum | Surface | $-0.0241$ | -0.0365 | 0.6528 | L4 | Point | -0.0061 | $-0.0541$ | 0.7279 |
| Multifidus | 5 | 42.0 | 3.35 | 33.9 | 27.0 | 0 | 0.61 | 0.17 | Sacrum | Surface | -0.0334 | -0.0391 | 0.6747 | L4 | Point | -0.0083 | -0.0612 | 0.7328 |
| Multifidus | 6 | 38.6 | 3.35 | 31.1 | 72.8 | 0 | 4.37 | 1.33 | Sacrum | Surface | -0.0440 | -0.0416 | 0.6489 | L3 | Point | -0.0091 | $-0.0511$ | 0.7494 |
| Multifidus | 7 | 34.1 | 3.35 | 27.5 | 28.3 | 0 | 1.93 | 0.66 | L5 | Surface | -0.0279 | -0.0533 | 0.6990 | L3 | Point | -0.0099 | -0.0580 | 0.7525 |
| Multifidus | 8 | 27.5 | 3.35 | 22.2 | 19.5 | 0 | 0.71 | 0.30 | L5 | Point | -0.0350 | -0.0652 | 0.7250 | L3 | Point | -0.0092 | -0.0662 | 0.7530 |
| Multifidus | 9 | 59.9 | 3.35 | 48.3 | 40.5 | 0 | 4.36 | 0.85 | Pelvis | Surface | -0.0407 | -0.0526 | 0.6850 | L2 | Point | -0.0068 | -0.0496 | 0.7732 |
| Multifidus | 10 | 57.7 | 3.35 | 46.6 | 30.7 | 0 | 4.17 | 0.85 | Sacrum | Surface | -0.0237 | -0.0518 | 0.6920 | L2 | Point | -0.0068 | -0.0496 | 0.7732 |
| Multifidus | 11 | 44.5 | 3.35 | 35.9 | 7.0 | 0 | 0.97 | 0.26 | L4 | Point | -0.0341 | -0.0799 | 0.7411 | L2 | Point | -0.0089 | -0.0700 | 0.7759 |
| Multifidus | 12 | 83.4 | 3.35 | 67.3 | 28.0 | 0 | 5.27 | 0.74 | Pelvis | Surface | -0.0417 | -0.0554 | 0.6988 | L1 | Point | -0.0051 | -0.0496 | 0.7983 |
| Multifidus | 13 | 72.7 | 3.35 | 58.6 | 33.8 | 0 | 4.74 | 0.76 | L5 | Surface | -0.0245 | -0.0546 | 0.6990 | L1 | Point | -0.0051 | -0.0486 | 0.7983 |
| Multifidus | 14 | 57.3 | 3.35 | 46.3 | 4.7 | 0 | 2.37 | 0.48 | L4 | Point | -0.0321 | -0.0748 | 0.7456 | L1 | Point | -0.0036 | $-0.0553$ | 0.7965 |
| Multifidus | 15 | 30.0 | 3.35 | 24.2 | 11.5 | 0 | 0.86 | 0.34 | L3 | Point | -0.0242 | -0.0838 | 0.7742 | L1 | Point | -0.0064 | -0.0635 | 0.8023 |
| Psoas major | 1 | 112.6 | 2.60 | 117.1 | 157.4 | 0 | 14.44 | 1.17 | Sacrum | Surface | -0.0356 | -0.0939 | 0.6951 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 2 | 112.8 | 2.60 | 117.2 | 223.8 | 0 | 21.13 | 1.70 | L3L4IVD | Surface | $-0.0280$ | -0.1080 | 0.7360 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 3 | 138.0 | 2.60 | 143.4 | 201.0 | 0 | 11.84 | 0.78 | L3 | Surface | -0.0336 | -0.0922 | 0.7600 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 4 | 97.5 | 2.60 | 101.3 | 200.5 | 0 | 4.68 | 0.44 | L4 | Surface | -0.0329 | -0.0960 | 0.7301 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 5 | 115.8 | 2.60 | 120.4 | 223.2 | 0 | 14.63 | 1.15 | L2 | Surface | $-0.0260$ | -0.0909 | 0.7890 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 6 | 126.6 | 2.60 | 131.6 | 226.9 | 0 | 38.08 | 2.74 | L1 | Surface | -0.0192 | -0.0897 | 0.8199 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 7 | 128.4 | 2.60 | 133.4 | 206.6 | 0 | 31.76 | 2.25 | L1 | Surface | -0.0231 | -0.0984 | 