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Abstract

Solving the Helmholtz equation for high wavenumbers is a major challenge. &igceeeds at least some
elements per wavelength, the computational effort in finite element or bouetEment calculations in-
creases drastically with increasing wavenumbers. However, for exmoblems in unbounded domains,
the amplitude and phase are smooth and non-oscillatory functions (at dmastdistance away from the
radiating object). Therefore, we propose to solve the Helmholtz equationis @f amplitude and phase
instead of pressure. The paramount advantage of this approach @thabmmon discretization remains
accurate for high wavenumbers. A drawback of the method is that théi@ugifor amplitude and phase are
non-linear and hence need to be solved iteratively.

Substitution ofp = Ae’® in the Helmholtz equation yields two, non-linear, coupled, real-valued reiftal
equations. These equations have been reported some decades hgeebomly been used to trace rays’
for given solutions of the Helmholtz equation. To eventually be able to inclut@iogeneous regions and
fluid-structure interaction efficiently, a finite element discretization is prefeover a boundary element dis-
cretization. Therefore, finite elements were used to discretize the gogergurations. We present several
solutions and, despite of its nhon-linearity, show the efficiency of the mettrdudh wavenumbers.

1 Introduction

The major problem in numerically solving the Helmholtz equatioR + k%p = 0, wherep is the pressure
perturbation and is the wavenumber) is solving the equation at high wavenumbers. Sinceamagcsim-
ulation requires at least a number of degrees of freedom per wate]@&specially for 2 and 3 dimensional
problems, the model size and computational effort to solve the system afi@ugiincrease drastically with
increasing wavenumber.

For exterior problems however, one can reduce the model size bynieoagthat the amplituded and
phaseg are, at least some distance away from the radiating object, smooth armkcitiatory. Hence, it
requires much less degrees of freedom to accurately represent thitudenpnd phase than to represent
the (complex) pressure. Therefore, we propose to solve the Helmhol&ieq in terms of amplitude and
phase instead of pressure. As an illustration consider the simple planesalatienp = Be~*** of a wave
propagating in the positive-direction. The amplitudel = |B| is a constant and the phage= —kx is a
linear function of the coordinate. This implies that only a single linear finite elefoeboth amplitude and
phase suffices to capture the analytical solution for any wavenumbath@&nexample is the radiation of a
monopole source = Be~%" /r, wherer denotes the radius. The amplitude= |B/r| decays smoothly
and the phase = —kr again remains linear (smooth) for any wavenumber. Hence, a small sizeicaime
model is already accurate.

Note that the current approach does not lead to model size reductioneior acoustics as in that case the
amplitude varies with wavelength.
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A finite element discretization of the Helmholtz equation in terms of amplitude ana: paasvill be given
in the next section, allows one to analyze regions of varyirige. £ = k(x). Also fluid structure interaction
can efficiently be taken into account if the finite element is coupled to a staldinite element. Hence we
use finite elements, as opposed to boundary elements, to discretize thegpeatidns.

2 Theory

2.1 Helmholtz in terms of amplitude and phase.

In terms of the (complex) pressupe= p(x, k) = pr(x, k) + ip;(X, k), wherex denotes the position vector,
k = w/cq is the wavenumbey, is the angular frequency amglis the speed of sound, the Helmholtz equation
reads:

V2p+k%p=0. 1)

On a boundary) of the computational domaif, either the pressurg (= p, where denotes a prescribed
variable), the normal velocitydp/on = —ipocokv,, Wherepy denotes the density arig, the prescribed

normal velocity) or a specific impedano@a@/ﬁn + ikp = 0, where( = Z/(pocop) is a prescribed char-
acteristic impedance) is given. For exterior problems, the solution shotigflyshe Sommerfeld radiation
condition on the enclosing boundary:

lim r <8p + ikp) =0, (2)
r—oo  \ Or

allowing only outgoing waves.
The real and imaginary part of Eq.(1) transform to two coupled, noradjregjuations for both the amplitude
A = A(x, k) and phase = ¢(x, k):
VZA+ (k* - V¢-V¢)A=0 and ©)
AV2p+2VA -V =0. (4)
These equations were given in [1] and were used, as a post-praget=, to trace rays for a given solution
of the Helmholtz equation.
In terms of amplitude and phase, a pressure amplitudad phasés can be prescribed:

A = A and (5)
¢ = ¢ (6)
The boundary condition for a prescribed normal velocity ampliticend phase reads:
g‘: + pocokVsin(¢p — ¢y) =0 and 7)
0 . .
AZ 4 pocokVeos(6 — d) = ®)
)

wheren denotes the unit normal vector on the boundary. For a prescribed compedance = ¢, + i(;,
the boundary condition is:

8’0 CT +Cz
492 + %M =0. (11)
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The Sommerfeld radiation condition (actually the term between brackets in)Egn(Ehe enclosing bound-
ary 01 is obtained from the equation above by setting the impedanoghe impedance of a plane wave;
¢, = 1and{; = 0. This results in:

