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Abstract
Solving the Helmholtz equation for high wavenumbers is a major challenge. Sinceone needs at least some
elements per wavelength, the computational effort in finite element or boundary element calculations in-
creases drastically with increasing wavenumbers. However, for exterior problems in unbounded domains,
the amplitude and phase are smooth and non-oscillatory functions (at least some distance away from the
radiating object). Therefore, we propose to solve the Helmholtz equation in terms of amplitude and phase
instead of pressure. The paramount advantage of this approach is thatany common discretization remains
accurate for high wavenumbers. A drawback of the method is that the equations for amplitude and phase are
non-linear and hence need to be solved iteratively.
Substitution ofp = Aeiφ in the Helmholtz equation yields two, non-linear, coupled, real-valued, differential
equations. These equations have been reported some decades ago buthave only been used to trace ’rays’
for given solutions of the Helmholtz equation. To eventually be able to include inhomogeneous regions and
fluid-structure interaction efficiently, a finite element discretization is preferred over a boundary element dis-
cretization. Therefore, finite elements were used to discretize the governing equations. We present several
solutions and, despite of its non-linearity, show the efficiency of the method for high wavenumbers.

1 Introduction

The major problem in numerically solving the Helmholtz equation (∇2p + k2p = 0, wherep is the pressure
perturbation andk is the wavenumber) is solving the equation at high wavenumbers. Since an accurate sim-
ulation requires at least a number of degrees of freedom per wavelength, especially for 2 and 3 dimensional
problems, the model size and computational effort to solve the system of equations increase drastically with
increasing wavenumber.

For exterior problems however, one can reduce the model size by recognizing that the amplitudeA and
phaseφ are, at least some distance away from the radiating object, smooth and non-oscillatory. Hence, it
requires much less degrees of freedom to accurately represent the amplitude and phase than to represent
the (complex) pressure. Therefore, we propose to solve the Helmholtz equation in terms of amplitude and
phase instead of pressure. As an illustration consider the simple plane wavesolutionp = Be−ikx of a wave
propagating in the positivex-direction. The amplitudeA = |B| is a constant and the phaseφ = −kx is a
linear function of the coordinate. This implies that only a single linear finite element for both amplitude and
phase suffices to capture the analytical solution for any wavenumber! Another example is the radiation of a
monopole sourcep = Be−ikr/r, wherer denotes the radius. The amplitudeA = |B/r| decays smoothly
and the phaseφ = −kr again remains linear (smooth) for any wavenumber. Hence, a small size numerical
model is already accurate.

Note that the current approach does not lead to model size reduction forinterior acoustics as in that case the
amplitude varies with wavelength.
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A finite element discretization of the Helmholtz equation in terms of amplitude and phase, as will be given
in the next section, allows one to analyze regions of varyingk, i.e. k = k(x). Also fluid structure interaction
can efficiently be taken into account if the finite element is coupled to a structural finite element. Hence we
use finite elements, as opposed to boundary elements, to discretize the set ofequations.

2 Theory

2.1 Helmholtz in terms of amplitude and phase.

In terms of the (complex) pressurep = p(x, k) = pr(x, k) + ipi(x, k), wherex denotes the position vector,
k = ω/c0 is the wavenumber,ω is the angular frequency andc0 is the speed of sound, the Helmholtz equation
reads:

∇2p + k2p = 0. (1)

On a boundary∂Ω of the computational domainΩ, either the pressure (p = p̂, wherê denotes a prescribed
variable), the normal velocity (∂p/∂n = −iρ0c0kv̂n, whereρ0 denotes the density and̂vn the prescribed
normal velocity) or a specific impedance (ζ̂∂p/∂n + ikp = 0, whereζ̂ = Z/(ρ0c0) is a prescribed char-
acteristic impedance) is given. For exterior problems, the solution should satisfy the Sommerfeld radiation
condition on the enclosing boundary:

lim
r→∞ r

(
∂p

∂r
+ ikp

)
= 0, (2)

allowing only outgoing waves.

The real and imaginary part of Eq.(1) transform to two coupled, non-linear, equations for both the amplitude
A = A(x, k) and phaseφ = φ(x, k):

∇2A +
(
k2 −∇φ · ∇φ

)
A = 0 and (3)

A∇2φ + 2∇A · ∇φ = 0. (4)

These equations were given in [1] and were used, as a post-processing step, to trace rays for a given solution
of the Helmholtz equation.

In terms of amplitude and phase, a pressure amplitudeÂ and phasêφ can be prescribed:

A = Â and (5)

φ = φ̂. (6)

The boundary condition for a prescribed normal velocity amplitudeV̂ and phasêφV reads:

∂A

∂n
+ ρ0c0kV̂ sin(φ− φ̂V ) = 0 and (7)

A
∂φ

∂n
+ ρ0c0kV̂ cos(φ− φ̂V ) = 0, (8)

(9)

wheren denotes the unit normal vector on the boundary. For a prescribed complex impedancêζ = ζ̂r + iζ̂i,
the boundary condition is:

∂A

∂n
+

ζ̂i

ζ̂r
2
+ ζ̂i

2 kA = 0 and (10)

A
∂φ

∂n
+

ζ̂r

ζ̂r
2
+ ζ̂i

2 kA = 0. (11)
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The Sommerfeld radiation condition (actually the term between brackets in Eq.(2)) on the enclosing bound-
ary ∂Ω is obtained from the equation above by setting the impedanceζ to the impedance of a plane wave;
ζr = 1 andζi = 0. This results in:

∂A

∂n
= 0 (12)

∂φ

∂n
= −k. (13)

Note the impedance of a spherical wave on the outer boundary results in:

∂A

∂n
+

A

r
= 0 (14)

∂φ

∂n
= −k, (15)

which seems, generally, more appropriate than the Sommerfeld radiation condition.