0.8289 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 8 | 108.0 | 2.60 | 112.2 | 191.5 | 0 | 13.56 | 1.14 | L3 | Surface | -0.0248 | -0.1085 | 0.7462 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 9 | 131.3 | 2.60 | 136.5 | 206.7 | 0 | 11.75 | 0.81 | L2L3IVD | Surface | -0.0270 | -0.1150 | 0.7700 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Psoas major | 10 | 136.3 | 2.60 | 141.7 | 211.7 | 0 | 12.09 | 0.81 | L2 | Surface | -0.0257 | -0.1140 | 0.7784 | Femur | Line | -0.0818 | -0.1022 | 0.5526 |
| Quadratus lumborum | 1 | 21.0 | 2.84 | 20.0 | 31.0 | 0 | 2.48 | 1.17 | Pelvis | Surface | -0.0791 | -0.0783 | 0.7431 | L3 | Line | -0.0488 | -0.0827 | 0.7563 |
| Quadratus lumborum | 2 | 26.2 | 2.84 | 24.9 | 29.8 | 0 | 0.89 | 0.34 | Pelvis | Surface | -0.0755 | -0.0713 | 0.7428 | L2 | Line | -0.0493 | -0.0791 | 0.7892 |
| Quadratus lumborum | 3 | 37.4 | 2.84 | 35.6 | 33.6 | 0 | 4.00 | 1.06 | Pelvis | Line | -0.0859 | -0.0756 | 0.7434 | L2 | Line | -0.0491 | -0.0799 | 0.7890 |
| Quadratus lumborum | 4 | 60.7 | 2.84 | 57.8 | 35.3 | 0 | 3.06 | 0.50 | Pelvis | Line | -0.0785 | -0.0697 | 0.7427 | L1 | Point | -0.0433 | $-0.0757$ | 0.8211 |
| Quadratus lumborum | 5 | 51.4 | 2.84 | 48.9 | 32.1 | 0 | 4.85 | 0.94 | L3 | Point | -0.0513 | -0.0816 | 0.7607 | R12 | Line | -0.0425 | -0.0700 | 0.8398 |
| Quadratus lumborum | 6 | 26.3 | 2.84 | 25.1 | 29.7 | 0 | 1.99 | 0.75 | Pelvis | Line | -0.0798 | -0.0810 | 0.7410 | L3 | Point | -0.0513 | -0.0825 | 0.7589 |
| Quadratus lumborum | 7 | 33.0 | 2.84 | 31.4 | 25.5 | 0 | 3.07 | 0.92 | Pelvis | Line | -0.0932 | -0.0875 | 0.7439 | L2 | Line | -0.0491 | -0.0799 | 0.7890 |
| Quadratus lumborum | 8 | 52.0 | 2.84 | 49.5 | 64.0 | 0 | 7.81 | 1.49 | Pelvis | Line | -0.1052 | -0.0925 | 0.7430 | R12 | Line | -0.0466 | -0.0702 | 0.8375 |
| Rectus abdominis | 1 | 262.7 | 2.72 | 260.3 | 50.3 | 0 | 28.23 | 1.13 | Pelvis | Surface | -0.0094 | -0.1766 | 0.6040 | Sternum | Line | 0.0005 | -0.2333 | 0.9028 |
| Rectus abdominis | 2 | 253.3 | 2.72 | 251.0 | 54.2 | 0 | 56.19 | 2.24 | Pelvis | Surface | -0.0094 | -0.1766 | 0.6040 | R7 | Line | -0.0249 | -0.2437 | 0.8972 |
| Rectus abdominis | 3 | 244.3 | 2.72 | 242.1 | 66.7 | 0 | 31.53 | 1.26 | Pelvis | Surface | -0.0094 | -0.1766 | 0.6040 | R5 | Line | -0.0602 | -0.2448 | 0.8992 |
| Serratus posterior inferior | 1 | 27.1 | 2.74 | 26.7 | 98.4 | 0 | 1.80 | 0.64 | L1 | Line | -0.0047 | -0.0447 | 0.7996 | R11 | Line | -0.1026 | -0.0774 | 0.8072 |
| Serratus posterior inferior | 2 | 43.2 | 2.74 | 42.5 | 89.8 | 0 | 3.39 | 0.75 | T12 | Line | -0.0064 | -0.0397 | 0.8387 | R10 | Line | -0.1119 | -0.0818 | 0.8384 |
| Serratus posterior inferior | 3 | 53.3 | 2.74 | 52.4 | 98.3 | 0 | 3.79 | 0.68 | T10 | Line | -0.0071 | -0.0360 | 0.8774 | R9 | Line | -0.1187 | -0.0907 | 0.8732 |