0A
o6
5 =k (13)

Note the impedance of a spherical wave on the outer boundary results in:

o4, A, ”
on r
09

which seems, generally, more appropriate than the Sommerfeld radiatioitiaond

2.2 Finite element discretization

Using test functions andw for, respectively, Egs.(3) and (4) and applying the divergence¢neca weak
formulation is obtained:

—/W-VAdV+/u(k:2—v¢-v¢)AdV+/ vVA-ndS =0 (16)
Q Q o0
/wVA~V¢dV—/AVw-V¢>dV—I—/ wAVe-ndS =0 a7
Q Q o0

Note that the last terms on the left hand side are the natural boundarificesdA/on and A0¢/on as
were stated above for a velocity and impedance (and Sommerfeld) bgwmtalition. The variabled and

¢ within each element are now interpolated between the nodal values usjpg fsimations. Choosing test
functions equal to the shape functions, a system of equations is obtalmet an be solved iteratively.

Element mesh

Figure 1: Finite element mesh used for solving the Helmholtz equation in termsgdyse and in terms of
amplitude and phase.
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3 Example

As an example we consider the radiation from a simple square radiatoreasigitig.(1). On the radiator

the pressure is set to unity, i.e.= 1. In terms of amplitude and phase, the boundary conditions are thus
A =1and¢ = 0. A circular outer boundary of the computational domain, as shown in Fjgs(digfined at
aradius: = 1m. The Sommerfeld radiation condition is applied on this boundary.

The domain is meshed arbitrarily using quadratic elements. The mesh cons@iisetdments4332 dof’s).

The size of each element is approximatelyz0.1m. Hence, based on a minimum of 2 quadratic elements
per wavelength, the mesh would be sufficient for frequencies Upt6H > (for standard air conditions

po = 1.25kg/m3 andcy = 343m/s) when solving the Helmholtz equation in terms of pressure. Above this
frequency, the element mesh is too coarse to capture the pressure mariatio

To compare the solution of the Helmholtz equation in terms of pressure to the saltitfee non-linear set in
terms of amplitude and phase, both sets were discretized and solved.ddabedgressure solution obtained
from the linear Helmholtz equation, the amplitude and phase can simply be cadcdiatse results will be

denoted by4, = /p? + p? and¢, = atan(p;/p.) to discriminate them between the amplitude and phase
which have been calculated directly from the non-linear set of equations.

eeeeeeeee h Max: 1338

Figure 2: Pressure (real papt,) based on the Helmholtz equation in terms of presRkéi().

In Fig.(2) the real part of the pressure is shown at a frequen®k ffz (k = 36.6) based on solving the
linear Helmholtz equation in terms of pressure. As can be seen, the mesiost@teme too coarse and the
discretization error is becoming large.

Based on the pressure, the amplitutjeand phase,, are shown in Fig.(3). The amplitude and phase directly
calculated from the Helmholtz equation are shown in Fig.(4). As can alresaslgdn, the larger discretization
error results in less accurate results for the pressure based quamtigediscretization error for the directly
calculated amplitude and phase is much less, specifically far away fromdiatimg object. In addition, it

is noted that the current mesh is irregular. A regular mesh would result intheroresults. Note that the
directly calculated phase is non-oscillatory.

The major advantage of the new approach is illustrated in Fig.(5), showirgrtpktudeA, andA at10kH z

(k = 183.2). At this frequency and mesh there is only 1 element per 3 wavelengtdsheni,, results are
obviously erroneous. However, the results foare still accurate despite the non-structured mesh. Note that
the left figure in Fig.(4) and the left figure in Fig.(5) are nearly the samés iErsimilar to the amplitude

for a spherical wave; for high frequencies the amplitude becomes indepeof frequency4 ~ 1/r). Itis
noted that even less elements per wavelength can be applied whenesibtepas long as the discretization
error is low, e.g. further away from the radiating object.
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f(1)=2000  Surface: A p [Pa] Height: A p [Pa] f(1)=2000  Surface: PHI_p [rad] Height: PHI_p [rad] Max: 1.563

Figure 3: AmplitudeA, = /p? + p? (left) and phases, = atan(p;/p:) (right) based on the Helmholtz
equation in terms of pressurgi(H z).
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Figure 4: AmplitudeA and phasep based on the Helmholtz equation in terms of amplitude and phase
(2kH 2).
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Figure 5: AmplitudeA based on the Helmholtz equation in terms of amplitude and phase (left} ard
\/pZ + p? based on the Helmholtz equation in terms of pressure (right) z).
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4 Conclusions

For exterior problems, we presented a method to solve the Helmholtz equatibigfowave numbers
efficiently. This has been accomplished by solving the Helmholtz equation in tdramsplitude and phase
instead of pressure. The transformation from complex pressure teupeegmplitude and phase yields two
non-linear, non-complex, coupled equations. This transformation leadi&tge model size reduction and,
despite the non-linearity, can be used to predict sound radiation efficiently
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