2.2 Finite element discretization

Using test functionsv andw for, respectively, Eqs.(3) and (4) and applying the divergence theorem, a weak
formulation is obtained:

−
∫

Ω
∇v · ∇A dV +

∫
Ω

v(k2 −∇φ · ∇φ)A dV +
∫

∂Ω
v∇A · n dS = 0 (16)∫

Ω
w∇A · ∇φ dV −

∫
Ω

A∇w · ∇φ dV +
∫

∂Ω
wA∇φ · n dS = 0 (17)

Note that the last terms on the left hand side are the natural boundary conditions ∂A/∂n andA∂φ/∂n as
were stated above for a velocity and impedance (and Sommerfeld) boundary condition. The variablesA and
φ within each element are now interpolated between the nodal values using shape functions. Choosing test
functions equal to the shape functions, a system of equations is obtained which can be solved iteratively.

Figure 1: Finite element mesh used for solving the Helmholtz equation in terms of pressure and in terms of
amplitude and phase.
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3 Example

As an example we consider the radiation from a simple square radiator as given in Fig.(1). On the radiator
the pressure is set to unity, i.e.p = 1. In terms of amplitude and phase, the boundary conditions are thus
A = 1 andφ = 0. A circular outer boundary of the computational domain, as shown in Fig.(1), is defined at
a radiusr = 1m. The Sommerfeld radiation condition is applied on this boundary.

The domain is meshed arbitrarily using quadratic elements. The mesh consists of690 elements (4332 dof’s).
The size of each element is approximately0.1x0.1m. Hence, based on a minimum of 2 quadratic elements
per wavelength, the mesh would be sufficient for frequencies upto1715Hz (for standard air conditions
ρ0 = 1.25kg/m3 andc0 = 343m/s) when solving the Helmholtz equation in terms of pressure. Above this
frequency, the element mesh is too coarse to capture the pressure variations.

To compare the solution of the Helmholtz equation in terms of pressure to the solution of the non-linear set in
terms of amplitude and phase, both sets were discretized and solved. Basedon the pressure solution obtained
from the linear Helmholtz equation, the amplitude and phase can simply be calculated. These results will be

denoted byAp =
√

p2
r + p2

i andφp = atan(pi/pr) to discriminate them between the amplitude and phase
which have been calculated directly from the non-linear set of equations.

Figure 2: Pressure (real part,pr) based on the Helmholtz equation in terms of pressure (2kHz).

In Fig.(2) the real part of the pressure is shown at a frequency of2kHz (k = 36.6) based on solving the
linear Helmholtz equation in terms of pressure. As can be seen, the mesh startsto become too coarse and the
discretization error is becoming large.

Based on the pressure, the amplitudeAp and phaseφp are shown in Fig.(3). The amplitude and phase directly
calculated from the Helmholtz equation are shown in Fig.(4). As can already be seen, the larger discretization
error results in less accurate results for the pressure based quantities.The discretization error for the directly
calculated amplitude and phase is much less, specifically far away from the radiating object. In addition, it
is noted that the current mesh is irregular. A regular mesh would result in smoother results. Note that the
directly calculated phase is non-oscillatory.

The major advantage of the new approach is illustrated in Fig.(5), showing theamplitudeAp andA at10kHz
(k = 183.2). At this frequency and mesh there is only 1 element per 3 wavelengths! and theAp results are
obviously erroneous. However, the results forA are still accurate despite the non-structured mesh. Note that
the left figure in Fig.(4) and the left figure in Fig.(5) are nearly the same. This is similar to the amplitude
for a spherical wave; for high frequencies the amplitude becomes independent of frequency (A ∼ 1/r). It is
noted that even less elements per wavelength can be applied whenever possible as long as the discretization
error is low, e.g. further away from the radiating object.
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Figure 3: AmplitudeAp =
√

p2
r + p2

i (left) and phaseφp = atan(pi/pr) (right) based on the Helmholtz
equation in terms of pressure (2kHz).

Figure 4: AmplitudeA and phaseφ based on the Helmholtz equation in terms of amplitude and phase
(2kHz).

Figure 5: AmplitudeA based on the Helmholtz equation in terms of amplitude and phase (left) andAp =√
p2

r + p2
i based on the Helmholtz equation in terms of pressure (right) (10kHz).
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4 Conclusions

For exterior problems, we presented a method to solve the Helmholtz equation for high wave numbers
efficiently. This has been accomplished by solving the Helmholtz equation in termsof amplitude and phase
instead of pressure. The transformation from complex pressure to pressure amplitude and phase yields two
non-linear, non-complex, coupled equations. This transformation leads toa large model size reduction and,
despite the non-linearity, can be used to predict sound radiation efficiently.
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