| Transversus abdominus | 1 | 47.5 | 2.83 | 45.2 | 69.0 | 0 | 1.36 | 0.28 | Pelvis | Line | -0.1146 | -0.1588 | 0.6950 | Linea alba | Line | 0.0000 | -0.2005 | 0.6147 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transversus abdominus | 2 | 56.5 | 2.83 | 53.8 | 89.5 | 0 | 1.36 | 0.24 | Pelvis | Line | -0.1157 | -0.1100 | 0.7359 | Linea alba | Line | 0.0000 | -0.2086 | 0.6368 |
| Transversus abdominus | 3 | 112.0 | 2.83 | 106.7 | 159.8 | 10 | 2.91 | 0.25 | L4 | Line | -0.0484 | -0.0828 | 0.7386 | Linea alba | Line | 0.0000 | -0.2147 | 0.6648 |
| Transversus abdominus | 4 | 115.0 | 2.83 | 109.5 | 157.3 | 10 | 2.91 | 0.25 | L3 | Line | -0.0454 | -0.0808 | 0.7590 | Linea alba | Line | 0.0000 | -0.2192 | 0.6967 |
| Transversus abdominus | 5 | 115.0 | 2.83 | 109.5 | 161.1 | 10 | 2.91 | 0.25 | L2 | Line | -0.0463 | -0.0787 | 0.7900 | Linea alba | Line | 0.0000 | -0.2225 | 0.7306 |
| Transversus abdominus | 6 | 105.0 | 2.83 | 100.0 | 168.7 | 10 | 2.91 | 0.27 | L1 | Line | -0.0396 | -0.0745 | 0.8240 | Linea alba | Line | 0.0000 | -0.2251 | 0.7646 |
| Transversus abdominus | 7 | 50.0 | 2.83 | 47.6 | 65.8 | 10 | 1.96 | 0.38 | R11 | Line | -0.1195 | -0.1054 | 0.7761 | Linea alba | Line | 0.0000 | -0.2276 | 0.7966 |
| Transversus abdominus | 8 | 49.0 | 2.83 | 46.7 | 43.6 | 10 | 1.96 | 0.39 | R10 | Line | -0.1216 | -0.1643 | 0.7738 | Linea alba | Line | 0.0000 | -0.2303 | 0.8247 |
| Transversus abdominus | 9 | 35.0 | 2.83 | 33.3 | 24.7 | 10 | 1.96 | 0.55 | R9 | Line | -0.0839 | -0.2217 | 0.8121 | Linea alba | Line | 0.0000 | -0.2338 | 0.8469 |
| Transversus abdominus | 10 | 20.0 | 2.83 | 19.0 | 27.1 | 10 | 1.96 | 0.96 | R7 | Line | -0.0464 | -0.2393 | 0.8595 | Linea alba | Line | 0.0000 | -0.2385 | 0.8614 |

${ }^{1}$ Musculo-tendon lengths of longissimus thoracis elements were estimated based on their modeled lines-of-action.
Unfortunately, we accidentally removed the superficial fibers of multifidus around the pelvis. The presented morphological parameters for these elements were estimated based on their modeled lines-of-action.
 muscles are presented in Appendix A.2, and the via points for the psoas major, longissimus thoracis, iliocostalis lumborum, and the transversus abdominis muscles are given in Appendix A.3.



 mere length in skeletal muscle fibers (Cross et al., 1981). We used
this method to calculate an average sarcomere length for every

 and required some assumptions. The details and underlying implement in musculo-skeletal models. It is important to
emphasize that this approach was a modeling procedure in itself complex function of skeletal muscles and made it suitable to
implement in musculo-skeletal models. It is important to number of muscle-tendon elements. This method simplified the is aimed to be built upon this dataset. Fifthly, we represented the
mechanical function of large muscles by dividing them into a Therefore, certain care should be allocated if a personalized model slightly. Fourthly, this dataset was obtained from an elderly male
and thus represents a subject specific model, not a generic one. lengths and physiological cross-sectional areas may change
slightly. Fourthly, this dataset was obtained from an elderly male implies that sarcomere and fiber lengths measured in-vitro may be
slightly lower than in-vivo. Similarly, measured optimal fiber shrinkage of $2 \%$ when the muscles were fixed in isolation. This
implies that sarcomere and fiber lengths measured in-vitro may be lengths when the muscles were fixed on the skeleton, but a mean rectus abdominis, LT: longissimus thoracis, IL: iliocostalis lumborum, QL: quadratus
lumborum, PM: psoas major, LD: latissimus dorsi, MF: multifidus, SPI: serratus
posterior inferior.




Table 2
Comparison of the muscle morphological parameters measured in the present study with other anatomical studies.

| Muscle | PCSA ( $\mathrm{cm}^{2}$ ) |  | $\ell_{0}^{f}(\mathrm{~cm})$ |  | $\ell^{s}(\mu \mathrm{~m})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Present | Other | Present | Other | Present | Other |
| Obliquus externus abdominis | 8.95 | $5.8 \pm 0.7^{\text {c }}$ | $8.8 \pm 3.0$ | $14.6 \pm 1.0^{\text {c }}$ | 2.82 | $3.18 \pm 0.11^{\text {c }}$ |
| Iliocostalis lumborum | 6.07 | $5.47^{\text {a }}, 4.1 \pm 1.9^{\text {d }}$ | $9.9 \pm 1.2$ | $14.2 \pm 2.1^{\text {d }}$ | 2.81 | $2.37 \pm 0.17^{\text {d }}, 2.19 \pm 0.04^{\text {i }}$ |
| Obliquus internus abdominis | 8.30 | $8.6 \pm 0.8^{\text {c }}$ | $7.3 \pm 2.1$ | $7.8 \pm 0.4{ }^{\text {c }}$ | 2.14 | $2.61 \pm 0.06^{\text {c }}$ |
| Latissimus dorsi | 6.16 | $5.6 \pm 0.5^{\mathrm{e}}, 8.64 \pm 3.05^{\mathrm{h}}$ | $24.6 \pm 3.0$ | $26.4 \pm 1.0^{\text {e }}$ | 2.26 | $2.69 \pm 0.06{ }^{\text {e }}$ |
| Longissimus thoracis | 18.50 | $16.08^{\text {a }}, 5.9 \pm 2.5^{\text {d }}$ | $6.4 \pm 1.9$ | $11.7 \pm 2.1^{\text {d }}$ | 3.57 | $2.31 \pm 0.17^{\text {d }}, 2.17 \pm 0.03^{\text {i }}$ |
| Multifidus | 8.08 | $8.42^{\text {a }}, 23.9 \pm 3.0^{\mathrm{k}}$ | $4.0 \pm 1.2$ | $5.7 \pm 0.7^{\mathrm{k}}$ | 3.35 | $2.06 \pm 0.03^{\text {i }}, 2.27 \pm 0.06^{\text {k }}$ |
| Psoas major | 12.99 | $14.63^{\text {b }}, 18.45 \pm 4.7^{\text {g }}, 7.7 \pm 2.3^{j}$ | $12.5 \pm 1.4$ | $12.69 \pm 2.0^{\text {g }}, 11.69 \pm 1.66^{\text {j }}$ | 2.60 | $3.03 \pm 0.3^{\text {g }}, 3.11 \pm 0.28^{\text {j }}$ |
| Quadratus lumborum | 7.18 | $2.8{ }^{\text {d }}$ | $3.7 \pm 1.4$ | $7.1{ }^{\text {d }}$ | 2.84 | $2.38{ }^{\text {d }}$ |
| Rectus abdominis | 4.63 | $3.3 \pm 0.5^{\text {c }}, 2.6 \pm 0.9^{\text {d }}$ | $25.1 \pm 0.9$ | $26.7 \pm 1.6^{\text {c }}, 28.0 \pm 4.2^{\text {d }}$ | 2.72 | $3.29 \pm 0.07^{\text {c }}, 2.83 \pm 0.28^{\text {d }}$ |
| Serratus posterior inferior | 2.07 | ${ }^{\text {f }}$ | $4.1 \pm 1.3$ | f | 2.74 |  |
| Transversus abdominus | 3.83 | $5.2 \pm 0.7^{\text {c }}$ | $6.7 \pm 3.5$ | $9.7 \pm 0.4{ }^{\text {c }}$ | 2.83 | $2.58 \pm 0.05^{\text {c }}$ |

[^1]muscles measured in this study were close to their optimal lengths $(\sim 2.7 \mu \mathrm{~m})$. There exists evidence that the distribution of sarcomere lengths within a muscle fiber is not uniform (Infantolino et al., 2010). Previous studies elaborated on the needed sample size to effectively calculate a mean sarcomere length for a muscle and the effect of sample size on optimal fiber length variation. Langenderfer et al. (2004) showed for the shoulder and elbow muscles that the standard deviation of mean optimal muscle length was about 1.25 mm for 120 samples and increased to nearly 4 mm for 10 samples. Our measurements also confirmed the nonuniform nature of sarcomere length distributions within the muscle fibers. We performed 18 sarcomere length measurements ( 6 samples $\times 3$ measurements). Therefore, the optimal fiber lengths and PCSAs presented in this paper should be regarded with similar variation. Furthermore, we compared morphological parameters such as PCSAs, optimal fiber lengths, and sarcomere lengths, measured in this study with similar anatomical studies in Table 2. The data reported in the literature indicates some variations for these parameters, especially for PCSAs of the longissimus thoracis, latissimus dorsi, multifidus, and psoas major muscles. Although, in general, we found similar sarcomere lengths with the other studies, we systematically calculated relatively shorter optimal fiber lengths in the present study. The comparison of the fiber lengths revealed lower fiber lengths compared to the other studies. This was attributed to the differences between the heights of the cadavers measured ( 154 cm in this study and around 170 cm in others). Other reasons which led to such differences may be due to differences in the measurement techniques and the number of samples used for sarcomere length measurements. Moreover, our PCSAs fit with the range of data reported in literature.

In the last decade, the demand for individualized musculoskeletal models has considerably increased aiming to improve the quality of patient specific treatment options. The state-of-theart approach to obtain personalized models is to morph the
medical images of a person to a previously built atlas containing muscle tendon attachment sites and lines-of-action (Pellikaan et al., 2014; Carbone et al., 2015). However, employing such an approach to create personalized models of the spine may only be reasonable up to some degree due to the high variability of muscle attachments with the bones. In this sense, imaging modalities should be improved to help more with creation of such models enabling identification of muscle attachments and obtaining muscle architectural parameters from living subjects (Blemker et al., 2007; Bruno et al., 2015). This objective is definitely one of the future challenges in musculo-skeletal modeling. Meanwhile, we hope that the dataset reported hereby will be a great value to researchers in the field.

## Conflict of interest statement

None of the authors have any financial or personal relationships with other people or organization that could inappropriately influence their work.

## Acknowledgments

We gratefully acknowledge the financial supports by fonds NutsOhra and the European Research Council 'the BiomechTools project'. We also like to thank several colleagues for their help on this research, Vincenzo Carbone and Kenan Niu for great discussions on musculo-skeletal modeling and working with motion capture systems, Frans Segerink for providing a laser for sarcomere length measurements, Andre Sprengers for his help during CT and MRI scans, and Radiology Department and the Anatomy Department of the Radboud university medical center for their hospitality during the medical imaging and cadaveric measurement
sessions. Furthermore, we thank Huub Maas from VU University of Amsterdam for his advice on laser diffraction method.

## Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jbiomech.2017.01. 009.

## References

Alireza, A., Weisse, B., Ferguson, S.J., 2011. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 14 (6), 527-537.
Arjmand, N., Gagnon, D., Plamondon, A., Shirazi-Adl, A., LariviÃère, C., 2009. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clin. Biomech. 24 (7), 533-541.
Besl, P.J., McKay, N.D., 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14 (February (2)).
Blemker, S.S., Asakawa, D.S., Gold, G.E., Delp, S.L., 2007. Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. imaging 25 (2), 441-451.
Bogduk, N., Johnson, G., Spalding, D., 1998. The morphology and biomechanics of latissimus dorsi. Clin. Biomech. 13 (6), 377-385.
Bogduk, N., Macintosh, J.E., Pearcy, M.J., 1992a. A universal model of the lumbar back muscles in the upright position. Spine 17 (8), 897-913.
Bogduk, N., Pearcy, M., Hadfield, G., 1992b. Anatomy and biomechanics of psoas major. Clin. Biomech. 7 (2), 109-119.
Borst, J., Forbes, P.A., Happee, R., Veeger, D.H., 2011. Muscle parameters for musculoskeletal modelling of the human neck. Clin. Biomech. 26 (4), 343-351.
Breteler, M., Spoor, C., Van der Helm, F., 1999. Measuring muscle and joint geometry parameters of a shoulder for modeling purposes. J. Biomech. 32 (11), 1191-1197.
Brown, S., Ward, S., Cook, M., Lieber, R., 2011. Architectural analysis of human abdominal wall muscles: implications for mechanical function. Spine 36 (5), 355-362.
Bruno, A.G., Bouxsein, M.L., Anderson, D.E., 2015. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 137 (8) (081003-081003-10).
Bustami, F., 1986. A new description of the lumbar erector spinae muscle in man. J. Anat. 144, 81-91.
Carbone, V., Fluit, R., Pellikaan, P., van der Krogt, M., Janssen, D., Damsgaard, M., Vigneron, L., Feilkas, T., Koopman, H., Verdonschot, N., 2015. Tlem 2.0 - a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J. Biomech. 48 (5), 734-741.
Carbone, V., Van der Krogt, M., Koopman, H., Verdonschot, N., 2012. Sensitivity of subject-specific models to errors in musculo-skeletal geometry. J. Biomech. 45 (14), 2476-2480.

Christophy, M., Faruk Senan, N.A., Lotz, J.C., O'Reilly, O.M., 2012. A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11 (1), 19-34.
Cross, H., West, R., Dutson, T., 1981. Comparison of methods for measuring sarcomere length in beef semitendinosus muscle. Meat Sci. 5 (4), 261-266.
Cutts, A., 1988. Shrinkage of muscle fibres during the fixation of cadaveric tissue. J. Anat. 160, 75-78.
Dao, T.T., Tho, M.-C.H.B., 2015. Assessment of parameter uncertainty in rigid musculoskeletal simulation using a probabilistic approach. J. Musculoskelet. Res. 18 (3), 1550013.
de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B., 2007. A generic detailed rigid-body lumbar spine model. J. Biomech. 40 (6), 1219-1227.
Delp, S.L., Suryanarayanan, S., Murray, W.M., Uhlir, J., Triolo, R.J., 2001. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J. Biomech. 34 (3), 371-375.
der Helm, F.V., Veeger, H., Pronk, G., der Woude, L.V., Rozendal, R., 1992. Geometry parameters for musculoskeletal modelling of the shoulder system. J. Biomech. 25 (2), 129-144.

Gerling, M., Brown, S., 2013. Architectural analysis and predicted functional capability of the human latissimus dorsi muscle. J. Anat. 223 (2), 112-122.
Ignasiak, D., Dendorfer, S., Ferguson, S., 2016. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J. Biomech. 49 (6), 959-966.

Infantolino, B., Ellis, M., Challis, J., 2010. Individual sarcomere lengths in whole muscle fibers and optimal fiber length computation. Anat. Rec. 293 (11), 1913-1919.
Kamibayashi, L., Richmond, F., 1998. Morphometry of human neck muscles. Spine 23 (12), 1314-1323.
Klein Horsman, M., Koopman, H., van der Helm, F., ProsÃl', L., Veeger, H., 2007. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22 (2), 239-247.
Langenderfer, J., Jerabek, S., Thangamani, V., Kuhn, J., Hughes, R., 2004. Musculoskeletal parameters of muscles crossing the shoulder and elbow and the effect of sarcomere length sample size on estimation of optimal muscle length. Clin. Biomech. 19 (7), 664-670.
Macintosh, J.E., Bogduk, N., 1987. 1987 volvo award in basic science: the morphology of the lumbar erector spinae. Spine 12 (7), 658-668.
Macintosh, J.E., Bogduk, N., 1991. The attachments of the lumbar erector spinae. Spine 16 (7), 783-792.
Macintosh, J.E., Valencia, F., Bogduk, N., Munro, R.R., 1986. The morphology of the human lumbar multifidus. Clin. Biomech. 1 (4), 196-204.
Mahato, N., 2013. Pars inter-articularis and laminar morphology of the terminal lumbar vertebra in lumbosacral transitional variations. North Am. J. Med. Sci. 5 (6), 357-361.

McGill, S.M., 1992. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending. J. Biomech. 25 (4), 395-414.
Pellikaan, P., van der Krogt, M., Carbone, V., Fluit, R., Vigneron, L., Van Deun, J., Verdonschot, N., Koopman, H., 2014. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity. J. Biomech. 47 (5), 1144-1150.
Phillips, S., Mercer, S., Bogduk, N., 2008. Anatomy and biomechanics of quadratus lumborum. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 222 (2), 151-159.
Putzer, M., Ehrlich, I., Rasmussen, J., Gebbeken, N., Dendorfer, S., 2016. Sensitivity of lumbar spine loading to anatomical parameters. J. Biomech. 49 (6), 953-958.
Regev, G., Kim, C., Tomiya, A., Lee, Y., Ghofrani, H., Garfin, S., Lieber, R., Ward, S., 2011. Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine 36 (26), E1666-E1674.
van der Helm, F., Veenbaas, R., 1991. Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism. J. Biomech. 24 (12), 1151-1163.
Vasavada, A.N., Li, S., Delp, S.L., 1998. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 23 (4), 412-422.
Veeger, H., Van Der Helm, F., Van Der Woude, L., Pronk, G., Rozendal, R., 1991. Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. J. Biomech. 24 (7), 615-629.
Walker, S., Schrodt, G., 1974. I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat. Rec. 178 (1), 63-81.
Ward, S., Kim, C., Eng, C., Gottschalk IV, L., Tomiya, A., Garfin, S., Lieber, R., 2009a. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J. Bone Jt. Surg. - Ser. A 91 (1), 176-185.
Ward, S., Tomiya, A., Regev, G., Thacker, B., Benzl, R., Kim, C., Lieber, R., 2009b. Passive mechanical properties of the lumbar multifidus muscle support its role as a stabilizer. J. Biomech. 42 (10), 1384-1389.
Ward, S.R., Eng, C.M., Smallwood, L.H., Lieber, R.L., 2009c. Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467 (4), 1074-1082.
Wilke, H.-J., Kienle, A., Maile, S., Rasche, V., Berger-Roscher, N., 2016. A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Eur. Spine J. 25 (5), 1363-1372.
Zajac, F., 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17 (4), 359-411.
Zander, T., Dreischarf, M., Schmidt, H., Bergmann, G., Rohlmann, A., 2015. Spinal loads as influenced by external loads: a combined in vivo and in silico investigation. J. Biomech. 48 (4), 578-584.


[^0]:    * Corresponding author. Fax: + 31534892287.

    E-mail address: r.bayoglu@hotmail.com (R. Bayoglu).

[^1]:    ${ }^{\text {a }}$ Bogduk et al. (1992a), eight adult human cadavers embalmed in a supine position. PCSA was calculated by dividing the volume of each fascicle by its length. Only PCSA of iliocostalis lumborum pars thoracis was shown in the table. PCSA of iliocostalis lumborum pars lumborum was reported as $6.33 \mathrm{~cm}^{2}$.
    ${ }^{\text {b }}$ Bogduk et al. (1992b), three embalmed human adult male cadavers aged in excess of 60 years. PCSA was calculated by dividing the volume of each fascicle by its length. For comparison, PCSA of each fascicle was summed.
    ${ }^{\text {c }}$ (Brown et al., 2011), five male (mean $\pm$ standard deviation age $=71.8 \pm 17.9$ years, height $=174.8 \pm 6.6 \mathrm{~cm}$, mass $=67.8 \pm 9.4 \mathrm{~kg}$ ) and six female ( $82.7 \pm 14.5$ years, height $=165.6 \pm 3.7 \mathrm{~cm}$, mass $=63.1 \pm 11.8 \mathrm{~kg}$ ) embalmed human cadavers.
    ${ }^{\text {d }}$ Delp et al. (2001), four unembalmed and one embalmed human cadavers (two males and three females, mean $\pm$ standard deviation age $=67.0 \pm 9.1$ years, height $=170.6 \pm 4.2 \mathrm{~cm}$, mass $=76.2 \pm 13.3 \mathrm{~kg}$ ). For comparison purposes, PCSAs of the proximal and distal parts were summed, and sarcomere and optimal fiber lengths were averaged between the parts. optimal fiber length was assumed to be $2.8 \mu \mathrm{~m}$.
    ${ }^{e}$ Gerling and Brown (2013), twelve embalmed human cadavers (nine males, three females, mean $\pm$ standard deviation age $=63.0 \pm 11.0$ years).
    ${ }^{\mathrm{f}}$ Not available.
    ${ }^{\mathrm{g}}$ Regev et al. (2011), thirteen human cadavers (mean $\pm$ standard deviation age $=50.0 \pm 6.0$ years).
    ${ }^{h}$ Veeger et al. (1991), five males and two females embalmed human cadavers (mean $\pm$ standard deviation age $=80.0 \pm 7.0$ years, height $=171.1 \pm 6.9 \mathrm{~cm}$, mass $=76.1 \pm 16.4 \mathrm{~kg})$.
    ${ }^{i}$ Ward et al. (2009b). Muscle specimens were obtained from patients, iliocostalis lumborum ( $n=7$ ), longissimus ( $n=7$ ), and multifidus ( $n=23$ ).
    ${ }^{\mathrm{j}}$ Ward et al. (2009c), nineteen embalmed human male and female specimens.
    ${ }^{\mathrm{k}}$ Ward et al. (2009a), eight human cadaveric specimens of both genders, (mean $\pm$ standard deviation age $=84.0 \pm 3.0$ years, height $=170.5 \pm 11.1 \mathrm{~cm}$, mass $=81.1 \pm 15.3 \mathrm{~kg})$.

